
2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2020, ESPOO, FINLAND

ON THE EFFECTIVENESS OF TWO-STEP LEARNING FOR LATENT-VARIABLE MODELS

Cem Subakan[, Maxime Gasse[, Laurent Charlin[,]

[Mila — Quebec Artificial Intelligence Institute,]HEC Montréal

ABSTRACT

Latent-variable generative models offer a principled solution for
modeling and sampling from complex probability distributions. Im-
plementing a joint training objective with a complex prior, however,
can be a tedious task, as one is typically required to derive and
code a specific cost function for each new type of prior distribution.
In this work, we propose a general framework for learning latent
variable generative models in a two-step fashion. In the first step of
the framework, we train an autoencoder, and in the second step we
fit a prior model on the resulting latent distribution. This two-step
approach offers a convenient alternative to joint training, as it allows
for a straightforward combination of existing models without the
hustle of deriving new cost functions, and the need for coding the
joint training objectives. Through a set of experiments, we demon-
strate that two-step learning results in performances similar to joint
training, and in some cases even results in more accurate modeling.

1. INTRODUCTION

Latent-variable generative models typically consist of a stochastic
prior model qp(h), i.e., a latent distribution, and a (stochastic) de-
coder model qd(x | h). While simple priors are commonly used
in practice, such as a standard normal in the variational autoen-
coder (VAE) framework [1] or the generative adversarial network
(GAN) framework [2], recent works suggest that learning (the pa-
rameters of) complex, multi-modal priors better captures the struc-
ture of the latent space and thereby yields more accurate generative
models [3, 4]. For example, using a learned Gaussian mixture model
(GMM) prior improves the performance of VAEs [5, 6].

Jointly training the decoder and prior parameters, however, can
be a tedious task when complex prior distributions are used. In the
VAE framework, one usually has to derive a closed-form expres-
sion of the evidence lower bound (ELBO) for each new type of prior
modeling choice, which prevents the use of arbitrary distributions
and requires lengthy derivations. For example, deriving a joint train-
ing objective for the GMM prior, including the description of their
various implementation choices, takes [5] a considerable chunk of
their paper. We provide details in Section 4.1.

We propose two-step learning, an alternative approach to joint
training for latent-variable models. We show that it is unbiased, sim-
ple to implement, and performs well empirically.

The framework consists in decoupling the training into two
steps: 1) fitting an autoencoder model to the data, 2) fitting a prior
distribution on the resulting latent representation. This decoupling
enables faster and more robust (less bug prone) exploration of mod-
eling options since different priors and autoencoders can be plugged
in and existing learning procedures reused. For example, in Section
4.2 we show how a VAE with a GMM prior can be turned into a
generative model for time series, simply by changing the prior to a
Hidden Markov Model (HMM).

We demonstrate across several tasks that two-step learning re-
sults in performances similar to joint training (when joint training
is available), while being substantially easier to implement in each
case. In addition, our experimental results suggest that two-step
learning is more stable than joint training, especially in the presence
of discrete latent variables. In particular, we showcase the versatility
and performance of our method in different situations, and explore
a broad range of models including VAEs with GMM prior, VAEs
with HMM prior, and some models where it is not obvious how to
carry out joint training, such as VAEs with GANs priors, GANs with
GMM priors, and PCA autoencoders with GMM priors.

Our contributions are:

1. We define a two-step learning framework for learning latent
variable-based generative models, and show it is consistent
with the VAE framework.

2. We demonstrate on several use cases that the performance of
two-step learning is comparable to that of joint training, when
available, while being more robust.

3. We demonstrate the versatility of the approach, with a broad
range of latent variable models mixing heterogeneous autoen-
coder and prior models.

2. THE TWO-STEP PROCEDURE

Consider data x ∈ RL, and let p(x) denote the unknown data dis-
tribution we want to estimate. A latent-variable generative model
consists of a prior distribution qp(h) and a decoder qd(x | h), with
latent codes h ∈ RK . Learning such a model amounts to finding a
combination of qp and qd so that the marginal distribution,

qmodel(x) :=
∑
h

qp(h)qd(x | h),

approximates the data distribution p(x), ideally so that the Kullback-
Leibler divergence KL(p(x) ‖ qmodel(x)) is close to zero. Since
the direct optimization of that marginal distribution is in general in-
tractable, the typical approach is to maximize the evidence lower
bound (ELBO), or equivalently minimize

KL(p(x)qe(h | x) ‖ qe(h)qd(x | h)) (1a)
+ KL(qe(h) ‖ qp(h)) (1b)
≥ KL(p(x) ‖ qmodel(x)),

with qe(h | x) an encoder that maps observations x into latent vari-
ables h, and qe(h) the resulting implicit prior distribution over the
latent variables, obtained after marginalizing the data distribution,

qe(h) :=
∑
x

p(x)qe(h | x).

978-1-7281-6662-9/20/$31.00 ©2020 IEEE

As introduced in Section 1, deriving the joint training loss with com-
plex prior distributions can be cumbersome, as it requires analyti-
cally deriving the corresponding ELBO (or making an approxima-
tion for it) for each new type of prior modeling choice. We show a
full example in Section 4.1.

The insight we exploit in this paper is that qe and qd together
form a proper autoencoder (AE). In that view, the first term (1a)
pushes the resulting AE to minimize the reconstruction error, while
the second term (1b) pushes the implicit distribution of the encoder
output and the prior model to match each other.

With this in mind, we propose to decouple the learning phase
into two steps: 1) first learn an autoencoder model (qe and qd), and
then 2) fit a prior model (qp) on the resulting implicit prior. The
resulting process, summarized in Algorithm 1, can be shown to re-
cover the true data distribution under common assumptions, and is
therefore unbiased. We showcase the difference in implementation
of both approaches in Section 4.

Proposition 1 (Two-step correctness). Assuming statistical suffi-
ciency (infinite data), model sufficiency (infinite capacity for qe, qd,
qp), and exact minimization in each step, the two-step algorithm
recovers qmodel(x) = p(x).

Proof. The proof is straightforward. Assuming unlimited data, infi-
nite capacity, and exact minimization, both losses (1a) and (1b) reach
zero. Then the sum of the terms reaches zero as well, which upper
bounds KL(p(x)‖qmodel(x)).

Algorithm 1 Two-step learning
Step 1: Learn the autoencoder model, qe(h | x) and qd(x | h),
by minimizing (Eq. 1a).
Step 2: Learn the prior model qp(h) on the embeddings obtained
from encoder, by minimizing (Eq. 1b).

Two-step training is an appealing alternative to joint training. As
hinted earlier, jointly maximizing the ELBO with complex priors re-
quires tedious derivations and implementation efforts, whereas two-
step training simply amounts to wiring existing software routines
for fitting the autoencoder and prior model. Another advantage that
comes with using two-step learning is the flexibility of the learning
pipeline, which enables straightforward modifications to the prior
distribution, when the codes for learning the distributions are readily
available. In the subsequent parts of the paper, we show several ex-
amples of using different distributions over the latent variables with
readily available codes available in standard software packages.

Available AE options include popular models such as determin-
istic autoencoders, AliGAN/BiGAN [7, 8], adversarial autoencoders
[9], adversarially regularized autoencoders [10], or the GLO model
which does not explicitly learn an encoder [11]. As for the prior
model, two-step learning can readily employ complex models such
as GMMs [12], GANs [2] or VAEs for i.i.d. data, as well as HMMs
[13], recurrent neural networks [14], or temporal convolutional net-
works such as WaveNet [15] for non-i.i.d. data.

3. RELATED WORK

Two-step learning is a relatively natural idea, and several related ap-
proaches can be found in the literature. A very recent and popular
instantiation of two-step learning is the Vector-Quantized VAE [3].
The authors propose to first learn a VAE while performing vector

quantization in the latent space, and in a second step to fit an autore-
gressive model on the resulting prior distribution, such as pixel-CNN
[16], or wavenet [15]. In a recent version of this work, the approach
has been shown to generate large images with great fidelity [17].

Other examples of works that employ two-step training include
[4], where the authors train a GAN in the latent space of a VAE in
order to generate images and sounds with latent constraints. In the
NLP domain, [18] fit a GAN on the latent space of a general-purpose
sentence encoder, in order to generate natural-looking sentences. In
[19], the authors fit a GMM in the latent space of an autoencoder, in
order to model 3D point clouds.

There exist also others works that do not leverage modern deep
learning, and yet showcase the statistical advantages of two-step
learning. For example, decoupled HMM learning, first emission pa-
rameters and then transition parameters, is scalable and is robust to
perturbations [20, 21].

While those works constitute specific instantiations of two-step
learning tailored to their context, we frame two-step learning as a
general framework. We establish formal connections with ELBO
minimization (Sec. 2), and experimentally demonstrate that its per-
formance is similar to that of joint training, while being significantly
simpler in terms of software development (Sec. 4).

While joint training is standard for deep-learning models, the
expectation-maximization (EM) algorithm is a classical example of
an (iterative) two-step procedure [22] which is widely used for prob-
abilistic inference. In EM, the latent variables and parameters are
optimized in an alternating fashion. Whereas in our proposed two-
step learning, it is the parameters that are split in two, and each sub-
set is optimized until convergence. (For instance in step 1, we train
the auto-encoder until convergence, and in step 2, the prior model is
trained until convergence by using a fixed auto-encoder.)

4. TWO-STEP VS JOINT TRAINING

We now compare and contrast the two-step learning framework to
joint training using: 1) VAEs with GMM prior, and 2) VAEs with
HMM prior. The goal is to showcase the difference in coding re-
quirements, and compare the accuracy of the learnt distributions.

4.1. VAE with GMM prior

In the vanilla VAE formulation [1] the latent codes are assumed to
follow a standard Gaussian distribution. This type of prior is known
to be too constraining, and the need for a multi-modal prior in VAEs
has been argued for in several research papers [23, 5, 6].

One natural candidate for a multi-modal prior is the Gaussian
Mixture Model. The generative process of a latent variable model
with a GMM prior is:

c ∼ Cat(π), h | c ∼ N (µc,Σ
2
c), x | h ∼ qd(x | h),

where c ∈ {1, . . . , C} is a discrete variable that chooses the Gaus-
sian component to use for the latent variable h ∈ RK .

There have been multiple attempts at using a GMM prior over
latent variables in a VAE framework [5, 6, 24], usually by maxi-
mizing the ELBO as a joint training objective. A successful im-
plementation is given in [5], where the derivation of the joint ob-
jective takes a significant part of the paper. After a lengthy deriva-
tion, and conditioned on several architectural choices such as diago-
nal Gaussian components (Σ2

c = σ2
cI), a Gaussian encoder (qe(h |

x) = N (h;µ(x), σ2(x)I)) and a factorized approximate posterior

(qe(h, c | x) = qe(h | x)qe(c | x)), [5] arrive at the following
expression:

ELBOVAEGMM(x) = Eqe(h|x)[log qd(x | h)]

− 1

2

C∑
c=1

qe(c|x)
∑
j

(
log σ2

c,j +
σ2(x)j
σ2
c,j

− (µ(x)j − µc,j))2

σ2
c,j

)

+

C∑
c=1

qe(c|x) log
πc

qe(c|x)
+

1

2

∑
j

(1 + log σ2(x)j). (2)

Finally, the posterior over the cluster indicators is estimated using
qe(c | x) = πcp(h|c)∑

c′ πc′p(h|c′)
, where p(h | c) = N (h;µc, σ

2
cI) is the

c’th component of the GMM on the latent codes. Note that this way
of implementing the posterior is a design choice of the authors.

Overall, the ELBO function proposed by [5] requires a careful
and potentially tedious implementation. An alternative way of going
about learning a VAE with a GMM prior is to apply the two-step
learning paradigm we propose in this paper. This is tantamount to
simply re-using the software that is readily available, as we show-
case in Figure 1. We start by fitting a regular VAE. We then sample
latent codes by passing data samples through the encoder part, and
finally learn a GMM on the resulting latent dataset. Note that in this
particular implementation, we utilize the popular scikit-learn library
[25] to learn the parameters of the GMM.

train the VAE
model.VAE_trainer(train_loader, EP=EP)

get the embeddings
all_hhats = get_embeddings(model,

train_loader)

fit the GMM
GMM = mix.GaussianMixture(n_components=K,

covariance_type='diag')
GMM.fit(all_hhats.data.cpu().numpy())

Fig. 1. Two-step training of a VAE with a GMM prior.

As shown in Fig. 1, the 2-step learning paradigm results in easy-
to-implement and easy-to-understand code. The advantage over
joint optimization is not limited to convenience in software develop-
ment. In latent-variable models that contain discrete variables such
as GMMs, the optimization is generally tricky, as the relaxation to
discrete variables likely causes the optimization procedures to get
stuck in local optima [26]. This is frequent when the dataset exhibits
a multi-modal structure, as we show in the next experiment.

4.1.1. Experimental Results

The purpose of this experiment is to showcase the effectiveness of
2-step learning in terms of optimization, on a multimodal dataset. To
do so, we generate a simple two-dimensional dataset from a mixture
of 16 isotropic Gaussians laid on a grid. We present in Figure 2
the generated samples (in observation space) obtained when using
different VAE priors and learning procedures.

In the top-left panel are the samples obtained when using joint
training with a standard Gaussian prior. We observe that the model
fails to capture the data distribution correctly. In top-right are the
samples obtained by 2-step learning with a GMM prior, that is, by
keeping the previously learned auto-encoder parts of the model and

only fitting the GMM prior. We observe that the new model very
accurately captures the data distribution.

Fig. 2. Samples generated from different models, on a synthetic
dataset with 16 Gaussian components. (Top-left) Joint training,
standard-VAE. (Top-right) 2-step learning, fitting a GMM prior on a
standard-VAE. (Bottom-left) Joint training, GMM-VAE. (Bottom-
right) 2-step learning, fitting a new GMM prior on a GMM-VAE.

In the bottom left panel, we present the samples obtained after
joint training with a GMM prior. This time the multimodal structure
is better captured due to the more complex prior, however not per-
fectly. On the bottom right panel, we fit a new GMM on the latent
space of the jointly learned VAE with GMM, and make the obser-
vation that the learnt distribution improves significantly. What this
result underlines is that the inaccuracies resulting from joint training
are due to the fact that optimizing for the discrete variables in the
GMM with joint training is potentially difficult, especially when we
initialize randomly. It is known that optimizing for discrete variables
(such as GMM cluster indicators) is difficult to accomplish with gra-
dient descent [26], and therefore it is advisable here to use two-step
learning which enables us to utilize clever GMM initialization tech-
niques such as kmeans++ [27].

4.1.2. Quantitative comparison with joint training

We now compare learning with two-step and joint training on
the MNIST (handwritten digits) and CelebA (color human faces)
datasets using the Fréchet inception distance (FID) [28], a widely
accepted metric for measuring the quality of generated images.

In Figure 3 (left panel), we compare the FID scores for the
MNIST dataset. We use a feedforward autoencoder with VAE in-
ference. We see that the FID scores increase significantly when the
two-step learning is applied over the standard VAE model to learn
a GMM prior. We also observe that the joint GMM training works
slightly better than the two-step learning approach, but the improve-
ment is marginal compared to the large improvement gained with the
two-step approach. Note that the error bars represent the uncertainty
over five batches of generated images with 1,000 images per batch.

In Figure 3 (right panel), we run the same study using CelebA.
We use the DC-GAN architecture [29], and experiment with both
diagonal and full-covariance GMM priors. We again observe that
applying the two-step learning, with a diagonal GMM, significantly
improves the VAE with a standard normal prior. We also see that
joint training with a diagonal GMM is slightly better than 2-step.

When we use a full-covariance GMM, however, 2-step training
matches the performance of joint training with diagonal GMM. Note
that implementing two-step learning with a full covariance GMM
comes at minimal extra effort in the case where we use a software
package that supports both the diagonal- and full-covariance GMMs,
we used the scikit-learn library. In contrast, implementing the ELBO
for joint training with different types of covariances requires careful
implementation. This property of the two-step learning framework is
applicable to any distribution: if learning software is available, one
can simply utilize it without any extra effort.

Fig. 3. FID scores on MNIST dataset (left), and CelebA dataset
(right). The horizontal axis show the total number of Gaussian com-
ponents.

4.2. VAE with HMM prior for time-series

In this section, we discuss learning an latent generative model in
a situation where we must account for transitions between the data
items, by incorporating a temporal structure into the prior distribu-
tion. One way to model such a temporal structure is with a hidden
Markov model (HMM) [13], which results in the following genera-
tive process:

c0 ∼ Cat(π), ct | ct−1 ∼ Cat(Act−1),

ht ∼ N (µct , σ
2
ctI),

xt | ht ∼ p(x | fθ(ht)),

where the cluster indicators ct form a Markov chain, whose tran-
sition matrix is denoted by A. Note that an HMM can be seen in
essence as a GMM whose cluster indicators follow a Markovian
structure.

As articulated in Section 4.1, deriving the ELBO function for the
GMM model, and carrying out the implementation is a significant
undertaking which requires design decisions. The situation is even
worse with a more involved prior distribution such as an HMM.

The main bottleneck in deriving an ELBO objective is comput-
ing its KL-term. The KL-term for an HMM is even more involved
than a GMM, as the model does not produce i.i.d. observations, and
therefore we would need to calculate the joint likelihood over all
observations. The KL-term is:

KL(qe(h1:T)‖qp(h1:T)) = Eqe(h1:T)

[
log

qe(h1:T)

qp(h1:T)

]
.

One way to estimate it is with a Monte Carlo approximation,

KL(qe(h1:T)‖qp(h1:T)) ∝
∑
n

log
qe(h

n
1:T)

qp(hn1:T)
,

where n indexes samples obtained from the approximate posterior
distribution qe(h1:T | x1:T) (we refer to it as qe(h1:T) here for

brevity). To compute this approximation, one needs to compute the
model likelihood qp(hn1:T). In HMMs, the model likelihood is given
by the forward alpha-recursions [13]. While one can compute the
gradients on the likelihood computed after the forward recursion,
this implementation is again time-consuming. Moreover, we have
experimentally observed that, when initialized randomly, the joint
training is extremely unstable, and typically yields worse genera-
tions than that of the two-step learning.

4.2.1. Experimental Results

To demonstrate the quality of the two-step learning on a VAE frame-
work with an HMM prior, for modeling audio data in the waveform
domain. We work on audio data with 8kHz sampling rate. We dis-
sect the audio into 100ms long chunks, where consecutive chunks
overlap by 50ms, and each window is multiplied by a Hann window.
In the first step, we learn a VAE with 80 dimensional latent repre-
sentations for each chunk which is 800 samples long. We used a
three-layer convolutional network both in the encoder and decoder,
where we use filters of length 200 samples.

We then fit an HMM on the extracted latent representations, to
learn the transitions between 800 sample long chunks. We use 100
HMM states, where each state has a diagonal covariance Gaussian
emission model. The random samples are obtained by sampling
from the fitted HMMs, and passing the sampled latent representa-
tion through the decoder. To reconstruct the generated chunks as
an audio waveform, we follow the overlap-add procedure [30]. We
overlap each generated chunk by 50 percent and add.

We train the model on a synthetic dataset that involves mono-
phonic clarinet notes played within a two octave range. The dataset
is comprised of 40 sequences which are all of 6 seconds long. In
Figure 4, we show the spectrograms of the real data, and the gen-
erated data. We observe that the two-step learning approach results
in much better generated data, compared to the joint training with
random initialization. With two-step training, we can clearly see the
harmonic structure of the played notes. We also see that joint train-
ing followed by initialization with two-step learning does not con-
spicuously improve the learning over two-step learning. We believe
that this makes sense since the standard training method for HMMs
is the Baum-Welch algorithm [13, 12], and backpropagation through
the forward pass is not amenable to obtain a clear gradient signal.
The two-step learning framework enables the incorporation of learn-
ing algorithms such as the Baum-Welch algorithm which is more
stable than plain gradient descent, and therefore in case of prior dis-
tributions which involve discrete variables such as HMMs, two-step
learning is highly preferable.

5. TWO-STEP LEARNING WHEN JOINT TRAINING IS
NOT STRAIGHTFORWARD

As argued in Sections 4.1 and 4.2, two-step learning provides a con-
venient and robust way of learning latent generative models. More-
over, decoupling the learning of the prior distribution from the learn-
ing of the autoencoder enables other learning options than gradi-
ent descent via back-propagation. As previously showcased, using
an expectation-maximization based learning procedure for fitting a
GMM prior can result in a more accurate model of multi-modal data.

In some model combinations however, applying joint training
is not straightforward, since the model does not define a joint dis-
tribution and hence the standard technique of deriving an ELBO is
unavailable. We explore three such cases: 1) VAEs with GAN prior,

0 5 10 15
Time (s)

0
64

128
256
512

1024
2048

Hz

Original Data

0 5 10 15
Time (s)

0
64

128
256
512

1024
2048

Hz

Joint training

0 5 10 15
Time (s)

0
64

128
256
512

1024
2048

Hz

Two-step training

0 5 10 15
Time (s)

0
64

128
256
512

1024
2048

Hz

Two-step + joint training

Fig. 4. Comparing 2-step training of the VAE-HMM model with joint training. (left) Spectrogram of a 15 seconds long excerpt from real
data. (middle-left) Generated data with VAE-HMM trained with joint training. (middle-right) Generated data with VAE-HMM trained with
two-step training. (right) Generated data with VAE-HMM trained with joint training initialized with two-step training.

2) GANs with GMM prior, and 3) generative models where the au-
toencoder is a principal component analysis (PCA) model.

Fig. 5. MNIST digits generated from a standard VAE (left) versus a
VAE with GAN prior learned via 2-step (right).

5.1. VAEs with GAN priors

In Section 4.1 we used a GMM prior in order to model complex,
multi-modal distributions in the latent space. Another option, as
studied in [4], is to have a prior that is trained with a GAN objective.
It is not clear how to directly write down an ELBO function to train a
VAE with a GAN-trained prior. In the original paper [4], the authors
effectively employ a 2-step learning protocol, where they first train
a VAE, and then train a GAN as a prior distribution. In Figure 5,
we show the results obtained with a GAN prior. On the left panel,
we show the generated MNIST digits obtained from a standard VAE.
On the right panel, we see that the generated MNIST digits improve
significantly when we fit a GAN prior to learn the latent distribution.

5.2. GANs with GMM prior

GANs are known to generate sharp looking textures in images [29,
31, 32]. They are also known to generate out-of-distribution images.
GANs typically use fixed priors such as standard Gaussian [2], and
one way to improve GANs is to learn a GMM prior to account for
the multi-modality in the latent space.

We propose to do this by training an encoder, that is previously
trained with a GAN objective. Namely, we train a decoder fθ(.) with
a GAN objective. And then we train an encoder gφ(.) to minimize
the reconstruction errors,

min
φ
‖x− fθ(gφ(x))‖ (3)

where the decoder parameters θ are not updated. We then fit a GMM
on the latent codes ĥ obtained via passing the data items through
the encoder, such that ĥ := gφ(x). We follow this procedure for
different number of GMM components on the MNIST dataset. In
Figure 6, we observe an improvement in terms of FID scores over the
WGAN-GP [32] baseline (shown with the horizontal curve above),

when we apply the 2-step learning procedure described above, for
various number of GMM components. The error bars represent the
uncertainty over 5 sample sets of 1,000 samples each.

5.3. PCA autoencoder with GMM prior

Another interesting case where applying 2-step learning is not
straightforward is one in which we want to use an algorithm other
than gradient descent for training the autoencoder. An example is
combining a linear autoencoder learnt with PCA, with a multimodal
prior. The resulting generative process is as follows:

h ∼ GMM(.), x | h ∼ N (Uh, I),

where U is a low rank (tall) matrix. It is possible to write an
Expectation-Maximization algorithm (EM) [22] for this model,
however the EM algorithm is known to get stuck in local optima
[12]. The advantage of learning this model via two step is that,
the PCA algorithm gives the globally optimal solution for the au-
toencoder, which results in sharp reconstructions. In a case where
original data items are well aligned, we observed that this model can
generate sharp and detailed images.

Fig. 6. Improving GANs with 2-step
training: FID score (y-axis, lower the
better) vs number of GMM compo-
nents (x-axis).

Our dataset consists
of brain images of mice
(an example is provided
in Figure 7 left). The im-
ages are highly aligned,
and therefore suitable for
PCA. Note that the im-
ages are of size 300 ×
400, but despite this large
size, this model is able
to generate images with
very high fidelity (Fig-
ure 7 right), compared
to the model which uses
a convolutional autoen-
coder. The convolutional
autoencoder model typically loses the fine grained details (Figure 7
middle), whereas the PCA model is able to preserve details.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we formally introduce a two-step approach for learn-
ing latent generative models which effectively combines the learning
of an autoencoder with the learning of a prior distribution of the la-
tent codes. We demonstrate its effectiveness in terms of learning
quality, required implementation efforts, and most importantly flex-
ibility. We hope that practitioners will be convinced by both the
correctness and the efficiency of two-step learning, and will be will-
ing to explore new combinations of models which until now had

Fig. 7. (left) Real image. (middle) Image generated from a convo-
lutional VAE with GMM prior. (right) Image generated from a PCA
autoencoder with GMM prior.

been judged too complicated for practical use. The code for repro-
ducing the experiments provided in this paper and developing the
two-step approach for other models can be retrieved from https:
//github.com/ycemsubakan/TwoStepLearning.

7. REFERENCES

[1] Diederik P Kingma and Max Welling, “Auto-Encoding Varia-
tional Bayes,” arXiv e-prints, Dec. 2013.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in NIPS. 2014.

[3] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu,
“Neural discrete representation learning,” CoRR, vol.
abs/1711.00937, 2017.

[4] J. Engel, M. Hoffman, and A. Roberts, “Latent constraints:
Learning to generate conditionally from unconditional genera-
tive models,” 2017.

[5] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and
Hanning Zhou, “Variational deep embedding: An unsuper-
vised and generative approach to clustering.,” in IJCAI, 2017,
pp. 1965–1972.

[6] N. Dilokthanakul, P. Mediano, M. Garnelo, M. Lee, H. Sal-
imbeni, K. Arulkumaran, and M. Shanahan, “Deep unsu-
pervised clustering with gaussian mixture variational autoen-
coders,” 2016.

[7] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb,
M. Arjovsky, and A. Courville, “Adversarially Learned Infer-
ence,” 2016.

[8] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell, “Adver-
sarial Feature Learning,” arXiv e-prints, p. arXiv:1605.09782,
May 2016.

[9] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adver-
sarial autoencoders,” in ICLR, 2016.

[10] Jake Zhao, Yoon Kim, Kelly Zhang, Alexand er M. Rush,
and Yann LeCun, “Adversarially Regularized Autoencoders,”
arXiv e-prints, p. arXiv:1706.04223, Jun 2017.

[11] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and
Arthur Szlam, “Optimizing the Latent Space of Generative
Networks,” arXiv e-prints, p. arXiv:1707.05776, Jul 2017.

[12] Christopher M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer-
Verlag, Berlin, Heidelberg, 2006.

[13] Lawrence R. Rabiner, “Readings in speech recognition,” chap-
ter A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. 1990.

[14] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov.
1997.

[15] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “WaveNet: A Generative Model for Raw
Audio,” 2016.

[16] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,
A. Graves, and K. Kavukcuoglu, “Conditional image genera-
tion with pixelcnn decoders,” 2016.

[17] A. Razavi, A. van den Oord, and O. Vinyals, “Generating di-
verse high-fidelity images with VQ-VAE-2,” 2019.

[18] S. Subramanian, S. Rajeswar, A. Sordoni, A. Trischler, A. C.
Courville, and C. Pal, “Towards text generation with adversar-
ially learned neural outlines,” in NeurIPS, 2018.

[19] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and L. J.
Guibas, “Representation learning and adversarial generation of
3d point clouds,” 2017.

[20] Aryeh Kontorovich, Boaz Nadler, and Roi Weiss, “On learning
parametric-output HMMs,” 2013.

[21] C. Subakan, J. Traa, P. Smaragdis, and D. Hsu, “Method of mo-
ments learning for left-to-right hidden markov models,” 2015.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Journal
of the royal statistical society, series B, 1977.

[23] Matthew D.Hoffman and Matthew J. Johnson, “ELBO surgery:
yet another way to carve up the variational evidence lower
bound,” in NIPS workshop for approximate Bayesian infer-
ence, 2016.

[24] J. Tomczak and M. Welling, “VAE with a vampprior,” 2017.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” JMLR, 2011.

[26] C. Maddison, A. Mnih, and Y. W. Teh, “The concrete distri-
bution: A continuous relaxation of discrete random variables,”
2016.

[27] David Arthur and S. Vassilvitskii, “K-means++: the advan-
tages of careful seeding,” in ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[28] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium,” 2017.

[29] A. Radford, L. Metz, and S. Chintala, “Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Ad-
versarial Networks,” 2015.

[30] A. V. Oppenheim and R. W. Schafer, Discrete-time signal pro-
cessing, Prentice Hall, 1989.

[31] Martin Arjovsky, Soumith Chintala, and Léon Bottou,
“Wasserstein GAN,” arXiv e-prints, p. arXiv:1701.07875, Jan
2017.

[32] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” in NIPS
30. 2017.

