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Bounded Reverse Mathematics [Cook-Nguyen ’10]

Motivation

Classify theorems according to the
computational complexity of concepts needed to

prove them.

Program in Chapter 9

1 Introduce a general method for associating
a canonical minimal theory VC for “nice”
complexity classes C

AC0 ⊆ C ⊆ P

2 Given a theorem τ , try to find the smallest
complexity class C such that

VC ` τ
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Outline of the talk

1 The complexity classes for the Comparator Circuit Value Problem

2 Define a theory for CC∗

3 Natural complete problems: stable marriage and lex-first maximal
matching

4 Conclusion and open problems
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Comparator Circuits

Originally invented for sorting, e.g.,
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

I Formalized by Jěrábek (’11) in VNC1
∗.

Can also be seen as boolean circuits.

Comparator gate
a x • min(a, b)

b y H max(a, b)

Boolean comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0
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Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P
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Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)
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Two-sorted complexity classes

A two-sorted complexity class consists of relations R(~x , ~X ), where

~x are number arguments (in unary) and ~X are string arguments

Definition (Two-sorted AC0)

A relation R(~x , ~X ) is in AC0 iff some alternating Turing machine accepts
R in time O(log n) with a constant number of alternations.

ΣB
0 -Representation Theorem [Zambella ’96, Cook-Nguyen]

R(~x , ~X ) is in AC0 iff it is represented by a ΣB
0 -formula ϕ(~x , ~X ).

Useful consequences

1 Don’t need to work with uniform circuit families or alternating Turing
machines when defining AC0 functions or relations.

2 Useful when working with AC0-reductions
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The theory V0 for AC0 reasoning

The theory V0

1 2-BASIC axioms: essentially the axioms of Robinson arithmetic plus
I the defining axioms for ≤ and the string length function | |
I the axiom of extensionality for finite sets (bit strings).

2 ΣB
0 -COMP (Comprehension): for every ΣB

0 -formula ϕ(z) without X ,

∃X ≤ y ∀z < y
(
X (z)↔ ϕ(z)

)
Theorem

1 ΣB
0 -IND: for ϕ ∈ ΣB

0[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

)]
→ ∀xϕ(x)

2 The provably total functions in V0 are precisely FAC0.

Note: Theories, developed using Cook-Nguyen method, extend V0.
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The 2-BASIC axioms

B1. x + 1 6= 0

B2. x + 1 = y + 1→ x = y

B3. x + 0 = x

B4. x + (y + 1) = (x + y) + 1

B5. x · 0 = 0

B6. x · (y + 1) = (x · y) + x

B7. (x ≤ y ∧ y ≤ x)→ x = y

B8. x ≤ x + y

B9. 0 ≤ x

B10. x ≤ y ∨ y ≤ x

B11. x ≤ y ↔ x < y + 1

B12. x 6= 0→ ∃y ≤ x (y + 1 = x)

L1. X (y)→ y < |X |
L2. y + 1 = |X | → X (y)

SE.
[
|X | = |Y | ∧ ∀i < |X |

(
X (i) = Y (i)

)]
→ X = Y

12 / 30



The theory VCC∗ for CC∗

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with
specified Boolean inputs

Determine the output value of a
designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Recall that CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

The two-sorted theory VCC∗ [using the Cook-Nguyen method]

VCC∗ has vocabulary L2A
Axiom of VCC∗ = Axiom of V0 + one additional axiom asserting the
existence of a solution to the Ccv problem.

13 / 30



Asserting the existence of a solution to Ccv
1 w0 • •
1 w1 • N
1 w2

0 w3 H •
0 w4 H
0 w5 H

0 1 2 3 4

X encodes a comparator circuit with m wires and n gates
Y encodes the input sequence
Z is an (n + 1)×m matrix, where column i of Z encodes values layer i

The following ΣB
0 formula δCCV(m, n,X ,Y ,Z ) states that Z encodes the

correct values of all the layers of the Ccv instance encoded in X and Y :

∀k < m
(
Y (k)↔ Z (0, k)

)
∧ ∀i < n ∀x < m ∀y < m,

(X )i = 〈x , y〉 →

 Z (i + 1, x)↔
(
Z (i , x) ∧ Z (i , y)

)
∧ Z (i + 1, y)↔

(
Z (i , x) ∨ Z (i , y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z (i + 1, j)↔ Z (i , j)

)]


VCC∗ = V0 + ∃Z ≤ 〈m, n + 1〉+ 1, δCCV(m, n,X ,Y ,Z )
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Inclusion of theories

Recall that:

AC0 ⊆ TC0 ⊆ NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

We showed in our paper that:

VTC0 ⊆ VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

Comparator gate
p x • p ∧ q

q y H p ∨ q
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VNL ⊆ VCC∗

u0

u2

u1

u3

u4

Can’t talk about reachability!

Known fact:

VTC0 ⊆ VNC1 ⊆ VCC∗

We prove the correctness of this
construction using only counting.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1
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Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?
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The stable marriage problem is in CC

Based on Subramanian ’90

We use three-valued logic

We formalize in VCC∗

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

1 ai0 • •
0 x i0 H •
∗ ai1 •
0 y i

0 H •
∗ bi1 •
∗ x i1 H

1 bi0 • •
∗ y i

1 H

I0 1 ao0 1

0 xo0 0

0 ao1 H 0

0 yo
0 0

0 bo1 H ∗
0 xo1 H 1

1 bo0 1

0 yo
1 H ∗

I1
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1 a00 • •
0 x00 H •
∗ a01 •
0 y00 H •
∗ b01 •
∗ x01 H

1 b00 • •
∗ y01 H

1 a10 • •
0 x10 H •
0 a11 H •
0 y10 H •
0 b11 H •
0 x11 H H

1 b10 • •
0 y11 H H

1 a20 • •
0 x20 H •
0 a21 H •
0 y20 H •
0 b21 H •
0 x21 H H

1 b20 • •
0 y21 H H

1 a30 • •
0 x30 H •
0 a31 H •
0 y30 H •
0 b31 H •
0 x31 H H

1 b30 • •
0 y31 H H

1 a40 1

0 x40 0

0 a41 H 0

0 y40 0

0 b41 H 0

0 x41 H 1

1 b40 1

0 y41 H 0
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Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?
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Overview of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm
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Reducing vLfmm to Ccv

a b c d

x y z

a b c

1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
0 a H H 1
0 b H H 1
0 c H H 1
0 d H 0

23 / 30



Reducing Ccv to vLfmm

p0 N p1

q0 • q1

p0 q0 p1 q1

x y

Remark

Bipartite graphs with degree ≤ 3 suffice.
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Reducing Ccv to vLfmm
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A bigger example

0 a N 1

1 b • N 1

1 c • 0
0 1 2

a0 b0 c0

a′0 b′0 c ′0

a1 b1 c1

a′1 b′1 c ′1

a2 b2 c2

a′2 b′2 c ′2
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Summary of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm
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Reducing Ccv¬ to Ccv (using “double-rail” logic)

0 x N 1

1 y • N 1

1 z • ¬ 1

0 x N 1

1 x̄ • 0

1 y • N 1

0 ȳ H • 0

1 z • • N 1

0 z̄ H • N 0

0 t H • 0
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Reducing Lfmm to Ccv¬
a b c

x y

0 a N N 1

0 b N 0

0 c N • 1
1 x • • • 0
1 y • • • 0

0 a′ N N 1

0 b′ N 0

0 c ′ ¬ H 1

1 x ′ • • • 0

1 y ′ • • 0
28 / 30



Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.
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