
Randomness, Pseudorandomness and Derandomization Sept 16th, 2010

Lecture Notes 3: Expander graphs – a ubiquitous pseudorandom structure
Professor: Avi Wigderson (Institute for Advanced Study) Scribe: Dai Tri Man Lê

In this lecture, we will focus on expander graphs (also called expanders), which are pseudoran-
dom objects in a more restricted sense than what we saw in the last two lectures. The reader is also
referred to the monograph [1] and the tutorial slides [2] for more detailed surveys of today’s topics.

Expander graphs are universally useful in computer science and have many applications in de-
randomization, circuit complexity, error correcting codes, communication and sorting networks,
approximate counting, computational information, data structures, etc. Expander graphs also have
many interesting applications in various areas of pure mathematics: topology, group theory, measure
theory, number theory and especially graph theory.

1 Expander graphs: definition and basic properties

Expander graphs are graphs with an additional special “expansion” property. This property can be
equivalently described combinatorically, geometrically, probabilistically, or algebraically.

1. Combinatoric formulation: Expander graphs are sparse d-regular graph (for some fixed d),
but highly connected; any two disjoint sets of vertices cannot be disconnected from each other
without removing a lot of edges (i.e., no small cuts). In other words, a d-regular graph G with
n vertices is expander if for any subset S of vertices satisfying |S| < n/2, number of edges
connecting S and the complement of S is at least α|S|d for a constant α.

2. Geometric formulation: Expander graphs have high isoperimetry, i.e., any proper subset S of
vertices has a large boundary ∂S, where ∂S is defined as the set of vertices which are not in S
but are adjacent to a vertex in S.

3. Probabilistic formulation: A random walk on an expander graph converges very rapidly (in
O(log n) steps) to the uniform distribution.

4. Algebraic formulation: If we look at the the adjacency matrix of an expander graph, then there
is a large gap between second largest eigenvalue and the largest eigenvalue, which in this case
equals the degree of the graph.

Since all of these formulations of the expansion property are equivalent, we will use the algebraic
formulation in this lecture. Let G = (V,E) be a d-regular graph with n vertices. We let AG denote
the normalized adjacency matrix of G, i.e.,

AG(u, v) =

{
0 if (u, v) ∈ E
1/d if (u, v) 6∈ E

It easy to check that if we sort the eigenvalues λi of AG in non-increasing order, then 1 ≥ λi ≥ −1
and the largest eigenvalue λ1 = 1. We will let λ(G) denote the second largest eigenvalue of AG.
We call 1− λ(G) the spectral gap of G.

Definition 1. A graph G is an [n, d]-graph if it is a d-regular graph with n vertices. A graph G is
an [n, d, δ]-graph if it is an [n, d]-graph satisfying λ ≤ δ. An infinite family {Gi} of [ni, d, δ]-graphs
forms an expander family if 0 < δ < 1 for all i.

It can be showed that most d-regular graphs (even when d = 3) are expanders, but in almost all
applications, the main challenge is to construct (small degree) expanders efficiently and explicitly.

As mentioned above, expander graphs are pseudorandom objects. From the previous two lec-
tures, we know that an object is pseudorandom if it looks random to all “efficient” algorithms.
Expanders are pseudorandom in a much more limited sense since it can only fool the cut function
for graphs. Let G = (V,E) be an [n, d, δ]-expander. Given two disjoint sets of vertices S, T ⊆ V ,
let E(S, T) denote the set of edges from S to T , and thus E(S, T) is the cut-set of two partitions S
and T . We can show the following theorem

Theorem 1. For any two disjoint sets of vertices S, T ⊆ V ,

|E(S, T)| = d|S||T |
n

± δdn.

Note that d|S||T |
n is just the expectation of the size of the cut-set |E(S, T)| in a random graph, and

δdn is some small error depending on the parameter δ ofG. From Theorem 1, we have the following
corollaries.

Corollary 1. Every vertex set of size greater than δn contains an edge. And thus the chromatic
number of an [n, d, δ]-expander G is at least 1/δ. Thus, expander graphs can be used to construct
graphs with large girth or large chromatic number.

Corollary 2. Removing any fraction γ < δ of the edges of an [n, d, δ]-expander G leaves a con-
nected component consisting of 1 − O(γ)-fraction of the vertices, and thus G is still highly con-
nected.

2 Some Applications of expander graphs

2.1 Network reliability

Expanders have many applications in designing fault-tolerant networks and distributed systems.
These applications are based mainly on the following corollary that can be easily shown from the
pseudorandomness property in Theorem 1.

Corollary 3. Given an [n, d, δ]-expander G with δ < 1/4, every set S of vertices of G of size at
most δn/2 contains at most s/2 vertices with a majority of neighbors in S.

Consider the following infection processes on a network represented by a [n, d, δ]-expander G with
δ < 1/4.

1. Infection process 1: Assume that adversary infect an infection set I0 of vertices with |I0| ≤
δn/4. Then the infection process can be represented by a sequence of sets:

I0 = S0, S1, . . . , St, . . . ,

where a vertex v ∈ St+1 iff a majority of its neighbors are in St. Then it follows from Corollary 3
that the size of St reduce exponentially and so St = ∅ for t > log n. In words, the infection
dies out very fast.

2. Infection process 2: Assume that adversary infect the infection sets I0, I1, I2, . . . , with |It| ≤
δn/4, and the infection process is defined as

I0 = R0, R1, . . . , Rt, . . . ,

where a vertex v ∈ Rt+1 iff a majority of its neighbors are in Rt or v ∈ It+1. Note that we have
a new supply of infection It in every round. However, it can be shown from Corollary 3 that
Rt ≤ δn/2 for all t, and so the infection never spreads.

To demonstrate how these infection-process properties of expanders are used, we will consider
an example of how to construct reliable circuits from unreliable components, which is a problem
studied von Neumann in the 60s. Assume we are given a circuit C computing a boolean function f
of size s such that every gate fails with probability p < 1/10. Goal: we want to construct a circuit
C ′ with size s′ not much bigger than s such that C ′(x) = f(x) with high probablity.

1

0 1

1 0 0

X2 X3

f

V V

V

V

V

X1

V

It was shown by von Neumann, Dobrushin-Ortyukov and Pippenger that a much more reliable
construction of C ′ can be achieved by replicating the circuit C and using majority “expanders” to
connect different copies of each gate as shown in the following figure.

1

f

X2 X3

V V

V

V

V

X1

V

M

X2 X3

V V

V

V

V

X1

V

M

X2 X3

V V

V

V

V

X1

V

M

X2 X3

V V

V

V

V

X1

V

M

M M M M M M M M

M M M M M M M M M M M M

The intuition is that this construction ofC ′ will take care of the errors as in the 2nd infection process
discussed above. Since each majority is connected many neighbors below it, even when some errors
are produced in some of the neighbors, we expect the errors will die out and will not propagate so
much to the output gates of C ′.

2.2 Deterministic error reduction

As mentioned in the first lecture, a probabilistic algorithm A(x, r) takes some input x and also
some random input r ∈ {0, 1}n. Assume that for every input x, this algorithm return the correct
answer for 2/3 of the random inputs r ∈ {0, 1}n and return the wrong answer for the other 1/3 of
the random inputs. Then we can reduce the failure probability by choosing k independent random
bit string r1, . . . , rk ∈ {0, 1}n, and runs the algorithm A once for each such random string, and
then takes the majority vote of the k outcomes. It follows from a simple application of Chernoff’s
bound that the failure probability of this new repetition algorithm is exponentially small. The only
disvantage is that this algorithm requires km independent random bits instead of m random bits
as in the original algorithm. It turns out that we can obtain an algorithm with similar performance
but use many fewer random bits. We first need an explicit construction of a [2n, d, 1/8]-expander G,
whose vertices represent 2n possible random strings in {0, 1}n, and we can simply select r1, . . . , rk,
which are now vertices of G, in turn by taking a random walk on G starting from a random vertex,
and then perform a majority vote of the outcomes. The rapid mixing properties of random walk on
expanders can be used to show the same type of exponentially small failure probability as before,
but now only n+O(k) random bits are needed.

2.3 Metric embeddings

We write (X, d) to denote a metric space on the set of points X equipped with metric d. A metric
space (X, d) embeds with distortion ∆ into the `2 space (Hilbert space) if there exist an injective
function f : X → `2 such that for all points x, y ∈ X ,

d(x, y) ≤ ‖f(x)− f(y)‖2 ≤ ∆d(x, y).

Theorem 2 (Bourgain). Every n-point metric space has an embedding with distortion O(log n)
into the `2 space.

Linial-London-Rabinovich actually showed that this is tight when we let (X, d) be the distance
metric of an appropriate expander graph. Their proof uses basic algebraic properties of expanders
and Poincaré’s inequality.

Now we look at a more liberal notion of metric embedding. A metric space has a coarse em-
bedding into the `2 space if an injective function f : X → `2 and increasing, unbounded function
φ, σ : R→ R such that for all x, y ∈ X ,

φ(d(x, y)) ≤ ‖f(x)− f(y)‖2 ≤ σ(d(x, y)).

One might ask if there exists a class of metric spaces which does not have a coarse embedded
into the `2 space. Gromov showed that, in fact, there exists a finitely generated and finitely presented
group, who Cayley graph metric has no coarse embedding into the `2 space. His proof uses an
infinite sequence of Cayley expander graphs. This result is very relevant to the Novikov and Baum-
Connes conjectures since it might give counter-examples to refute these conjectures.

3 Explicit constructions of expander graphs

In many applications mentioned in the previous section, we need to construct suitable expander
graphs explicitly. There are both algebraic and combinatorial explicit constructions of expanders.

3.1 Algebraic constructions
The first explicit expander families arose from group theory (as given by Margulis, Gabber-Galil,
Alon-Milman, Lubotsky-Phillips-Sarnak, and others); a typical example of such a family are the
Cayley graphs, where vertices are elements of the special linear group SL2(p) (i.e., group of 2 × 2
matrices, whose entries are taken over a large field of prime order p and whose determinants equal
to 1) and the edges are given by the set of generators

S :=
{(

1 1
0 1

)
,

(
1 0
1 1

)}
.

Thus, two matrices in SL2(p) are connected by a graph if their quotient is either in S, or is an inverse
of an element in S. The expansion of these algebraic graph families is deeply connected to some
non-trivial results in group theory and analytic number theory, in particular, the famous Selberg’s
3/16 theorem on the least eigenvalue of the Laplacian on modular curves.

The construction of the Cayley expanders mentioned here is strongly explicit: if we need n bits
to describe a matrix M in SL2(p) (assuming that the expander graph has exp(n) vertices), then
we can compute the 4 neighbors of M in poly(n) time! In many cases, we can even compute the
neighborhoods in logspace.

These algebraic constructions can be made extremely tight in the sense that the parameter δ can
be made optimally small. More precisely, there is the Alon-Boppana bound, which asserts that an
[n, d, δ]-graph can only exist if dδ ≥ 2

√
d− 1. Graphs which attain this bound are known as Ra-

manujan graphs, and were first constructed by Lubotsky-Phillips-Sarnak and Margulis by algebraic
methods.

3.2 Zigzag graph product and combinatorial constructions
Starting with the work of Reingold, Vadhan, and Wigderson in 2000, explicit combinatorial con-
structions of expanders have been given.

The zigzag product. A fundamental building block in combinatorial constructions is the zigzag
product G z©H of an [n,m,α]-graph G and an [m, d, β]-graph H , where H is small compared to
G. It is important to note that the number of vertices of in the small graph H equals the degree of
the large graph G, and thus we can “blow up” each vertex of G to into a copy of H and decouple
the edges in G into disjoint edges. Let V and W be the vertex sets of G and H respectively, then
G z©H is defined to be the [nm, d+ 1]-graph, where

– the vertex set U = {(v, k) | v ∈ V ∧ k ∈W}, and
– ((u, k), (v, `)) ∈ U × U is an edge of G z©H if there exists a “three step sequence” consisting

of an H-step from (u, k) to (u, i) (corresponding to the edge {k, i} ∈ H), followed by a G-step
from (u, i) to (v, j) (corresponding to the edge {u, v} ∈ G), followed by H-step from (v, j) to
(v, `) (corresponding to the edge {j, `} ∈ H).

It can be shown from the zigzag product construction that:

Theorem 3 (Reingold-Vadhan-Wigderson). The zigzag product G z©H is an [nm, d2, α + β]-
graphs, and thus G z©H is an expander if G and H are.

Note that the degree G z©H is d2, which is small and independent of the degree of the large
graphG. Thus,G andH are expanders and the small graphH has small degree, then zigzag product
produces another bigger expander with also small degree.

Iterative construction of expanders The iterative construction of expanders combines both the
zigzag product and the graph squaring. The construction starts with a constant size H , which is a
[d4, d, 1/4]-graph. Then define

G1 = H2

Gk+1 = G2
k z©H

From this construction and Theorem 3, we have the following theorem.

Theorem 4 (Reingold-Vadhan-Wigderson). The sequence {Gk} is an finite sequence of expanders,
and Gk is an [d4k, d2, 1/2]-graph.

The zigzag product has many interesting consequences. Recall that the algebraic construction
gave us very tight spectral bounds, but it turns out that they do not give us very tight isoperimet-
ric bounds. Using the idea of zigzag product, Reingold-Vadhan-Wigderson and Capalbo-Reingold-
Vadhan-Wigderson were able to achieve much better isoperimetric bounds. The zigzag product can
also be seen as a combinatorial generalization of semi-direct product in groups as shown in the work
of Alon-Lubotzky-Wigderson. Using this result, new constructions of expanding Cayley graphs for
non-simple groups were introduced by Meshulam-Wigderson and Rozenman-Shalev-Wigderson.

One particularly striking recent application of the zig-zag product construction (by Reingold
in 2005) is to create a deterministic logarithmic space algorithm for reachability problem for undi-
rected graphs (also known as the maze exploration problem as mentioned in the previous lecture).
This resolved a 25-year open problem in complexity theory, and showed that L = SL.

Another place where zigzag product has been used is in the construction of lossless expanders.
Given an [n, d]-graph, the neighborhood of a k-vertex set can have size at most dk. A lossless
expander is a family of [n, d]-graphs with the property that for any ε > 0, there exists a c such that
every vertex set S with |S| ≤ n/c has a neighborhood of size at least (1 − ε)d|S|; thus small sets
expand nearly as much as possible. Ramanujan graphs do not always have this property since no
matter how large one makes c, one can find such graphs in which the neighbourhood of a vertex set
S is at most d|S|/2. But by using the zigzag construction (this time to a type of graph known as a
randomness conductor) one can create lossless expanders.

4 Lossless expanders and error-correcting codes

We will end this lecture by showing one application of lossless expanders to error-correcting codes.
A code is an injective function C : {0, 1}k → {0, 1}n. The list of codewords is the image of C
(which is often denoted by C by abuse of notation). There are many important statistics of codes,
but two particularly key ones are the rate Rate(C) = k/n, and the Hamming distance Dist(C),
which is the minimal separation between two codewords. A code is good if Rate(C) = Ω(1), and
if the Hamming distance Dist(C) = Ω(n).

It was already shown by Shannon in 1948 using probabilistic method that good codes exist,
indeed a randomly selected code is likely to be rather good! On the other hand, it is not possible
to perform error correction on a random code quickly. Thus, the main challenge is to find good,
explicit and efficient codes. There many explicit algebraic constructions of codes: Hamming, BCH,
Reed-Solomon, Reed-Muller, Goppa, etc., and many explicit combinatorial constructions: Gallager,
Tanner, Luby-Mitzenmacher-Shokrollahi-Spielman, Sipser-Spielman, etc.

One remarkable result achieved by combinatorial construction, and not algebraic, is the code
due to Spielman, which is good, explicit and has O(n) time encoded and decoding algorithms. We
will next give the basic idea of this combinatorial code construction.

Recall that a code is linear if C is a linear function (identifying {0, 1} ≡ F2 with the field of
two elements). Thus, the image of C is a linear subspace of Fn

2 , and thus can be defined as the
simultaneous null space of n − k linear functionals on this space, which can also be viewed as
checksums or parity bits that need to vanish in order for a given word to lie in the code. Over F2,
a linear functional on the Hamming cube {0, 1}n ≡ Fn

2 is nothing more than the sum of some
collection of the coordinate functions on that cube. Thus one can describe the code C by a bipartite
graph connecting the n coordinates with the n− k parity bits, with each parity bit being formed as
the sum of the coordinates it is connected to.

With linear codes, encoding is a relatively quick process; the challenge is in decoding in the
presence of errors. Remarkably, if one selects the graph defining the code to be a bipartite lossless
expander (so that each of the n coordinates is connected to d parity bits for some bounded d, and
any m coordinates, with m less than a small multiple of n, is connected to close to dm parity bits),
then not only is the code good, one can decode in linear time by the following belief propagation
algorithm:

1. Start with the corrupted word, and compute all the parity bits. If they all vanish, then we accept
the codeword and we stop.

2. Otherwise, we go through each coordinate and see how many of the d parity bits connected to
that coordinate are nonzero (i.e. they take the value 1). If a majority of these bits return 1, then
we flip the bit of the coordinate; otherwise, we keep the bit unchanged. We repeat this step until
all parity bits vanish.

Intuitively, this algorithm works since in a lossless expander, the parity bits associated to each of the
corrupted coordinates are mostly disjoint. Thus, every corrupted coordinates should see that most
of the parity bits connected to it are taking the value of 1, giving a strong signal that those bits
should change. Conversely, the uncorrupted bits should mostly see only a small minority of parity
bits connected to it reporting the value 1. Indeed, one can show from the properties of lossless
expanders that each iteration of Step 2 cuts down the number m of corrupted bits by a constant
factor. Thus, the run-time of this algorithm is linear in the length n of the code.

(End of the third talk.)

Acknowledgment Some parts of the lecture notes follow an exposition by Terry Tao on a similar
talk given by Avi Wigderson in UCLA.

References

1. S. Hoory, N. Linial , A. Wigderson. Expander Graphs and their Applications. Bull. Amer. Math Soc., 43, pp 439–
561, 2006. Also available at: http://www.math.ias.edu/∼avi/BOOKS/expanderbookr1.pdf

2. A. Wigderson. Expander graphs - applications and combinatorial constructions. A 3-hour tutorial, Pseudoran-
domness in Mathematical Structures Workshop, IAS, Princeton, NJ - June 14-18, 2010. Slides available at:
http://www.math.ias.edu/ avi/TALKS/expander tutorial June2010.ppt

http://www.math.ias.edu/~avi/BOOKS/expanderbookr1.pdf
http://www.math.ias.edu/~avi/TALKS/expander_tutorial_June2010.ppt

