Midterm Test

This is a closed book test. You have 90 minutes to complete your answers, worth a total of 200 points, and 20% of your final mark.

For problems 3 - 4, if you do not know the answer to a question, write I do not know, and you will be given 20% of the grade. If it is clear that you do not know how to answer a question but you attempt to answer it anyway, you will be given 0%.

Good luck!

Last Name__

First Name__

Student Number_____________________________________

Question 1. ____________/45
Question 2. ____________/60
Question 3. ____________/55
Question 4. ____________/40

TOTAL ____________/200
Question 1 [Short Answers – 45 points]. Consider the following relation schemas

R(A,B)
T(B,C)

and their instances

r(A,B) = {<a,b>,<a,c>,<c,d>,<b,e>}
t(B,C) = {<b,e>,<d,h>,<b,f>,<a,d>,<a,e>}

(1.a) [10 points] Compute the result of the following relational algebra expression:

\[\pi_{A,C}(r \bowtie_{\text{LEFT}} t) \]

Answer:

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>f</td>
</tr>
<tr>
<td>c</td>
<td>h</td>
</tr>
<tr>
<td>a</td>
<td>NULL</td>
</tr>
<tr>
<td>b</td>
<td>NULL</td>
</tr>
</tbody>
</table>

(1.b) [15 points] Express \(r \bowtie_{\text{LEFT}} t \) in (1.a) using only the primary relational algebra operators (\(\cup, \cap, -, \rho, \sigma, \pi, \times \)) according to the definition of \(\bowtie_{\text{LEFT}} \).

Answer:

\[r \bowtie_{\text{LEFT}} t = (r \bowtie t) \cup ((r - \pi_{A,B}(r \bowtie t)) \times \{(\text{NULL})\}) \]
(1.c) [10 points] Compute the result of the following SQL query:

```
SELECT R.A, COUNT(T.C) AS C_COUNT
FROM R, T
WHERE R.A = T.B
GROUP BY R.A;
```

Answer:

<table>
<thead>
<tr>
<th>A</th>
<th>C_COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>

(1.d) [10 points] Compute the result of the following SQL query:

```
SELECT T.B, COUNT(T.C) AS C_COUNT
FROM T
GROUP BY T.B
HAVING COUNT(T.C) > 1
```

Answer:

<table>
<thead>
<tr>
<th>S.B</th>
<th>C_COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
</tr>
</tbody>
</table>
Question 2 [Relational Algebra – 60 points]. Consider the following database schema computer products:

- `Computer(maker, model, category)`
- `Model(num, speed, ram, hd, price)`
- `Maker(name, address, phone)`

Where

- `maker` indicates the manufacturer of the computer
- `category` takes values such as “desktop”, “laptop”, “server”;
- Following inclusion dependencies hold
 - `maker ⊆ name`
 - `model ⊆ num`

Express following queries in relational algebra:

(2.a) [10 points] “Find all the makers who make some laptop(s)"

Answer:

\[
\pi_{\text{maker}}(\sigma_{\text{category}=\text{laptop}}(\text{Computer}))
\]

(2.b) [15 points] “Find all the makers who make at lease three different desktop models”

Answer:

\[
\pi_{\text{maker}}(\sigma_{\text{model1} \neq \text{model2} \land \text{model2} \neq \text{model3} \land \text{model3} \neq \text{model1}}
(\rho_{\text{model1} \leftarrow \text{model}}(\sigma_{\text{category}=\text{desktop}}(\text{Computer}))
\bowtie\rho_{\text{model2} \leftarrow \text{model}}(\sigma_{\text{category}=\text{desktop}}(\text{Computer}))
\bowtie\rho_{\text{model3} \leftarrow \text{model}}(\sigma_{\text{category}=\text{desktop}}(\text{Computer})))
\]

- 4 -
(2.c) [10 points] “Find the phone numbers of *all* the makers who make desktops with speed = 3.2”

Answer:

$$\pi_{\text{maker}} \sigma_{\text{model} = \text{num}} (\sigma_{\text{category} = \text{“desktop”}} (\text{Computer}) \times \sigma_{\text{speed} = 3.2} (\text{Model}))$$

(2.d) [10 points] “Find the makers who don’t make any desktop, and do make some laptop(s)”

Answer:

$$(\text{Computer} - \sigma_{\text{category} = \text{“desktop”}} (\text{Computer})) \cap \pi_{\text{maker}} (\sigma_{\text{category} = \text{“laptop”}} (\text{Computer}))$$

(2.e) [15 points] “Find the makers who make all models with speed faster than 3.2”

Answer:

$$\pi_{\text{maker}, \text{model}} (\text{Computer}) \div (\rho_{\text{model} = \text{num}} \pi_{\text{num}} (\sigma_{\text{speed} > 3.2} (\text{Model})))$$
Question 3 [SQL – 40 points]. Given the schema in Question 3, express following queries in SQL:

(3.a) [15 points] “Find all laptop models and their makers”

Answer:

```
SELECT maker, model
FROM   Computer
WHERE  category = "laptop"
```

(3.b) [20 points] “Find all makers who make the most expensive server”

Answer:

```
SELECT C.maker
FROM   Computer C, Model M
WHERE  C.category = "server" AND
       C.model = M.num AND
       M.price = (SELECT MAX(price) FROM Model)
```

(3.c) [20 points] “Find all desktop models with the highest speed/price ratio, and return them along with their makers”

Answer:

```
SELECT C.maker, C.model
FROM   Computer C, Model M
WHERE  C.model = M.num AND
       M.speed/M.price ≥ ALL (SELECT (speed/price) FROM Model)
```
Question 5 [True/False questions – 40 points]. For each of the following statements, indicate whether they are true or false. A correct answer is worth 5 points, no answer is worth 0 points, wrong answer is worth -3 points. The minimum you can receive on this question is 0/40.

(4.a) _T_ In SQL DDL, there can be zero or one primary key declarations in each create table statement;

(4.b) _F_ Atomicity means that each database transaction executes as if there are no other transactions running;

(4.c) _F_ A relation with 5 attributes can have more than 100 keys and superkeys;

(4.d) _F_ In SQL, relations are sets of tuples and can’t have any duplicates;

(4.e) _T_ In SQL, views can be updated just like database relations;

(4.f) _F_ $S \bowtie R = S \times R$, if S and R don’t share any attributes, and $S \bowtie R = S \cup R$, if S and R have the same attributes.

(4.g) _F_ Consider relations $R(A,B)$ and $S(B,C)$. If B is a primary key for S, then $R \bowtie S$ _may_ contain more tuples than R does.

$R \bowtie S$ has, at most, the cardinality of R, since each tuple in R shares its B value with at most one tuple in S (since B is a primary key for S).

(4.h) _F_ Projection operators commute. That is, $\pi_X(\pi_Y(R)) = \pi_Y(\pi_X(R))$, holds for every relation R and all sets of attributes X and Y.