A Formal Theory for the Complexity Class Associated with the Stable Marriage Problem

Dai Tri Man Lê
Joint work with Stephen Cook and Yuli Ye

Department of Computer Science
University of Toronto
Canada

LCC 2011

Two Aspects of Proof Complexity

(1) Propositional Proof Complexity (Pitassi's invited talk) the lengths of proofs of tautologies in various proof systems
(2) Bounded Arithmetic
the power of weak formal systems to prove theorems of interest in computer science

- Both are closely related to mainstream complexity theory
- (2) and (1) are related by "propositional translations"
- a proof in theory $T \rightsquigarrow$ uniform short proofs in propositional proof system P_{T}
- bounded arithmetic $=$ uniform version of propositional proof complexity
- "bounded": induction axioms are restricted to bounded formulas

Two Aspects of Proof Complexity

(1) Propositional Proof Complexity (Pitassi's invited talk) the lengths of proofs of tautologies in various proof systems
(2) Bounded Arithmetic
the power of weak formal systems to prove theorems of interest in computer science

- Both are closely related to mainstream complexity theory
- (2) and (1) are related by "propositional translations"
- a proof in theory $T \rightsquigarrow$ uniform short proofs in propositional proof system P_{T}
- bounded arithmetic $=$ uniform version of propositional proof complexity
- "bounded": induction axioms are restricted to bounded formulas

Bounded Reverse Mathematics [Cook-Nguyen '10]

Motivation

Classify theorems according to the computational complexity of concepts needed to prove them.

Program in Chapter 9

(1) Introduce a general method for associating a canonical minimal theory VC for certain complexity classes C

$$
A C^{0} \subseteq \mathrm{C} \subseteq \mathrm{P}
$$

(2) Given a theorem τ, try to find the smallest complexity class C such that

PERSPECTIVES IN LOGIC

Stephen Cook Phuong Nguyen

LOGICAL FOUNDATIONS
OF PROOF COMPLEXITY
$\wedge s$
commanot

$$
\mathrm{VC} \vdash \tau
$$

Bounded Reverse Mathematics [Cook-Nguyen '10]

"As a matter of fact, the subject of the book can almost be thought as developing the proof theory that is missing from the descriptive complexity approach to understanding complexity classes through logic."
[Atserias '11]

Perspectives in Logic

Stephen Cook
Phuong Nguyen

LOGICAL FOUNDATIONS
OF PROOF COMPLEXITY
$\wedge s$

Outline of the talk

(1) The complexity class CC

- Interesting natural complete problems: stable marriage, lex-first maximal matching, comparator circuit value problem...
(2) Use the Cook-Nguyen method to define a theory for CC
(3) Discuss many open problems related to CC

Outline of the talk

(1) The complexity class CC

- Interesting natural complete problems: stable marriage, lex-first maximal matching, comparator circuit value problem...
(2) Use the Cook-Nguyen method to define a theory for CC
(3) Discuss many open problems related to CC

Comparator Circuits

- Originally invented for sorting, e.g.,
- Batcher's $\mathcal{O}\left(\log ^{2} n\right)$-depth sorting networks ('68)
- Ajtai-Komlós-Szemerédi (AKS) $\mathcal{O}(\log n)$-depth sorting networks ('83)

Comparator gate

- Can also be considered as boolean circuits.

Example

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified Boolean inputs, determine the output value of a designated wire.

Complexity classes

(1) $\mathrm{CC}^{\text {Subr }}=\{$ decision problems log-space many-one-reducible to CCV$\}$ [Subramanian's PhD thesis '90], [Mayr-Subramanian '92]

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified Boolean inputs, determine the output value of a designated wire.

Complexity classes

(1) $\mathrm{CC}^{\text {Subr }}=\{$ decision problems log-space many-one-reducible to CCv$\}$ [Subramanian's PhD thesis '90], [Mayr-Subramanian '92]
(2) $\mathrm{CC}=\left\{\right.$ decision problems AC^{0} many-one-reducible to CCv$\}$

Complete problems: stable marriage, lex-first maximal matching.

- $\mathrm{CC}^{*}=\left\{\right.$ decision problems AC^{0} oracle-reducible to Ccv$\}$ Needed when developing a Cook-Nguyen style theory for CC The function class FCC* is closed under compostion

$$
\mathrm{NC}^{1} \subseteq \mathrm{NL} \subseteq \mathrm{CC} \subseteq \mathrm{CC}^{\text {Subr }} \subseteq \mathrm{CC}^{*} \subseteq \mathrm{P}
$$

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified Boolean inputs, determine the output value of a designated wire.

Complexity classes

(1) $\mathrm{CC}^{\text {Subr }}=\{$ decision problems log-space many-one-reducible to CCv$\}$ [Subramanian's PhD thesis '90], [Mayr-Subramanian '92]
(2) $\mathrm{CC}=\left\{\right.$ decision problems AC^{0} many-one-reducible to Ccv$\}$

Complete problems: stable marriage, lex-first maximal matching.

- $\mathrm{CC}^{*}=\left\{\right.$ decision problems AC^{0} oracle-reducible to Ccv$\}$ Needed when developing a Cook-Nguyen style theory for CC The function class FCC* is closed under compostion

$$
\mathrm{NC}^{1} \subseteq \mathrm{NL} \subseteq \mathrm{CC} \subseteq \mathrm{CC}^{\text {Subr }} \subseteq \mathrm{CC}^{*} \subseteq \mathrm{P}
$$

Stable Marriage Problem (search version) (Gale-Shapley '62)

- Given n men and n women together with their preference lists
- Find a stable marriage between men and women, i.e.,
(1) a perfect matching
(2) satisfies the stability condition: no two people of the opposite sex like each other more than their current partners

Preference lists

Men: \quad| a | x | y |
| :--- | :--- | :--- |
| b | y | x |

Women: \quad| x | a | b |
| :--- | :--- | :--- |
| y | a | b |

Stable Marriage Problem (search version) (Gale-Shapley '62)

- Given n men and n women together with their preference lists
- Find a stable marriage between men and women, i.e.,
(1) a perfect matching
(2) satisfies the stability condition: no two people of the opposite sex like each other more than their current partners

Preference lists

Men: \quad| a | x | y |
| :--- | :--- | :--- |
| b | y | x |

Women: \quad| x | a | b |
| :--- | :--- | :--- |
| y | a | b |

stable marriage

Stable Marriage Problem (search version) (Gale-Shapley '62)

- Given n men and n women together with their preference lists
- Find a stable marriage between men and women, i.e.,
(1) a perfect matching
(2) satisfies the stability condition: no two people of the opposite sex like each other more than their current partners

Preference lists

Men:

a	x	y
b	y	x

Women: \quad| x | a | b |
| :--- | :--- | :--- |
| y | a | b |

stable marriage

unstable marriage

Stable Marriage Problem (search version) (Gale-Shapley '62)

- Given n men and n women together with their preference lists
- Find a stable marriage between men and women, i.e.,
(1) a perfect matching
(2) satisfies the stability condition: no two people of the opposite sex like each other more than their current partners
Preference lists

Men:

a	x	y
b	y	x
x	a	b
y	a	b

stable marriage

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m, w) in the man-optimal (woman-optimal) stable marriage?

Lex-first maximal matching problem

Lex-first maximal matching

- Let G be a bipartite graph.
- Successively match the bottom nodes x, y, z, \ldots to the least available top node

Lex-first maximal matching problem

Lex-first maximal matching

- Let G be a bipartite graph.
- Successively match the bottom nodes x, y, z, \ldots to the least available top node

Lex-first maximal matching problem

Lex-first maximal matching

- Let G be a bipartite graph.
- Successively match the bottom nodes x, y, z, \ldots to the least available top node

Lex-first maximal matching problem

Lex-first maximal matching

- Let G be a bipartite graph.
- Successively match the bottom nodes x, y, z, \ldots to the least available top node

Lex-first maximal matching problem

Lex-first maximal matching

- Let G be a bipartite graph.
- Successively match the bottom nodes x, y, z, \ldots to the least available top node

Lex-first maximal matching problem (decision)
Is a given edge $\{u, v\}$ in the lex-first maximal matching of G ?

Reducing lex-first maximal matching to CCV

1

1
1
1
0
0
0
0

Reducing CCV to lex-first maximal matching

Reducing CCV to lex-first maximal matching

Reducing Ccv to lex-first maximal matching

Reducing CCV to lex-first maximal matching

Reducing Ccv to lex-first maximal matching

Outline of the talk

(1) The complexity class CC

- Interesting natural complete problems: stable marriage, lex-first maximal matching, comparator circuit value problem...
(2) Use the Cook-Nguyen method to define a theory for CC
(3) Discuss many open problems related to CC

Two-sorted language \mathcal{L}_{A}^{2} (Zambella '96)

Vocabulary $\mathcal{L}_{A}^{2}=\left[0,1,+, \cdot,| | ; \in, \leq,={ }_{1},={ }_{2}\right]$

- Standard model $\mathbb{N}_{2}=\langle\mathbb{N}$, finite subsets of $\mathbb{N}\rangle$
- $0,1,+, \cdot, \leq,=$ have usual meaning over \mathbb{N}
- $|X|=$ length of X
- Set membership $y \in X$
- "number" variables $x, y, z, \ldots($ range over $\mathbb{N})$
- "string" variables X, Y, Z, \ldots (range over finite subsets of \mathbb{N})
- Number terms are built from $x, y, z, \ldots, 0,1,+$, and $|X|,|Y|,|Z|, \ldots$
- The only string terms are variable X, Y, Z, \ldots

Two-sorted language \mathcal{L}_{A}^{2} (Zambella '96)

Vocabulary $\mathcal{L}_{A}^{2}=\left[0,1,+, \cdot,| | ; \in, \leq,=1,={ }_{2}\right]$

- Standard model $\mathbb{N}_{2}=\langle\mathbb{N}$, finite subsets of $\mathbb{N}\rangle$
- $0,1,+, \cdot, \leq,=$ have usual meaning over \mathbb{N}
- $|X|=$ length of X
- Set membership $y \in X$

Note

The natural inputs for Turing machines and circuits are finite strings.

- "number" variables $x, y, z, \ldots($ range over $\mathbb{N})$
- "string" variables X, Y, Z, \ldots (range over finite subsets of \mathbb{N})
- Number terms are built from $x, y, z, \ldots, 0,1,+$, and $|X|,|Y|,|Z|, \ldots$
- The only string terms are variable X, Y, Z, \ldots

Two-sorted language \mathcal{L}_{A}^{2} (Zambella '96)

Vocabulary $\mathcal{L}_{A}^{2}=\left[0,1,+, \cdot,| | ; \in, \leq,={ }_{1},={ }_{2}\right]$

- Standard model $\mathbb{N}_{2}=\langle\mathbb{N}$, finite subsets of $\mathbb{N}\rangle$
- $0,1,+, \cdot, \leq,=$ have usual meaning over \mathbb{N}
- $|X|=$ length of X
- Set membership $y \in X$

Note

The natural inputs for Turing machines and circuits are finite strings.

- "number" variables $x, y, z, \ldots($ range over $\mathbb{N})$
- "string" variables X, Y, Z, \ldots (range over finite subsets of \mathbb{N})
- Number terms are built from $x, y, z, \ldots, 0,1,+$, and $|X|,|Y|,|Z|, \ldots$
- The only string terms are variable X, Y, Z, \ldots

Definition (\sum_{0}^{B} formula)

(1) All the number quantifiers are bounded.
(2) No string quantifiers (free string variables are allowed)

Two-sorted complexity classes

A two-sorted complexity class consists of relations $R(\vec{x}, \vec{x})$, where

- \vec{x} are number arguments (in unary) and \vec{X} are string arguments

Definition (Two-sorted AC^{0})
A relation $R(\vec{x}, \vec{x})$ is in AC^{0} iff some alternating Turing machine accepts R in time $\mathcal{O}(\log n)$ with a constant number of alternations.
Σ_{0}^{B}-Representation Theorem [Zambella '96, Cook-Nguyen] $R(\vec{x}, \vec{X})$ is in AC^{0} iff it is represented by a \sum_{0}^{B}-formula $\varphi(\vec{x}, \vec{X})$.

Useful consequences

(1) Don't need to work with uniform circuit families or alternating Turing machines when defining $A C^{0}$ functions or relations.
(2) Useful when working with AC^{0}-reductions

The theory V^{0} for $A C^{0}$ reasoning

The axioms of V^{0}

(1) 2-BASIC axioms: essentially the axioms of Robinson arithmetic plus the defining axioms for \leq and the string length function | | the axiom of extensionality for finite sets (bit strings).
(2) \sum_{0}^{B}-COMP (Comprehension): for every Σ_{0}^{B}-formula $\varphi(z)$ without X,

$$
\exists X \leq y \forall z<y(X(z) \leftrightarrow \varphi(z))
$$

Theorem

(1) \sum_{0}^{B}-IND: $[\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1))] \rightarrow \forall x \varphi(x)$, where $\varphi \in \Sigma_{0}^{B}$.
(2) The provably total functions in V^{0} are precisely FAC^{0}.

Note: Theories, developed using Cook-Nguyen method, extend V^{0}.

The theory VCC* for CC*

Comparator Circuit Value (Ccv) Problem (decision)

- Given a comparator circuit with specified Boolean inputs
- Determine the output value of a designated wire.

Recall that $\mathrm{CC}^{*}=\left\{\right.$ decision problems AC^{0} oracle-reducible to CCv$\}$

The two-sorted theory VCC* [using the Cook-Nguyen method]

- VCC * has vocabulary \mathcal{L}_{A}^{2}
- Axiom of $\mathrm{VCC}^{*}=$ Axiom of $\mathrm{V}^{0}+$ one additional axiom asserting the existence of a solution to the CCV problem.

Asserting the existence of a solution to CCV

- X encodes a comparator circuit with m wires and n gates
- Y encodes the input sequence
- Z is an $(n+1) \times m$ matrix, where column i of Z encodes values layer i The following Σ_{0}^{B} formula $\delta_{\mathrm{CCV}}(m, n, X, Y, Z)$ states that Z encodes the correct values of all the layers of the Ccv instance encoded in X and Y :

$$
\begin{aligned}
& \forall k<m(Y(k) \leftrightarrow Z(0, k)) \wedge \forall i<n \forall x<m \forall y<m, \\
& \qquad(X)^{i}=\langle x, y\rangle \rightarrow\left[\begin{array}{l}
Z(i+1, x) \leftrightarrow(Z(i, x) \wedge Z(i, y)) \\
\wedge \\
Z(i+1, y) \leftrightarrow(Z(i, x) \vee Z(i, y)) \\
\wedge \\
\forall j<m[(j \neq x \wedge j \neq y) \rightarrow(Z(i+1, j) \leftrightarrow Z(i, j))]
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{VCC}^{*}=\mathrm{V}^{0}+\exists Z \leq\langle m, n+1\rangle+1, \delta_{\mathrm{CCV}}(m, n, X, Y, Z)
$$

Conclusion

Summary

(1) Introduce the new complexity classes CC and CC*, which are AC^{0}-many-one-closure and AC^{0}-oracle-closure of CCV respectively.

$$
\mathrm{NC}^{1} \subseteq \mathrm{NL} \subseteq \mathrm{CC} \subseteq \mathrm{CC}^{\text {Subr }} \subseteq \mathrm{CC}^{*} \subseteq \mathrm{P}
$$

(2) Promote the use of \sum_{0}^{B}-formulas when working with $A C^{0}$ functions or relations.
(3) Introduce the two-sorted theory VCC* that "captures" CC*. We show that $\mathrm{VNC}^{1} \subseteq \mathrm{VNL} \subseteq \mathrm{VCC}^{*} \subseteq \mathrm{VP}$
(9) Sharpen and simplify Subramanian's results: we show the following problems are CC-complete:
lex-first maximal matching (even with degree at most 3)
stable-marriage (man-opt, woman-opt and search version)
three-valued CCv (useful when showing the completeness of stable marriage)
(3) Prove the correctness of the above reductions within VCC*.

Conclusion

Summary

(1) Introduce the new complexity classes CC and CC^{*}, which are AC^{0}-many-one-closure and AC^{0}-oracle-closure of CCV respectively.

$$
\mathrm{NC}^{1} \subseteq \mathrm{NL} \subseteq \mathrm{CC} \subseteq \mathrm{CC}^{\mathrm{Subr}} \subseteq \mathrm{CC} \mathrm{C}^{*} \subseteq \mathrm{P}
$$

(2) Promote the use of \sum_{0}^{B}-formulas when working with $A C^{0}$ functions or relations.
(3) Introduce the two-sorted theory VCC* that "captures" CC*. We show that

$$
\mathrm{VNC}^{1} \subseteq \mathrm{VNL} \subseteq \mathrm{VCC}^{*} \subseteq \mathrm{VP}
$$

(9) Sharpen and simplify Subramanian's results: we show the following problems are CC-complete:
lex-first maximal matching (even with degree at most 3)
stable-marriage (man-opt, woman-opt and search version)
three-valued CCv (useful when showing the completeness of stable marriage)
(5) Prove the correctness of the above reductions within VCC*.

Open Problems

(1) Is CC $=\mathrm{CC}^{\text {Subr }}=\mathrm{CC}^{*}$?
(2) Do universal comparator circuits exists?
(3) Is CC/CC ${ }^{\text {Subr }} / \mathrm{CC}^{*}$ equal to P ?
(9) Does any of the CC-complete problem have an NC or RNC algorithm?

