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Abstract. We argue that closure operators are fundamental tools for the study
of relationships between order structures and their sequence representations. We
also propose and analyse a closure operator for interval order structures.

1 Introduction

While the two major models of concurrency, interleaving abstraction ([2, 22]) and par-
tially ordered causality ([5, 15, 23]), have been very successful, they have some limi-
tations. Neither of them can model the “not later than” relationship effectively, which
causes problems with specifying priorities, error recovery, time testing, inhibitor nets,
etc. (see for instance [4, 9, 12, 16–18]). A solution, proposed independently (in this or-
der) in [19, 8] and [10], suggests modeling concurrent behaviours by a triple (X ,≺,@),
where X is the set of event occurrences, and ≺ and @ are binary relations on X . The
relation ≺ is “causality” (i.e. an abstraction of the “earlier than” relationship), and @
is “weak causality” (an abstraction of the “not later than” relationship). For this model,
the following two kinds of relational structures are of special importance: stratified or-
der structures (so-structures) and interval order structures (io-structures). The former
structures can fully model concurrent behaviours when system executions (operational
semantics) are described in terms of stratified orders, while the latter structures can fully
model concurrent behaviours when system executions are described in terms of interval
orders [9, 13]. It was argued in [11] (and also implicitly in 1914 Wiener’s paper [26])
that any execution that can be observed by a single observer must be an interval order.
Thus, io-structures provide a very general model of concurrency. However, the theory
of io-structures is far less developed than the simpler theory of so-structures.

When dealing with partial orders, many constructions use the fundamental notion
of transitive closure of relations. The analogue of transitive closure for so-structures,
called ♦-closure, has been proposed in [12] and successfully used in [12, 16–18] and
others. However, a similar concept for io-structures has not yet been proposed. In this
paper we introduce the concept of �-closure for io-structures and show that it has the
same kind of properties as transitive closure and ♦-closure.
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The paper is structured as follows. Section 2 provides some mathematical prelim-
inaries, while basic properties of Mazurkiewicz traces are discussed in Section 3. In
Section 4 old and new properties of so-structures are discussed. Section 5 is devoted to
io-structures and their �-closure operator. Section 6 contains some final comments.

2 Relations, Partial Orders and Transitive Closure

In this section, we recall some well-known mathematical concepts and results that will
be used frequently in this paper.

Let X be a set and R1,R2 ⊆ X ×X are two relations on X . We define R1 ◦R2
df
={

(x,y) | ∃z ∈ Z. (x,z) ∈ R1∧ (y,z) ∈ R2
}

, and idX
df
= {(x,x) | x ∈ X}. For each relation

R⊆ X×X , we define R+, the transitive closure of R, as R+ df
=
⋃

∞
i=1 Ri, and the reflexive

and transitive closure of R, as R∗ =
⋃

∞
i=0 Ri, where R0 = idX and Ri+1 = Ri ◦R for i > 0.

A binary relation R⊆ X×X is: irreflexive iff for all a∈ X .¬(aRa); transitive iff for
all a,b,c ∈ X . aRb∧bRc =⇒ aRc; and acyclic iff for all a ∈ X . ¬(aR+ a).

A relation <⊆ X ×X is a (strict) partial order if it is irreflexive and transitive, i.e.
for all a,c,b ∈ X , a 6< a and a < b < c =⇒ a < c. We also define:

a _< b
df⇐⇒ ¬(a < b)∧¬(b < a)∧a 6= b

a <_ b
df⇐⇒ a < b∨a _< b

Note that a _< b means a and b are incomparable (w.r.t. <) elements of X .
Let < be a partial order on a set x. Then

1. < is total if _<= /0. In other words, for all a,b ∈ X , a < b ∨ b < a ∨ a = b. For
clarity, we will reserve the symbol � to denote total orders;

2. < is stratified if a _< b _< c =⇒ a _< c∨a = c, i.e., the relation _< ∪ idX is
an equivalence relation on X .

3. < is interval if for all a,b,c,d ∈ X , a < c ∧ b < d =⇒ a < d∨b < c.

It is clear from these definitions that every total order is stratified and every stratified
order is interval.

Given a partial order <⊆ X×X , a relation <′⊆ X×X is an extension of < if <⊆<′.

For convenience, we define Total(<)
df
= {�⊆ X×X |� is a total order and <⊆�}.

In other words, the set Total(<) consists of all the total order extensions of <.
By Szpilrajn’s Theorem [25], we know that every partial order < is uniquely repre-

sented by the the set Total(<). Szpilrajn’s Theorem can be stated as following:

Theorem 1 (Szpilrajn [25]). For every partial order <, <=
⋂

�∈Total(<) �. ut

Stratified orders are often defined in an alternative way, namely, a partial order <
on X is stratified if and only if there exists a total order � on some Y and a mapping
φ : X → Y such that ∀x,y ∈ X . x < y ⇐⇒ φ(x)� φ(y). This definition is illustrated
in Figure 1, where φ(a) = {a}, φ(b) = φ(c) = {b,c}, φ(d) = {d}. Note that for all
x,y ∈ {a,b,c,d} we have x <2 y ⇐⇒ φ(x)�2 φ(y), where the total order �2 can be
concisely represented by a step sequence {a}{b,c}{d}. As a consequence, stratified
orders and step sequences can uniquely represent each other (cf. [12, 14, 20]).

For the interval orders, the name and intuition follow from Fishburn’s Theorem:
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Fig. 1. Various types of partial orders (represented as Hasse diagrams). The partial order <1
is an extension of <2, <2 is an extension of <3, and <3 is and extension of <4. Note that
order <1, being total, is uniquely represented by a sequence abcd, the stratified order <2 is
uniquely represented by a step sequence {a}{b,c}{d}, and the interval order <3 is (not uniquely)
represented by a sequence that represents �3, i.e. B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

Theorem 2 (Fishburn [6]). A partial order < on X is interval iff there exists a total
order � on some T and two mappings B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(y), and 2. x < y ⇐⇒ E(x)�B(y). ut

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x.
The intuition of Fishburn’s theorem is illustrated in Figure 1 with <3 and �3. For all
x,y ∈ {a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒ E(x)�3 B(y).

We will next recall the fundamental properties of transitive closure operator.

Proposition 1. Let R⊆ X×X.

1. If R is irreflexive then R⊆ R+ \ idX ,
2. (R+)+ = R+,
3. R+ is a partial order if and only if R+ is irreflexive,
4. if R is a partial order then R+ = R.
5. if R is a partial order and R0 ⊆ R, then R+

0 is a partial order and R+
0 ⊆ R. ut

These properties were extended to the ♦-closure operator for so-structures in [12]
and will be extended to the �-closure operator for io-structures in Section 5.

3 Partial Orders Generated by Mazurkiewicz Traces

A triple (X ,∗,1), where X is a set, ∗ is a total binary operation on X , and 1 ∈ X , is
called a monoid [3], if (a∗b)∗ c = a∗ (b∗ c) and a∗1= 1∗a = a, for all a,b,c ∈ X .

A nonempty equivalence relation∼⊆X×X is a congruence in the monoid (X ,∗,1)
if for all a1,a2,b1,b2 ∈ X , a1 ∼ b1∧a2 ∼ b2⇒ (a1 ∗a2)∼ (b1 ∗b2).

The triple (X/∼,~, [1]), where [a]~ [b] = [a ∗ b], is called the quotient monoid of
(X ,∗,1) under the congruence ∼. The symbols ∗ and ~ are often omitted if this does
not lead to any discrepancy.



Let M = (X ,∗,1) be a monoid and let EQ = { xi = yi | i = 1, . . . ,n } be a finite
set of equations. Define ≡EQ (or just ≡) to be the least congruence on M satisfying,
xi = yi =⇒ xi ≡EQ yi, for each equation xi = yi ∈ EQ. We call the relation ≡EQ the
congruence defined by EQ, or EQ-congruence.

The quotient monoid M≡EQ = (X/≡EQ,~, [1]), where [x]~ [y] = [x ∗ y], is called
an equational monoid (see [14, 20] for more details).

Monoids of Mazurkiewicz traces (or traces) (cf. [5, 21]) are equational monoids
over sequences. The theory of traces has been utilised to tackle problems from quite
diverse areas including combinatorics, graph theory, algebra, logic and, especially con-
currency theory [5, 21].

Applications of traces in concurrency theory are originated from the fact that traces
are sequence representation of partial orders, which gives traces the ability to model
“true concurrency” semantics. We will now recall the definition of a trace monoid.

Definition 1 ([5, 21]). Let M = (E∗,∗,λ ) be a free monoid generated by E, and let the
relation ind ⊆ E ×E be an irreflexive and symmetric relation (called independency),
and EQ = {ab = ba | (a,b)∈ ind}. Let≡ind , called trace congruence, be the congruence
defined by EQ. Then the equational monoid M≡ind =

(
E∗/≡ind ,~, [λ ]

)
is a monoid of

traces. The pair (E, ind) is called a trace alphabet.

We will omit the subscript ind from trace congruence if it causes no ambiguity.

Example 1. Let E = {a,b,c}, ind = {(b,c),(c,b)}, i.e., EQ = { bc = cb }. Given three
sequences s = abcbca, s1 = abc and s2 = bca, we can generate the traces [s] = {abcbca,
abccba,acbbca,acbcba,abbcca,accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}. Note
that [s] = [s1] ~ [s2] since [abcbca] = [abc]~ [bca] = [abc∗bca].

Each trace represents a finite partial order in the following sense. For the trace [s]
from Example 1, we can define Σ[s] =

{
a(1),b(1),c(1),b(2),c(2),a(2)} to be the set of all

enumerated events occurring in [s], where a(1) and
a(2) simply denote the first and the second occur-
rences of a respectively in the sequence s1. Then the
partially ordered set (poset)

(
Σ[s],≺[s]

)
represented

by [s] is depicted in the diagram on the right (arcs
inferred from transitivity are omitted for simplicity).

b(1) // b(2)

$$HHH
H

a(1)

::vvvv

$$HHH
H a(2)

c(1) // c(2)

::vvvv

In fact, the total orders induced by the elements of [s] comprise all the total exten-
sions of ≺[s] (see [21]), which by Theorem 1 implies that [s] uniquely determines the
partial order ≺[s].

Remark 1. Given a sequence s, to construct the partial order ≺[s] represented by [s], we
do not need to build up to exponentially many elements of [s]. We can simply construct
the direct acyclic graph (Σ[s],≺s), where x(i) ≺s y( j) iff x(i) occurs before y( j) on the
sequence s and (x,y) 6∈ ind. The relation ≺s is usually not the same as the partial order
≺[s]. However, after applying the transitive closure operator, we have ≺[s]=≺+

s . To ex-
tend this simple idea to the more difficult cases of constructing stratified or io-structures
from their sequence representations, it is inevitable that we have to generalise the tran-
sitive closure operator to these order structures.



4 Stratified Order Structures, Comtraces, and ♦-Closure

A relational structure is a triple S = (X ,R1,R2), where R1,R2 ⊆ X ×X . We will write
S = (X ,R1,R2)⊆ S′ = (X ,R′1,R

′
2) iff R1 ⊆ R′1 and R2 ⊆ R′2.

Definition 2 ([11]). A stratified order structures (so-structure) is a relational structure
S = (X ,≺,@), such that for all a,b,c ∈ X, the following hold:

S1: a 6@ a S3: a@ b@ c ∧ a 6= c =⇒ a@ c

S2: a≺ b =⇒ a@ b S4: a@ b≺ c ∨ a≺ b@ c =⇒ a≺ c

So-structures were independently introduced in [8] and [10]. Their comprehensive
theory has been presented in [12, 13]. They have been successfully applied to model
inhibitor and priority systems, asynchronous races, synthesis problems, etc., [17] (see
[9] for more references).

The relation ≺ is called causality and represents the “earlier than” relationship, and
the relation @ is called weak causality and represents the “not later than” relationship.
The axioms S1–S4 model the mutual relationship between “earlier than” and “not later
than” relations, provided that the system runs are defined as stratified orders.

A stratified order < on X is a stratified extension of a so-structure S = (X ,≺,@) if
≺⊆< and@⊆<_. The set of all stratified extensions of S will be denoted by Strat(S).

Theorem 3 ([13]). For every so-structure S = (X ,≺,@):
S =

(
X ,
⋂

<∈Strat(S) <,
⋂

<∈Strat(S) <_
)
. ut

The above theorem is a generalisation of Szpilrajn’s Theorem to so-structures and
is interpreted as the proof of the claim that so-structures uniquely represent sets of
equivalent system runs provided that the system operational semantics can be fully
described in terms of stratified orders (see [9, 13] for details).

We will now present the concept of ♦-closure that plays a substantial role in most
of the applications of so-structures for modelling concurrent systems (cf. [13, 16, 17]).

Definition 3 ([12]). For every relational structure S = (X ,R1,R2) we define S♦ as

S♦
df
=
(

X ,≺♦R1,R2
,@♦R1,R2

)
=
(
X ,(R1∪R2)∗ ◦R1 ◦ (R1∪R2)∗,(R1∪R2)∗ \ idX

)
.

Intuitively the ♦-closure is a generalisation of transitive closure for relations to so-
structures. The theorem below shows that the♦-closure has all the properties formulated
for transitive closure in Proposition 1.

Theorem 4 ([12]). Let S = (X ,R1,R2) be a relational structure.

1. If R2 is irreflexive then S⊆ S♦.
2. (S♦)♦ = S♦.
3. S♦ is a so-structure if and only if the relation ≺♦R1,R2

is irreflexive.
4. If S is a so-structure then S = S♦.
5. Let S be a so-structure and let S0 ⊆ S. Then S♦0 ⊆ S and S♦0 is a so-structure. ut



Among others, Theorem 4 helps us to show a relationship between so-structures and
comtraces, an extension of Mazurkiewicz traces that allows us to model the “not later
than” relationship using quotient monoids of step sequence monoids [12, 14, 20].

Definition 4 ([12]). Let E be a finite set (of events) and let ser ⊆ sim ⊂ E×E be two
relations called serialisability and simultaneity respectively and the relation sim is ir-
reflexive and symmetric. Then the triple (E,sim,ser) is called the comtrace alphabet.

Intuitively, if (a,b) ∈ sim then a and b can occur simultaneously, while (a,b) ∈
ser means that a and b may occur simultaneously or a may occur before b (i.e., both
executions are equivalent). We define S, the set of all (potential) steps, as the set of all

cliques of the graph (E,sim), i.e., S df
= {A | A 6= /0∧∀a,b ∈ A. (a = b∨ (a,b) ∈ sim)}.

Hence, the triple (S∗,∗,λ ), where “∗” denotes the step sequence concatenation operator
(usually omitted), is a monoid of step sequences.

Definition 5 ([12]). Let θ = (E,sim,ser) be a comtrace alphabet and let ≡ser, called
comtrace congruence, be the EQ-congruence defined by the set of equations:

EQ = {A = BC | A = B∪C ∈ S∧B×C ⊆ ser}.
Then the equational monoid (S∗/≡ser,~, [λ ]) is called a monoid of comtraces over θ .

We will omit the subscript ser from comtrace congruence if it causes no ambiguity.

Example 2. Let E = {a,b,c}, sim = {(a,b),(b,a),(a,c),(c,a)} and ser = {(a,b),(b,a),
(a,c)}. Then we have S = {{a},{b},{c},{b,c}}. A step sequence s = {a,b}{c}{c}
generates [s] = {{a,b}{c}{c},{a}{b}{c}{c},{b}{a}{c}{c},{b}{a,c}{c}} as its com-
trace. Note that {a}{c}{b}{a} /∈ [s].

Let u = A1 . . .Ak be a step sequence. By u = A1 . . .Ak be the event enumerated repre-
sentation of u. We will skip a lengthy but intuitively obvious formal definition (cf. [12]),
but for instance, from Example 2, s = {a(1),b(1)}{c(1)}{c(2)}. Let Σu =

⋃k
i=1 Ai denote

the set of all enumerated events occurring in u, for example, Σs = {a(1),b(1),c(1),c(2)}.
For each α ∈ Σu, let posu(α) denote the consecutive number of a step where α be-
longs, i.e. if α ∈ A j then posu(α) = j. For our example, poss(c(2)) = 3, poss(b(1)) = 1,
etc. For each enumerated even α = e(i), let l(α) denote the label of α , i.e. l(α) =
l(e(i)) = e. One can easily show that u ≡ v =⇒ Σu = Σv, so we can define Σ[u] = Σu.

Given a step sequence u, we define the stratified order

�u ⊆ Σu×Σu induced by u by: α �u β
df⇐⇒ posu(α) <

posu(β ). Then it can be easily checked that the stratified
orders induced by the step sequences of the comtrace [s]
from Example 2 are exactly the stratified extensions of
the so-structure S[s] = (Σ[s],≺[s],@[s]) on the right. The
dotted edge denotes @[s], while the solid edges denote
both ≺[s] and @[s].

a(1)

## %%

c(1) // c(2)

b(1)

;;wwwww

99

Analogous to Remark 1 for traces, given a comtrace alphabet (E,sim,ser) and a
step sequence u, we do not need to analyse any other elements of [u] except u itself
to construct the so-structure S[u], which the comtrace [u] represents. We will now show
how the ♦-closure operator helps us to build the desired construction.



Definition 6 ([12]). Let u ∈ S∗. We define the relations ≺u,@u⊆ Σ[u]×Σ[u] as:

1. α ≺u β
df⇐⇒ α �u β ∧ (l(α), l(β )) /∈ ser,

2. α @u β
df⇐⇒ α �_

u β ∧ (l(β ), l(α)) /∈ ser.

Definition 6 describes two basic “local” invariants of the elements of Σu. The rela-
tion ≺u captures the situation when α always precedes β , and the relation @u captures
the situation when α never follows β . However, since ≺u and @u are “locally” invari-
ant, the relation structure (Σ[u],≺u,@u) might not contain “global” invariants that can
be inferred from (S3) and (S4) of Definition 2. For instance, the step sequence s from
Example 2 generates the following relations ≺s= {(b(1),c(1)),(b(1),c(2)),(c(1),c(2))}
and @s=≺s ∪{(a(1),c(1)),(a(1),c(2))}, where the edge (a(1),c(2)) from ≺[s] is absent
from ≺s. To make sure all invariants are included, we need ♦-closure.

Definition 7. Given a step sequence u ∈ S∗ and its respective comtrace [u] ∈ S∗/ ≡.

We define the relational structures S[u] as: S[u]
df
=
(
Σ[u],≺u,@u

)♦.

The relational structure S[u] is the so-structure defined by the comtrace [u]. The
following theorem justifies the names and summarises the following nontrivial results
concerning the so-structures generated by comtraces. The proofs of these results heavily
use the properties of ♦-closure from Theorem 4.

Theorem 5 ([12, 13]). For all u,v ∈ S∗, we have

1. S[u] is a so-structure and S[u] =
(

Σ[u],
⋂

x∈[u] �x,
⋂

x∈[u] �
_
x

)
,

2. u≡ v ⇐⇒ S[u] = S[v],
3. ext

(
S[u]
)

=
{
�s | s ∈ [u]

}
. ut

Note that a generalisation of Theorem 5 to generalised stratified order structures
(gso-structures) [9], an extension of so-structures which can additionally model the
“non-simultaneously” relationship, was recently shown in [14, 20]. A sequence repre-
sentation of gso-structures called generalised comtraces were proposed and shown to
represent precisely finite gso-structures. The intuition of the approach in [20] is similar
to what we discussed here and the ♦-closure operator was applied extensively.

5 Interval Order Structures and �-closure

This section contains the major contribution of this paper. We start with a short presen-
tation of some properties on io-structures, then we define �-closure, the main concept
of this paper, and prove the equivalence of Theorem 4. Because io-structures are more
complex than so-structures, the proofs are more involved than that of Theorem 4.

Definition 8 ([11]). An interval order structure (io-structure) is a relational structure
S = (X ,≺,@), such that for all a,b,c,d ∈ X, the following hold:

I1: a 6@ a I4: a≺ b@ c ∨ a@ b≺ c =⇒ a@ c

I2: a≺ b =⇒ a@ b I5: a≺ b@ c≺ d =⇒ a≺ d

I3: a≺ b≺ c =⇒ a≺ c I6: a@ b≺ c@ d =⇒ a@ d ∨ a = d



Here the causality relation ≺ also represents the “earlier than” relationship, and
the weak causality relation @ represents the “not later than” relationship but under the
assumption that the system runs are interval orders.

Proposition 2 ([11]).

1. ≺ is a partial order such that a≺ b⇒ b 6@ a and a@ b⇒ b 6≺ a.
2. If < is an interval order on X, then (X ,<,<_) is an io-structure. ut

Interval order structures were independently introduced in [19] and [10]. Some of
their properties have been presented in [13], yet their theory is not as well-developed
and much less often applied than that of so-structures [9]. The lack of an operator anal-
ogous to the ♦-closure prevented us from building a working relationship between io-
structures and sequence models of concurrency such as Mazurkiewicz traces and com-
traces.

Theorem 6 ([13]). Every so-structure is an io-structure. ut

Since every so-structure is an io-structure, many properties of so-structures also
hold for io-structures. Furthermore, we also have an analogue of Theorem 3 for interval
orders and io-structures.

An interval order < on X is an interval extension of an io-structure S = (X ,≺,@) if
≺⊆< and@⊆<_. The set of all interval extensions of S will be denoted by Interv(S).

Theorem 7 ([13]). For each io-structure S = (X ,≺,@), we have

S =
(

X ,
⋂

<∈Interv(S) <,
⋂

<∈Interv(S) <_
)
. ut

The above theorem is a generalisation of Szpilrajn’s Theorem to io-structures. It is
interpreted as the proof of the claim that io-structures uniquely represent sets of equiv-
alent system runs, provided that the system’s operational semantics can be fully de-
scribed in terms of interval orders (see [9, 13] for details). An example of a simple
interval order structure which illustrates the main ideas behind this concept is shown in
Figure 2.

Before defining the concept of �-closure and proving its properties, we need to
introduce some auxiliary notions and prove some preliminary results.

Definition 9. Let R1,R2 ⊆ X×X be two relations and let 〈S1, . . . ,Sk〉 be a sequence of
relations such that Si ∈ {R1,R2}, i = 1, . . . ,k.

1. A sequence 〈S1, . . . ,Sk〉 has ]-property w.r.t. (R1,R2), if for all i, 1≤ i < k, we have
¬(Si = Si+1 = R2), i.e. there are no two consecutive R2’s.

2. A sequence 〈S1, . . . ,Sk〉 has ⊕-property w.r.t. (R1,R2), if k ≥ 1, S1 = Sk = R1 and
the sequence 〈S2, . . . ,Sk−1〉 has ]-property w.r.t. (R1,R2);

3. R1]R2 =
⋃

k≥0{S1 ◦ . . .◦Sk | 〈S1, . . . ,Sk〉 has ]-property w.r.t. (R1,R2)}.
4. R1⊕R2 =

⋃
k≥1{S1 ◦ . . .◦Sk | 〈S1, . . . ,Sk〉 has ⊕-property w.r.t. (R1,R2)}.
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P: begin int x,y,z:

a: begin x:=0; y:=0; z:=0 end;

cobegin

begin

b: x=0 → y:=y+1;

d: z:=z+1
end,

c: x:=x+1
coend

end P

Fig. 2. An example of a simple interval order structure S = (X ,≺,@), with X = {a,b,c,d} and
its set of all interval extensions Interv(S) = {<1,<2,<3,<4,<5}. The orders <1 and <2 are
total, <3 and <4 are stratified and <5 is interval but not stratified. The elements of Interv(S)
are all equivalent runs (executions) of the program P involving the actions a, b, c and d, so the
interval order structure uniquely defines a concurrent behaviour (history) of P (see [9] for details).
The elements of Interv(S) are represented as Hasse diagrams, while ≺ and @ are represented as
graphs of their entire relations. In this case ≺ equals <5, as there are not so many partial orders
over the four elements set, but the interpretations of <5 and ≺ are different. The incomparability
in <5 is interpreted as simultaneity while in ≺ as having no casual relationship.

For example the sequence 〈R1,R2,R2,R1〉 has neither ]- nor ⊕-property, the empty
sequence 〈〉 and the sequence 〈R1,R1,R2,R1,R2〉 has ]-property but not ⊕-property,
and 〈R1,R1,R2,R1,R2,R1〉 has ⊕-property. We will omit the suffix “w.r.t. (R1,R2)” if
the relations R1 and R2 are clear from the context. The relations R1⊕R2 and R1 ]R2
can easily be defined by appropriate regular expressions built from R1 and R2.

Proposition 3. Let R1,R2 ⊆ X×X be two relations. Then
1. R1⊕R2 = (R+

1 ◦R2)∗ ◦R+
1 ,

2. R1]R2 = (R2∪ idX )◦ (R1∪R1 ◦R2)∗,
3. R1⊕R2 ⊆ R1]R2,
4. (R1⊕R2)] (R1]R2)⊆ (R1]R2),
5. (R1⊕R2)⊕ (R1]R2)⊆ (R1⊕R2).

Proof. Follows immediately from Definition 9. ut

We can now define the main concept of this paper, the concept of �-closure.

Definition 10. For every relational structure S =(X ,R1,R2) we define S�, the�-closure
of S, as:

S�
df
= (X ,≺�R1,R2

,@�R1,R2
) = (X ,R1⊕R2,(R1]R2)\ idX ).



The �-closure is an extension of ♦-closure of so-structures and transitive closure of
relations to io-structures. We will start by proving equivalences of Theorem 4(1,2).

Proposition 4. 1. If R2 is irreflexive, then S⊆ S�. 2.
(
S�
)� = S�.

Proof. 1. By the definition R1 ⊆ R1⊕R2 =≺�R1,R2
and R2 ⊆ R1]R2. Hence, if R2 is

irreflexive, R2 \ idX ⊆ (R1]R2)\ idX =@�R1,R2
.

2. (⊇) Since @R1,R2 is irreflexive, by (1) we have S� ⊆ (S�)�.
(⊆) We need to show that≺�

≺�R1 ,R2
,@�R1 ,R2

⊆≺�R1,R2
and@�

≺�R1 ,R2
,@�R1 ,R2

⊆@�R1,R2
, which

means (R1⊕R2)⊕ (R1]R2)⊆ R1⊕R2, and (R1⊕R2)] (R1]R2)⊆ R1]R2. But
this follows from Proposition 3(4,5). ut

Proposition 4(2) states that �-closure is idempotent, and justifies the name closure
(cf. [24]).

Note that the exact replica of Theorem 4(3) is false. Consider an example, where
X = {a,b}, R1 = {(a,b)} and R2 = {(b,a)}. Thus, ≺�R1,R2

= {(a,b)} and @�R1,R2
=

{(a,b),(b,a)}, so ≺�R1,R2
is irreflexive, but (X ,≺�R1,R2

,@�R1,R2
) is not an io-structure

since a≺�R1,R2
b@�R1,R2

a =⇒ a@ a, which contradicts (I1) from Definition 8. To find
the necessary and sufficient condition for the �-closure of a relational structure to be an
io-structure, we need a new concept.

Definition 11. A relational structure S = (X ,R1,R2) is i-directed if
1. R1⊕R2 is irreflexive, and
2. ∀a,b ∈ X . (a,b) ∈ R2 =⇒ (b,a) /∈ R1⊕R2.

Proposition 5. S� is an io-structure if and only if S = (X ,R1,R2) is i-directed.

Proof. (⇒) If S� is an io-structure then by (I1) and (I2),≺�R1,R2
= R1⊕R2 is irreflexive.

Suppose (a,b) ∈ R2 and (b,a) ∈ R1⊕R2. Since R2 ⊆ @�R1,R2
, we have a ≺�R1,R2

b and
b@�R1,R2

a, which contradicts Proposition 2(1).
(⇐) We need to show that the conditions of Definition 8 are satisfied.

(I1) Clearly (R1]R2)\ idX is irreflexive.
(I2) From Corollary 3(3) we have≺�R1,R2

⊆R1]R2. Since≺�R1,R2
is irreflexive,≺�R1,R2

⊆
(R1]R2)\ idX =@�R1,R2

.
(I3) Let a ≺�R1,R2

b and let b ≺�R1,R2
c. This means aS1 ◦ . . . ◦ SkbQ1 ◦ . . . ◦Qrc, where

〈S1, . . . ,Sk〉 and 〈Q1, . . . ,Qr〉 both have ⊕-property. Hence 〈S1, . . . ,Sk,Q1, . . . ,Qr〉
also has ⊕-property. Thus, a≺R1,R2 c.

(I4) Let a ≺�R1,R2
b and let b @�R1,R2

c. This means aS1 ◦ . . . ◦ SkbQ1 ◦ . . . ◦Qrc, where
〈S1, . . . ,Sk〉 satisfies ⊕-property, and 〈Q1, . . . ,Qr〉 satisfies ]-property. Hence the
sequence 〈S1, . . . ,Sk,Q1, . . . ,Qr〉 has ]-property and thus (a,c) ∈ R1]R2. Suppose
a = c. Since a ≺�R1,R2

b and b @�R1,R2
c, this means aR1 ◦ S1 ◦ . . . ◦ Sk ◦ R1b, and

bQ1 ◦Q2 ◦ . . .◦Qs−1 ◦Qsa, where Si,Qi ∈ {R1,R2}. Either Q1 or Qs are equal to R2,



otherwise b≺�R1,R2
a, contradicting that≺�R1,R2

is irreflexive. Suppose Q1 = R2. This
means Q2 = R1. Thus there is some b1 such that bR2b1R1 ◦Q3 ◦ . . .◦Qs ◦R1 ◦S1 ◦
. . .◦Sk ◦R1b, which means (b1,b)∈ R1⊕R2, contradicting Definition 11(2). Hence
Q1 = R1 and Qs = R2, i.e. Qs−1 = R1. Thus, there is some bs such that bsR2a and
aR1 ◦S1 ◦ . . .◦Sk ◦R1 ◦Q1 ◦ . . .◦R1bs, which means (a,bs) ∈ R1⊕R2, contradicting
Definition 11(2). Therefore a 6= c, i.e. (a,c) ∈ (R1]R2)\ idX =@�R1,R2

.
For the case when a@�R1,R2

b≺�R1,R2
c, we proceed almost identically.

(I5) Let a≺�R1,R2
b@�R1,R2

c≺�R1,R2
d. Thus, there are sequences 〈S1, . . . ,Sk〉, 〈P1, . . . ,Ps〉

and 〈Q1, . . . ,Qr〉, such that aS1◦. . .◦SkbP1◦ . . .◦PscQ1◦ . . .◦Qrd, where 〈S1, . . . ,Sk〉
and 〈Q1, . . . ,Qr〉 have ⊕-property and 〈P1, . . . ,Ps〉 has ]-property. It follows that
〈S1, . . . ,Sk,Q1, . . . ,Qr,P1, . . . ,Ps〉 has ⊕-property and thus a≺�R1,R2

d.
(I6) Let a@�R1,R2

b≺�R1,R2
c@�R1,R2

d. Thus, there are sequences 〈S1, . . . ,Sk〉, 〈P1, . . . ,Ps〉
and 〈Q1, . . . ,Qr〉, such that aS1◦. . .◦SkbP1◦ . . .◦PscQ1◦. . .◦Qrd, where 〈S1, . . . ,Sk〉
and 〈Q1, . . . ,Qr〉 have ]-property and 〈P1, . . . ,Ps〉 has ⊕-property. It follows that
〈S1, . . . ,Sk,Q1, . . . ,Qr,P1, . . . ,Ps〉 has ]-property. So a@�R1,R2

b or a = d. ut

The fact that the above result is slightly weaker than Theorem 4(3) does not seem to
matter much as in virtually all applications of♦-closure in [12] and [17], the relations R1
and R2 satisfy the equivalence of the conditions of Definition 11 for so-structures. The
below result appears to be quite useful for various potential applications of �-closure.

Proposition 6. Let S = (X ,R1,R2) be a relational structure and let <⊆ X ×X be an
interval order such that R1 ⊆< and R2 ⊆<_. Then S is i-directed.

Proof. By Proposition 2(2), (X ,<,<_) is an io-structure, so it satisfies I1–I6. We have
R+

1 ⊆<+=<, so R1⊕R2 = (R+
1 ◦R2)∗ ◦R+

1 ⊆ (< ◦R2)∗◦< =
⋃

∞
i=0((< ◦R2)i◦<). For

each i, we have (< ◦R2)i◦ <⊆ (< ◦ <_)i◦ < and then by applying (I5) i times, we
have (< ◦<_)i ◦<⊆<. Hence R1⊕R2 ⊆<. i.e. R1⊕R2 is irreflexive. If (a,b) ∈ R2
then a <_ b, i.e. ¬(b < a) and also (a,b) /∈ R1⊕R2 as R1⊕R2 ⊆<. ut

Both ♦- and �-closures are often used for the cases like the one in Definition 7, so
we can then use the above results to simplifies the proofs.

We now prove an analogue of Theorem 4(4), which states that io-structures are fixed
points of �-closure.

Proposition 7. If S = (X ,≺,@) is an io-structure then S = S�.

Proof. (⊆) Since S is an io-structure,@ is irreflexive. Thus, by Proposition 4(1), S⊆ S�.
(⊇) We will first show that ≺ ⊕ @⊆≺. Since ≺ ⊕ @= (≺+ ◦ @)∗◦ ≺+, it suffices to
show that for each i ≥ 1, j ≥ 0, k ≥ 1, (≺i ◦ @) j◦ ≺k⊆≺. From (I3) it follows ≺i⊆≺
and ≺k⊆≺, so (≺i ◦ @) j◦ ≺k⊆ (≺ ◦ @) j◦ ≺. By apply (I5) from right to left i times,
we have (≺ ◦@) j◦ ≺⊆≺. Thus, ≺⊕@⊆≺.

It remains to show (≺]@)\ idX ⊆@. By Proposition 3(2), ≺]@= (@ ∪idX )◦ (≺
∪≺ ◦@)∗. It suffices to show that for all i≥ 0, (@ ∪idX )◦ (≺∪≺ ◦@)i ⊆@ ∪idX . The
case when i = 0 is trivial. For i > 0, by the induction hypothesis, we have (@∪idX )◦(≺
∪ ≺ ◦ @)i−1 ⊆@ ∪idX . It suffices to show (@ ∪idX )◦ (≺ ∪ ≺ ◦ @) ⊆@ ∪idX . But this
holds since, by (I4) and (I6),

(
(@ ∪idX )◦ ≺

)
∪
(
(@ ∪idX )◦ ≺ ◦@

)
⊆@ ∪idX . ut



Directly from Proposition 7 we obtain the below result which will be used in the
proof of the analogue of Theorem 4(5).

Corollary 1. Every io-structure is i-directed. ut

Proposition 8. Let S = (X ,≺,@) be an io-structure and let S0 ⊆ S. Then S�0 ⊆ S and
S�0 is an io-structure.

Proof. From Proposition 7 it immediately follows S�0 ⊆ S� = S.
Due to Proposition 5 it suffices to show that S0 is i-directed. Let S0 = (X ,R1,R2). We

have R1⊕R2 ⊆≺ ⊕ @=(Proposition 7) ≺. Since ≺ is irreflexive, R1⊕R2 is irreflexive
as well. Let (a,b) ∈ R2. Since R2 ⊆@, we have a @ b which by Corollary 1, implies
(b,a) /∈≺⊕@. Since R1⊕R2 ⊆≺⊕@, (b,a) /∈ R1⊕R2. Therefore S0 is i-directed. ut

We can also show that �-closure is indeed a generalisation of ♦-closure.

Proposition 9. If S is so-structure then S = S♦ = S�.

Proof. A consequence of Theorem 4(4), Theorem 6 and Proposition 7. ut

6 Final Comments

A concept of �-closure has been defined for io-structures. It is an equivalence of ♦-
closure of so-structures ([12]) and classical transitive closure of relations. It has also
been proven that, in principle, �-closure has the same properties as ♦-closure and tran-
sitive closure. Because the definition of �-closure was more elaborate, the proofs were
substantially more complex than their counterparts for ♦-closure. Nevertheless, only
one property of �-closure is slightly weaker than its ♦-closure counterpart.

The counterpart of comtraces for io-structures has not been fully developed yet, but
its foundation has been established. Fishburn’s Theorem (Theorem 2) states that each
interval order can be represented by an appropriate total order of the interval begin-
nings and ends. The below fundamental theorem states that each io-structure can be
represented by an appropriate partial (not necessarily interval) order of the beginnings
and ends.

Theorem 8 (Abraham, Ben-David, Magodor [1]).
A relational structure S = (X ,≺, @) is an io-structure iff there exists a partial order �

on some Y and two mappings B,E : X → Y such that B(X)∩E(X) = /0 and for each

1. B(x)�E(x), 2. x≺ y ⇐⇒ E(x)�B(y), 3. x@ y ⇐⇒ B(x)�E(y). ut

Szpilrajn’s Theorem (Theorem 1) allows us to represent each partial order by its
total extensions. The combination of these three theorems and Theorem 7 makes it pos-
sible to construct “interval traces”, a version of Mazurkiewicz traces over an appropriate
monoid of sequences of beginnings and ends, and then use “interval traces” to represent
io-structures via Theorem 8. This topic is beyond the scope of this paper; however, the
properties of �-closure are essential tools in this process.
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20. Lê, D.T.M.: Studies in Comtrace Monoids. Master Thesis, Department of Computing and

Software, McMaster University (2008)
21. Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpretation. TR DAIMI PB-

78, Comp. Science Depart., Aarhus University (1977)
22. Milner, R.: Operational and Algebraic Semantics of Concurrent Processes. In: van Leuween,

J. (ed.): Handbook of Theoretical Computer Science. Vol. 2, pp. 1201–1242. Elsevier (1993)
23. Reisig, W.: Elements of Distributed Algorithms. Springer (1998)
24. Rosen, K. H.: Discrete Mathematics and Its Applications. McGraw-Hill (1999)
25. Szpilrajn, E., Sur l’extension de l’ordre partiel. Fundam. Mathematicae 16, pp. 386–389

(1930)
26. Wiener, N.: A contribution to the Theory of Relative Position. In: Proc. Camb. Philos. Soc.

17, pp. 441–449 (1914)


