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Two Aspects of Proof Complexity

1 Propositional Proof Complexity (Pitassi’s invited talk)
I the lengths of proofs of tautologies in various proof systems

2 Bounded Arithmetic
I the power of weak formal systems to prove theorems of interest in

computer science

Both are closely related to mainstream complexity theory

(2) and (1) are related by “propositional translations”
I a proof in theory T  uniform short proofs in propositional proof

system PT

I bounded arithmetic = uniform version of propositional proof complexity

“bounded”: induction axioms are restricted to bounded formulas
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Bounded Reverse Mathematics [Cook-Nguyen ’10]

Motivation

Classify theorems according to the
computational complexity of concepts needed to

prove them.

Program in Chapter 9

1 Introduce a general method for associating
a canonical minimal theory VC for certain
complexity classes C

AC0 ⊆ C ⊆ P

2 Given a theorem τ , try to find the smallest
complexity class C such that

VC ` τ
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Bounded Reverse Mathematics [Cook-Nguyen ’10]

“As a matter of fact, the subject of
the book can almost be thought as
developing the proof theory that is
missing from the descriptive
complexity approach to understanding
complexity classes through logic.”

[Atserias ’11]
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Outline of the talk

1 The complexity class CC
I Interesting natural complete problems: stable marriage, lex-first

maximal matching, comparator circuit value problem. . .

2 Use the Cook-Nguyen method to define a theory for CC

3 Discuss many open problems related to CC
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Comparator Circuits

Originally invented for sorting, e.g.,
I Batcher’s O(log2 n)-depth sorting

networks (’68)
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

Can also be considered as boolean
circuits.

Comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0
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Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian’s PhD thesis ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P
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Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?
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Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching problem (decision)

Is a given edge {u, v} in the lex-first maximal matching of G?
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Reducing lex-first maximal matching to Ccv

a b c d

x y z

1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
0 a H H 1
0 b H H 1
0 c H H 1
0 d H 0
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Reducing Ccv to lex-first maximal matching

p0 N p1

q0 • q1

p0 q0 p1 q1

x y
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Reducing Ccv to lex-first maximal matching

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y
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Outline of the talk

1 The complexity class CC
I Interesting natural complete problems: stable marriage, lex-first

maximal matching, comparator circuit value problem. . .

2 Use the Cook-Nguyen method to define a theory for CC

3 Discuss many open problems related to CC
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Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)
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Two-sorted complexity classes

A two-sorted complexity class consists of relations R(~x , ~X ), where

~x are number arguments (in unary) and ~X are string arguments

Definition (Two-sorted AC0)

A relation R(~x , ~X ) is in AC0 iff some alternating Turing machine accepts
R in time O(log n) with a constant number of alternations.

ΣB
0 -Representation Theorem [Zambella ’96, Cook-Nguyen]

R(~x , ~X ) is in AC0 iff it is represented by a ΣB
0 -formula ϕ(~x , ~X ).

Useful consequences

1 Don’t need to work with uniform circuit families or alternating Turing
machines when defining AC0 functions or relations.

2 Useful when working with AC0-reductions
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The theory V0 for AC0 reasoning

The axioms of V0

1 2-BASIC axioms: essentially the axioms of Robinson arithmetic plus
I the defining axioms for ≤ and the string length function | |
I the axiom of extensionality for finite sets (bit strings).

2 ΣB
0 -COMP (Comprehension): for every ΣB

0 -formula ϕ(z) without X ,

∃X ≤ y ∀z < y
(
X (z)↔ ϕ(z)

)
Theorem

1 ΣB
0 -IND:

[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

)]
→ ∀xϕ(x), where ϕ ∈ ΣB

0 .

2 The provably total functions in V0 are precisely FAC0.

Note: Theories, developed using Cook-Nguyen method, extend V0.
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The theory VCC∗ for CC∗

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with
specified Boolean inputs

Determine the output value of a
designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Recall that CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

The two-sorted theory VCC∗ [using the Cook-Nguyen method]

VCC∗ has vocabulary L2A
Axiom of VCC∗ = Axiom of V0 + one additional axiom asserting the
existence of a solution to the Ccv problem.
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Asserting the existence of a solution to Ccv
1 w0 • •
1 w1 • N
1 w2

0 w3 H •
0 w4 H
0 w5 H

0 1 2 3 4

X encodes a comparator circuit with m wires and n gates
Y encodes the input sequence
Z is an (n + 1)×m matrix, where column i of Z encodes values layer i

The following ΣB
0 formula δCCV(m, n,X ,Y ,Z ) states that Z encodes the

correct values of all the layers of the Ccv instance encoded in X and Y :

∀k < m
(
Y (k)↔ Z (0, k)

)
∧ ∀i < n ∀x < m ∀y < m,

(X )i = 〈x , y〉 →

 Z (i + 1, x)↔
(
Z (i , x) ∧ Z (i , y)

)
∧ Z (i + 1, y)↔

(
Z (i , x) ∨ Z (i , y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z (i + 1, j)↔ Z (i , j)

)]


VCC∗ = V0 + ∃Z ≤ 〈m, n + 1〉+ 1, δCCV(m, n,X ,Y ,Z )
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Conclusion

Summary

1 Introduce the new complexity classes CC and CC∗, which are
AC0-many-one-closure and AC0-oracle-closure of Ccv respectively.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.
3 Introduce the two-sorted theory VCC∗ that “captures” CC∗. We show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP
4 Sharpen and simplify Subramanian’s results: we show the following

problems are CC-complete:
I lex-first maximal matching (even with degree at most 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (useful when showing the completeness of stable marriage)

5 Prove the correctness of the above reductions within VCC∗.
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Open Problems

1 Is CC = CCSubr = CC∗?
2 Do universal comparator circuits exists?
3 Is CC/CCSubr/CC∗ equal to P?
4 Does any of the CC-complete problem have an NC or RNC algorithm?
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