
Complexity Classes and Theories for the
Comparator Circuit Value Problem

Dai Tri Man Lê

Joint work with Stephen Cook and Yuli Ye

University of Toronto
Canada

Prague Fall Logic School 2011

1 / 30

Stephen Cook (’68) Yuli Ye

2 / 30

Bounded Reverse Mathematics [Cook-Nguyen ’10]

Motivation

Classify theorems according to the
computational complexity of concepts needed to

prove them.

Program in Chapter 9

1 Introduce a general method for associating
a canonical minimal theory VC for “nice”
complexity classes C

AC0 ⊆ C ⊆ P

2 Given a theorem τ , try to find the smallest
complexity class C such that

VC ` τ

3 / 30

Outline of the talk

1 The complexity classes for the Comparator Circuit Value Problem

2 Define a theory for CC∗

3 Natural complete problems: stable marriage and lex-first maximal
matching

4 Conclusion and open problems

4 / 30

1 The complexity classes for the Comparator Circuit Value Problem

2 Define a theory for CC∗

3 Natural complete problems: stable marriage and lex-first maximal
matching

4 Conclusion and open problems

5 / 30

Comparator Circuits

Originally invented for sorting, e.g.,
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

I Formalized by Jěrábek (’11) in VNC1
∗.

Can also be seen as boolean circuits.

Comparator gate
a x • min(a, b)

b y H max(a, b)

Boolean comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

6 / 30

Comparator Circuits

Originally invented for sorting, e.g.,
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

I Formalized by Jěrábek (’11) in VNC1
∗.

Can also be seen as boolean circuits.

Comparator gate
a x • min(a, b)

b y H max(a, b)

Boolean comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

6 / 30

Comparator Circuits

Originally invented for sorting, e.g.,
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

I Formalized by Jěrábek (’11) in VNC1
∗.

Can also be seen as boolean circuits.

Comparator gate
a x • min(a, b)

b y H max(a, b)

Boolean comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

6 / 30

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

7 / 30

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

7 / 30

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

7 / 30

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Complexity classes

1 CCSubr =
{

decision problems log-space many-one-reducible to Ccv
}

I [Subramanian ’90], [Mayr-Subramanian ’92]

2 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

I Complete problems: stable marriage, lex-first maximal matching. . .

3 CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

I Needed when developing a Cook-Nguyen style theory for CC
I The function class FCC∗ is closed under compostion

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

7 / 30

1 The complexity classes for the Comparator Circuit Value Problem

2 Define a theory for CC∗

3 Natural complete problems: stable marriage and lex-first maximal
matching

4 Conclusion and open problems

8 / 30

Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)

9 / 30

Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)

9 / 30

Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)

9 / 30

Two-sorted complexity classes

A two-sorted complexity class consists of relations R(~x , ~X), where

~x are number arguments (in unary) and ~X are string arguments

Definition (Two-sorted AC0)

A relation R(~x , ~X) is in AC0 iff some alternating Turing machine accepts
R in time O(log n) with a constant number of alternations.

ΣB
0 -Representation Theorem [Zambella ’96, Cook-Nguyen]

R(~x , ~X) is in AC0 iff it is represented by a ΣB
0 -formula ϕ(~x , ~X).

Useful consequences

1 Don’t need to work with uniform circuit families or alternating Turing
machines when defining AC0 functions or relations.

2 Useful when working with AC0-reductions

10 / 30

The theory V0 for AC0 reasoning

The theory V0

1 2-BASIC axioms: essentially the axioms of Robinson arithmetic plus
I the defining axioms for ≤ and the string length function | |
I the axiom of extensionality for finite sets (bit strings).

2 ΣB
0 -COMP (Comprehension): for every ΣB

0 -formula ϕ(z) without X ,

∃X ≤ y ∀z < y
(
X (z)↔ ϕ(z)

)
Theorem

1 ΣB
0 -IND: for ϕ ∈ ΣB

0[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

)]
→ ∀xϕ(x)

2 The provably total functions in V0 are precisely FAC0.

Note: Theories, developed using Cook-Nguyen method, extend V0.

11 / 30

The 2-BASIC axioms

B1. x + 1 6= 0

B2. x + 1 = y + 1→ x = y

B3. x + 0 = x

B4. x + (y + 1) = (x + y) + 1

B5. x · 0 = 0

B6. x · (y + 1) = (x · y) + x

B7. (x ≤ y ∧ y ≤ x)→ x = y

B8. x ≤ x + y

B9. 0 ≤ x

B10. x ≤ y ∨ y ≤ x

B11. x ≤ y ↔ x < y + 1

B12. x 6= 0→ ∃y ≤ x (y + 1 = x)

L1. X (y)→ y < |X |
L2. y + 1 = |X | → X (y)

SE.
[
|X | = |Y | ∧ ∀i < |X |

(
X (i) = Y (i)

)]
→ X = Y

12 / 30

The theory VCC∗ for CC∗

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with
specified Boolean inputs

Determine the output value of a
designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Recall that CC∗ =
{

decision problems AC0 oracle-reducible to Ccv
}

The two-sorted theory VCC∗ [using the Cook-Nguyen method]

VCC∗ has vocabulary L2A
Axiom of VCC∗ = Axiom of V0 + one additional axiom asserting the
existence of a solution to the Ccv problem.

13 / 30

Asserting the existence of a solution to Ccv
1 w0 • •
1 w1 • N
1 w2

0 w3 H •
0 w4 H
0 w5 H

0 1 2 3 4

X encodes a comparator circuit with m wires and n gates
Y encodes the input sequence
Z is an (n + 1)×m matrix, where column i of Z encodes values layer i

The following ΣB
0 formula δCCV(m, n,X ,Y ,Z) states that Z encodes the

correct values of all the layers of the Ccv instance encoded in X and Y :

∀k < m
(
Y (k)↔ Z (0, k)

)
∧ ∀i < n ∀x < m ∀y < m,

(X)i = 〈x , y〉 →

 Z (i + 1, x)↔
(
Z (i , x) ∧ Z (i , y)

)
∧ Z (i + 1, y)↔

(
Z (i , x) ∨ Z (i , y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z (i + 1, j)↔ Z (i , j)

)]


VCC∗ = V0 + ∃Z ≤ 〈m, n + 1〉+ 1, δCCV(m, n,X ,Y ,Z)

14 / 30

Inclusion of theories

Recall that:

AC0 ⊆ TC0 ⊆ NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

We showed in our paper that:

VTC0 ⊆ VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

Comparator gate
p x • p ∧ q

q y H p ∨ q

15 / 30

Inclusion of theories

Recall that:

AC0 ⊆ TC0 ⊆ NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

We showed in our paper that:

VTC0 ⊆ VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

Comparator gate
p x • p ∧ q

q y H p ∨ q

15 / 30

VNL ⊆ VCC∗

u0

u2

u1

u3

u4

Can’t talk about reachability!

Known fact:

VTC0 ⊆ VNC1 ⊆ VCC∗

We prove the correctness of this
construction using only counting.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

16 / 30

VNL ⊆ VCC∗

u0

u2

u1

u3

u4

Can’t talk about reachability!

Known fact:

VTC0 ⊆ VNC1 ⊆ VCC∗

We prove the correctness of this
construction using only counting.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

16 / 30

1 The complexity classes for the Comparator Circuit Value Problem

2 Define a theory for CC∗

3 Natural complete problems: stable marriage and lex-first maximal
matching

4 Conclusion and open problems

17 / 30

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

18 / 30

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

18 / 30

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

18 / 30

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

a

b

x

y

stable marriage

a

b

x

y

unstable marriage

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

18 / 30

The stable marriage problem is in CC

Based on Subramanian ’90

We use three-valued logic

We formalize in VCC∗

Preference lists

Men:
a x y

b y x

Women:
x a b

y a b

1 ai0 • •
0 x i0 H •
∗ ai1 •
0 y i

0 H •
∗ bi1 •
∗ x i1 H

1 bi0 • •
∗ y i

1 H

I0 1 ao0 1

0 xo0 0

0 ao1 H 0

0 yo
0 0

0 bo1 H ∗
0 xo1 H 1

1 bo0 1

0 yo
1 H ∗

I1

19 / 30

1 a00 • •
0 x00 H •
∗ a01 •
0 y00 H •
∗ b01 •
∗ x01 H

1 b00 • •
∗ y01 H

1 a10 • •
0 x10 H •
0 a11 H •
0 y10 H •
0 b11 H •
0 x11 H H

1 b10 • •
0 y11 H H

1 a20 • •
0 x20 H •
0 a21 H •
0 y20 H •
0 b21 H •
0 x21 H H

1 b20 • •
0 y21 H H

1 a30 • •
0 x30 H •
0 a31 H •
0 y30 H •
0 b31 H •
0 x31 H H

1 b30 • •
0 y31 H H

1 a40 1

0 x40 0

0 a41 H 0

0 y40 0

0 b41 H 0

0 x41 H 1

1 b40 1

0 y41 H 0

20 / 30

Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?

21 / 30

Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?

21 / 30

Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?

21 / 30

Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?

21 / 30

Lex-first maximal matching problem

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Lfmm: Is a given edge {u, v} in the lex-first maximal matching?

vLfmm: Is a top node v matched in the lex-first maximal matching?

21 / 30

Overview of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm

22 / 30

Overview of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm

22 / 30

Reducing vLfmm to Ccv

a b c d

x y z

a b c

1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
0 a H H 1
0 b H H 1
0 c H H 1
0 d H 0

23 / 30

Reducing Ccv to vLfmm

p0 N p1

q0 • q1

p0 q0 p1 q1

x y

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

Reducing Ccv to vLfmm

p0 1 N 1 p1

q0 1 • 1 q1

p0 q0 p1 q1

x y

p0 q0

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

Reducing Ccv to vLfmm

p0 1 N 1 p1

q0 1 • 1 q1

p0 q0 p1 q1

x y

p0 q0 p1 q1

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

Reducing Ccv to vLfmm

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y

q0

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

Reducing Ccv to vLfmm

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y

p0 q0 p1

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

Reducing Ccv to vLfmm

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y

p0 q0 p1

Remark

Bipartite graphs with degree ≤ 3 suffice.

24 / 30

A bigger example

0 a N 1

1 b • N 1

1 c • 0
0 1 2

a0 b0 c0

a′0 b′0 c ′0

a1 b1 c1

a′1 b′1 c ′1

a2 b2 c2

a′2 b′2 c ′2

25 / 30

Summary of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm

26 / 30

Summary of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm

26 / 30

Summary of the reductions

vLfmm

Ccv

3vLfmm

Ccv¬

Lfmm

3Lfmm

26 / 30

Reducing Ccv¬ to Ccv (using “double-rail” logic)

0 x N 1

1 y • N 1

1 z • ¬ 1

0 x N 1

1 x̄ • 0

1 y • N 1

0 ȳ H • 0

1 z • • N 1

0 z̄ H • N 0

0 t H • 0

27 / 30

Reducing Lfmm to Ccv¬
a b c

x y

0 a N N 1

0 b N 0

0 c N • 1
1 x • • • 0
1 y • • • 0

0 a′ N N 1

0 b′ N 0

0 c ′ ¬ H 1

1 x ′ • • • 0

1 y ′ • • 0
28 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.

29 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.

29 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.

29 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.

29 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and
AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We
show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following
problems are CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or

relations.

29 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following problems are
CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or relations.

Open Problems

1 CC = CCSubr = CC∗? Do universal comparator circuits exist?
2 CC∗ = P?
3 Do the complete problems in CC have NC or RNC algorithms?
4 Can we prove the correctness of the Gale-Shapley algorithm in CC∗?

30 / 30

Summary

1 New classes CC and CC∗: AC0-many-one-closure and AC0-oracle-closure of Ccv.

NC1 ⊆ NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P

2 Introduce the new two-sorted theory VCC∗ that “captures” CC∗. We show that

VNC1 ⊆ VNL ⊆ VCC∗ ⊆ VP

3 Sharpen and simplify Subramanian’s results: we show the following problems are
CC-complete (under many-one AC0-reduction)

I lex-first maximal matching decision problems (even with degree ≤ 3)
I stable-marriage (man-opt, woman-opt and search version)
I three-valued Ccv (showing the completeness of stable marriage)

4 Prove the correctness of the above reductions within VCC∗.

5 Promote the use of ΣB
0 -formulas when working with AC0 functions or relations.

Open Problems

1 CC = CCSubr = CC∗? Do universal comparator circuits exist?
2 CC∗ = P?
3 Do the complete problems in CC have NC or RNC algorithms?
4 Can we prove the correctness of the Gale-Shapley algorithm in CC∗?

30 / 30

	The complexity classes for the Comparator Circuit Value Problem
	Define a theory for CC
	Natural complete problems: stable marriage and lex-first maximal matching
	Conclusion and open problems

