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Abstract
The problem of answering queries using views is to
find efficient methods of answering a query using a set
of previously materialized views over the database,
rather than accessing the database relations. The
problem has recently received significant attention
because of its relevance to a wide variety of data
management problems, such as query optimization,
the maintenance of physical data independence, data
integration and data warehousing. This article sur-
veys the theoretical issues concerning the problem of
answering queries using views.

1 Introduction
The problem of answering queries using views (a.k.a.
rewriting queries using views) has recently received
significant attention because of its relevance to a wide
variety of data management problems: query opti-
mization, maintenance of physical data independence,
data integration and data warehouse design. Infor-
mally speaking, the problem is the following. Sup-
pose we are given a query Q over a database schema,
and a set of view definitions V1, . . . , Vn over the same
schema. Is it possible to answer the query Q us-
ing only the answers to the views V1, . . . , Vn? If we
can access both the views and the database relations,
what is the cheapest query execution plan for an-
swering Q? Alternatively, what is the maximal set
of answers for Q that we can obtain from the views?
This article surveys the theoretical aspects of answer-
ing queries using views. For the more comprehensive
survey from which this material was drawn, see [30].

The first context in which we encounter the prob-
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lem of answering queries using views is query op-
timization and database design. In the context of
query optimization, computing a query using previ-
ously materialized views can speed up query process-
ing because part of the computation necessary for
the query may have already been done while com-
puting the views. Such savings are especially signifi-
cant in decision support applications when the views
and queries contain grouping and aggregation. In the
context of database design, view definitions provide
a mechanism for supporting the independence of the
physical view of the data and its logical view. This in-
dependence enables us to modify the storage schema
of the data (i.e., the physical view) without changing
its logical schema. Hence, several authors have pro-
posed to describe the storage schema as a set of views
over the logical schema [45, 43, 24, 19]. Given these
descriptions of the storage, the problem of computing
a query execution plan (which, of course, must access
the physical storage) involves figuring out how to use
the views to answer the query.

A second context in which our problem arises is
data integration. A data integration system provides
a uniform interface to a multitude of data sources.
Users of a data integration system pose queries against
a mediated schema, rather than the schemas in which
the data is actually stored. The system catalog in-
cludes a set of source descriptions, that provide se-
mantic mappings between the relations in the medi-
ated schema and those in the data sources. As a re-
sult, the problem of reformulating a user query, posed
over the mediated schema, into a query that refers di-
rectly to the source schemas becomes the problem of
answering queries using views. The solutions to the
problem of answering queries using views differ in this
context because the number of views (i.e., sources)
tends to be much larger, and the sources need not
contain the complete extensions of the views.

Other contexts in which the problem of answer-
ing queries using views arises are data warehouse de-
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sign [5, 15], web-site design [23] and semantic data
caching [17].

The many applications of the problem of answer-
ing queries using views has spurred a flurry of re-
search, ranging from theoretical foundations to al-
gorithm design and implementation in several com-
mercial systems. The treatment of the problem has
differed on several dimensions, including the specific
query language considered, whether we consider an
equivalent or maximally-contained rewriting of the
query, and whether the views are assumed to contain
all the tuples in their definitions. An important dis-
tinction that has been made in the theoretical work
is between the problem of query rewriting where the
output is a query expression for computing the an-
swers from the views, and the problem of query an-
swering, where the result is the set of all possible
answers we can obtain for the queries from the views.

Section 2 formally defines the problem and its dif-
ferent dimensions. Section 3 surveys the work on the
rewriting problem. Section 4 discusses the work on
query answering, and Section 5 describes treatments
of several query-language extensions. This article is
limited to the theoretical aspects of the problems.
The complete survey [30] discusses the large body of
work on incorporating materialized views into query
optimizers, specific algorithms for answering queries
using views and a more complete treatment of queries
with grouping and aggregation.

2 Problem Definition
We use datalog notation throughout the paper. We
consider mostly conjunctive queries, which have the
form

q(X̄) :− r1(X̄1), . . . , rn(X̄n)

where q, and r1, . . . , rn are predicate names. The
predicate names r1, . . . , rn refer to database relations.
The atom q(X̄) is called the head of the query, and q
refers to the answer relation. The atoms r1(X̄1), . . . ,
rn(X̄n) are the subgoals in the body of the query.
The tuples X̄, X̄1, . . . , X̄n contain either variables or
constants. We require that the query be safe, i.e.,
that X̄ ⊆ X̄1 ∪ . . . ∪ X̄n (that is, every variable that
appears in the head must also appear in the body).

Queries may also contain subgoals whose predi-
cates are arithmetic comparisons <,≤, =, 6=. In this
case, we require that if a variable X appears in a
subgoal of a comparison predicate, then X must also
appear in an ordinary subgoal.

In our discussion, we denote the result of com-
puting the query Q over the database D by Q(D).
We often refer to queries that reference named views

(e.g., in query rewritings); in that case, Q(D) refers to
the result of computing Q after the views have been
computed from D. Throughout this paper we assume
set semantics for our databases and query results.

The notions of query containment and query equiv-
alence enable comparison between different reformu-
lations of a query. They will be used when we test
the correctness of a rewriting of a query in terms of
a set of views. The problems of query containment
and equivalence have been studied extensively in the
literature and deserve a survey of their own.

Definition 2.1 (Query containment and equiv-
alence) A query Q1 is said to be contained in a query
Q2, denoted by Q1 v Q2, if for all databases D, the
set of tuples computed for Q1 is a subset of those com-
puted for Q2, i.e., Q1(D) ⊆ Q2(D). The two queries
are said to be equivalent if Q1 v Q2 and Q2 v Q1. 2

2.1 Query Rewriting

Given a query Q and view definitions V1, . . . , Vm, a
rewriting of Q using the views is a query expression Q′

whose subgoals are either view relations V1, . . . , Vm,
or comparison predicates. In practice, we may also
be interested in rewritings that can also refer to the
database relations, but conceptually this case does
not introduce any new difficulties.

We distinguish two types of query rewritings: equiv-
alent rewritings and maximally-contained rewritings.
In the contexts of query optimization and maintainance
of physical data independence we usually consider
equivalent rewritings.

Definition 2.2 (Equivalent rewritings) Let Q be
a query and V = V1, . . . , Vm be a set of view defini-
tions. The query Q′ is an equivalent rewriting of Q
using V if:

• the subgoals of Q′ are either relations in V , or
comparison predicates, and

• Q′ is equivalent to Q.

2

Example 2.1 Consider a simple database schema in
which the relation cites(p1,p2) stores pairs of publi-
cations where p1 cites p2, and the relation sameTopic
stores pairs of publications that are on the same topic.
The unary relations inSIGMOD and inVLDB store pa-
pers published in SIGMOD and VLDB respectively.
The following query asks for pairs of papers on the
same topic that also cite each other.
Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)



Assume we have the following views. The view
V1 stores pairs of papers that cite each other, and V2
stores pairs of papers on the same topic and each of
which cites at least one other paper.

V1(a,b):- cites(a,b), cites(b,a)
V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)

The following is an equivalent rewriting of Q:
Q’(x,y):- V1(x,y), V2(x,y) .
To check that Q’ is an equivalent rewriting, we can
unfold the view definitions to obtain Q”, and show
that Q is equivalent to Q” by finding containment
mappings [13] between Q and Q′′.
Q”(x,y):- cites(x,y), cites(y,x), sameTopic(x,y),

cites(x,x1), cites(y,y1) 2

In the context of data integration, we use views to
describe the contents of the data sources. Given a
query Q, the data integration system first needs to
reformulate Q to refer to the data sources, i.e., the
views. In this context, we cannot always find an
equivalent rewriting of the query using the views, be-
cause the sources do not provide all the necessary
data. Hence, we consider the problem of finding the
maximally-contained rewriting. Note that maximal-
ity of a rewriting is defined w.r.t. a particular query
language:

Definition 2.3 (Maximally-contained rewritings)
Let Q be a query, V = V1, . . . , Vm be a set of view
definitions, and L be a query language. The query
Q′ is a maximally-contained rewriting of Q using V
w.r.t. L if:

• Q′ is a query in L that refers only to the views
in V or comparison predicates,

• Q′ is contained in Q, and

• there is no rewriting Q1 ∈ L, such that Q′ ⊆
Q1 ⊆ Q and Q1 is not equivalent to Q′.

2

When a rewriting Q′ is contained in Q but is not
a maximally-contained rewriting we refer to it as a
contained rewriting.

Example 2.2 Suppose that in our domain we have
the following two data sources, S1 and S2, containing
pairs of SIGMOD (respectively VLDB) papers that
cite each other. The sources can be described as fol-
lows:
S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),

inSIGMOD(b)
S2(a,b):- cites(a,b), cites(b,a), inVLDB(a),

inVLDB(b)

Given the query from the previous example and the
sources S1, S2 and V2, the best rewriting we can com-
pute is:
q’(x,y):- S1(x,y), V2(x,y)
q’(x,y):- S2(x,y), V2(x,y)

Note that this rewriting is a union of conjunc-
tive queries, describing multiple ways of obtaining
answers to the query from the available sources. The
rewriting is not an equivalent rewriting, since it misses
any pair of papers that is not both in SIGMOD or
both in VLDB, but we don’t have data sources to pro-
vide us such pairs. Furthermore, since the sources are
not guaranteed to have all the tuples in the definition
of the view, our rewritings need to consider different
views that may have similar definitions. Specifically,
if there were another source S3 with an identical de-
scription as S1, we would also have to consider query
plans in which S1 is replaced by S3. 2

A more fundamental question we can consider is
how to find all the possible answers to the query,
given a set of view definitions and their extensions.
Finding a rewriting of the query using the views and
then evaluating the rewriting over the views is clearly
one candidate algorithm. If the rewriting is equiva-
lent to the query, then we are guaranteed to find all
the possible answers. However, a maximally-contained
rewriting of a query using a set of views does not
always provide all the possible answers that can be
obtained from the views. Intuitively, the reason for
this is that a rewriting is maximally-contained only
w.r.t. a specific query language, and hence there may
sometimes be a query in a more expressive language
that may provide more answers.

The problem of finding all the answers to a query
given a set of views is formalized in [1] by the notion
of certain answers. The definition distinguishes the
case in which the view extensions are assumed to be
complete (closed-world assumption) from the case in
which the views may be partial (open-world).

Definition 2.4 (Certain answers) Let Q be a query
and V = V1, . . . , Vm be a set of view definitions over
the database schema R1, . . . , Rn. Let the sets of tu-
ples v1, . . . , vm be extensions of the views V1, . . . , Vm,
respectively.

The tuple ā is a certain answer to the query Q
under the closed-world assumption given v1, . . . , vm

if ā ∈ Q(D) for all databases D such that Vi(D) = vi

for every i, 1 ≤ i ≤ m.
The tuple ā is a certain answer to the query Q

under the open-world assumption given v1, . . . , vm if
ā ∈ Q(D) for all databases D such that Vi(D) ⊇ vi

for every i, 1 ≤ i ≤ m. 2



The intuition behind the definition of certain an-
swers is the following. The extensions of V1, . . . , Vn

do not define a unique extension of the database re-
lations. Hence, given the extension of the views we
have only partial information about the real state of
the database. A tuple is a certain answer of the query
Q if it is an answer for any of the possible database
extensions that are consistent with the given exten-
sions of the views.

Example 2.3 Consider a database schema that in-
cludes the single relation e(X,Y) and consider the fol-
lowing views T1 and T2 and query:
T1(x):- e(x,y)
T2(y):- e(x,y)
q(x,y):- e(x,y)
Suppose the extension of T1 is {(a)} and the exten-
sion of T2 is {(b)}. Under the closed-world assump-
tion the tuple (a, b) is a certain answer to q. However,
under the open-world assumption (a, b) is not a cer-
tain answer. 2

Dimensions of the problem: The treatments of
the problem of answering queries using views have
been considered along several dimensions. Two of
the dimensions mentioned above are equivalent ver-
sus maximally-contained rewritings, and whether the
views are assumed to be complete or not. Clearly, the
algorithms and results regarding answering queries
using views depend crucially on the language used for
expressing the views and the queries. The problem
has been considered for conjunctive queries, queries
with union, aggregation, recursion, and query lan-
guages for object-oriented and semi-structured data-
bases. In addition, the problem has been consid-
ered in the presence of integrity constraints on the
database and access-pattern limitations, and cons-
traints expressed in Description Logics. Finally, a
key dimension is the expected output of the algo-
rithm. Given a query Q, and a set of views V , there
are three possible outputs an algorithm may produce:
(1) an expression Q′ that references the views and is
either equivalent to or contained in Q, (2) a query
execution plan for answering Q using the views (and
possibly the database relations), or (3) the answers
to Q. In the latter case, we assume the extensions of
the views V are given as well.

3 The Rewriting Problem
In this section we consider the problem of rewriting
a query using a set of views, i.e., algorithms that
produce query expressions as their output. The first
question one can ask about an algorithm for rewrit-
ing queries using views is whether the algorithm is

sound and complete: given a query Q and a set of
views V, is there an algorithm that will find a rewrit-
ing of Q using V when one exists, and what is the
complexity of that problem. The first answer to this
question was given for the class of queries and views
expressed as conjunctive queries [35]. In that paper
it was shown that when the query does not contain
comparison predicates and has n subgoals, then there
exists an equivalent conjunctive rewriting of Q using
V only if there is a rewriting with at most n subgoals.
An immediate corollary is that the problem of find-
ing and equivalent rewriting of a query using a set of
views is in NP, because it suffices to guess a rewriting
and check its correctness.1

In [35] it is also shown that the problem of find-
ing a rewriting is NP-hard for two independent rea-
sons: (1) the number of possible ways to map a sin-
gle view into the query, and (2) the number of ways
to combine the mappings of different views into the
query. In [18] it is shown that the problem of finding
a contained rewriting is also NP-complete. In [14]
the authors exploit the close connection between the
containment and rewriting problems, and show sev-
eral polynomial-time cases of the rewriting problems,
corresponding to analogous cases for the problem of
query containment.

The bound on the size of the rewriting (and there-
fore on the search space of rewritings) has led to a
succession of algorithms that attempt to efficiently
search the space. Three of these algorithms, (the
Bucket Algorithm [36], the Inverse-rules Algorithm [22],
and the MiniCon Algorithm [41]) that focus on query
rewriting for the data integration context, are experi-
mentally compared in [41], showing that the MiniCon
outperforms the other two and scales up to hundreds
of views.

3.1 Access Pattern Limitations

In the context of data integration, where data sources
are modeled as views, we may have limitations on
the possible access paths to the data. For example,
when querying the Internet Movie Database, we can-
not simply ask for all the tuples in the database. In-
stead, we must supply one of several inputs, (e.g.,
actor name or director), and obtain the set of movies
in which they are involved.

We can model limited access paths by attaching a
set of adornments to every data source. If a source is

1Note that checking the correctness of a rewriting is NP-
complete, however, the guess of a rewriting can be extended
to a guess for containment mappings showing the equivalence
of the rewriting and of the query.



modeled by a view with n attributes, then an adorn-
ment consists of a string of length n, composed of the
letters b (bound) and f (free). The meaning of the
letter b in an adornment is that the source must be
given values for the attribute in that position. The
meaning of the letter f in an adornment is that the
source doesn’t have to be given a value for the at-
tribute in that position. For example, an adornment
V (A, B)bf means that tuples of V can be obtained
only by providing values for the attribute A.

Several works have considered the problem of an-
swering queries using views when the views are also
associated with adornments describing limited access
patterns. In [42] it is shown that the bound given
in [35] on the length of a possible rewriting does not
hold anymore. To illustrate, we have the following
views with their associated adornments:

CitationDBbf (X,Y) :- cites(X,Y)
CitingPapersf(X) :- cites(X,Y)

CitationDB requires that the first argument be given
as input, while the CitingPapers source does not have
limitations on access patterns. Suppose we have the
following query asking for all the papers citing paper
#001:

Q(X) :- cites(X,001)

The bound given in [35] would require that if there
exists a rewriting, then there is one with at most
one atom, the size of the query. However, the only
possible rewriting in this case is:

q(X) :- CitingPapers(X), CitationDB(X,001).

In [42] the authors show that in the presence of
access-pattern limitations it is sufficient to consider
a slightly larger bound on the size of the rewriting:
n+v, where n is the number of subgoals in the query
and v is the number of variables in the query. Hence,
the problem of finding an equivalent rewriting of the
query using a set of views is still NP-complete.

The situation becomes more complicated when we
consider maximally-contained rewritings. As the fol-
lowing example given in [33] shows, there may be no
bound on the size of a rewriting. In the following ex-
ample, the source DBSource stores the set of papers
in the database field, and has no access-pattern limi-
tations. The second source, when given a paper, will
return all the papers that are cited by it. The third
source, when given a paper (in databases or any other
field), returns whether the paper is an award winner
or not. The source descriptions are the following:

DBSourcef (X) :- DBpapers(X)
CitationDBbf(X,Y) :- cites(X,Y)
AwardDBb(X) :- AwardPaper(X)

The query asks for all the papers that won awards:

Q(X) :- AwardPaper(X).

Since the source AwardDB requires its input to
be bound, we cannot query it directly. One way to
get solutions to the query is to obtain the set of all
database papers from the source DBSource, and per-
form a dependent join with the source AwardDB. An-
other way would be to begin by retrieving the pa-
pers in DBSource, join the result with the source
CitationDB to obtain all papers cited by papers in
DBSource, and then join the result with the source
AwardDB. As the rewritings below show, we can fol-
low any length of citation chains beginning with pa-
pers in DBSource and obtain answers to the query
that were possibly not obtained by shorter chains.
Hence, there is no bound on the length of a rewriting
of the query using the views.

Q’(X) :- DBSource(X), AwardDB(X)
Q’(X) :- DBSource(U), CitationDB(U,X1), . . . ,

CitationDB(Xn,X), AwardDB(X).

Fortunately, as shown in [20], we can still find a
finite rewriting of the query using the views, albeit
a recursive one. The following datalog rewriting will
obtain all the possible answers from the above views.

papers(X) :- DBsource(X)
papers(X) :- papers(Y), CitationDB(Y,X)
Q’(X) :- papers(X), AwardDB(X).

The key in constructing the program is to define
a new intermediate relation papers whose extension is
the set of all papers reachable by citation chains from
papers in databases, and is defined by a transitive
closure over the view CitationDB. In [20] it is shown
that a maximally-contained rewriting of the query
using the views can always be obtained with a recur-
sive rewriting, when the views are conjunctive and
don’t contain comparison predicates. In [25] and [34]
the authors describe additional optimizations to this
basic algorithm. Additional cases in which recur-
sive rewritings may be needed are when the query
is recursive, in the presence of functional dependen-
cies on the database schema [20], when views contain
unions [3] (though even recursion is does not always
suffice here), and the case where additional seman-
tic information about class hierarchies on objects is
expressed using description logics [6].



4 Query answering
If Q′ is an equivalent-rewriting of a query Q using
the views V , then it will always produce the same re-
sult as Q, independent of the state of the database
or of the views. In particular, this means that Q′

will always produce all the certain answers to Q for
any possible database. Recall that an answer to Q is
certain given the extensions v1, . . . , vn of the views
V1, . . . , Vn, if it would be an answer of Q for any
database that would give rise to those view exten-
sions.

When Q′ is a maximally-contained rewriting of Q
using the views V it may produce only a subset of the
answers of Q for a given state of the database. The
maximality of Q′ is defined only w.r.t. the other pos-
sible rewritings in a particular query language L that
we consider for Q′. Hence, the question that remains
is how to find all the certain answers, whether we do
it by applying some rewritten query to the views or
by some other algorithm.

The question of finding all the certain answers
is considered in detail in [1, 26]. In their analy-
sis they distinguish the case of the open-world as-
sumption from that of the closed-world assumption.
With the closed-world assumption, the extensions of
the views are assumed to contain all the tuples that
would result from applying the view definition to the
database. Under the open-world assumption, the ex-
tensions of the views may be missing tuples (but they
may not have incorrect tuples).

In [1] it is shown that under the open-world as-
sumption, in many practical cases, finding all the cer-
tain answers can be done in polynomial time. In these
cases, the certain answers are found by applying the
maximally-contained rewriting to the extensions of
the views. However, the problem becomes co-NP-
hard as soon as we allow union in the language for
defining the views, or allow the predicate 6= in the
language defining the query.

Under the closed-world assumption the situation
is worse. Even when both the views and the query are
defined by conjunctive queries without comparison
predicates, the problem of finding all certain answers
is already co-NP-hard.

It is interesting to note the connection established
in [1] between the problem of finding all certain an-
swers and computation with conditional tables [31].
The partial information about the database that is
available from a set of views can be encoded as a
conditional table using the formalism studied in [31].
This connection also points at an important prop-
erty of using views as a formalism for describing data
sources, specifically, the ability of the formalism to

capture partial information about data sources.
The work in [26] also considers the case where the

views may either be incomplete, complete, or contain
incorrect tuples. It is shown that without comparison
predicates in the views or the query, when either all
the views are complete or all of them may contain in-
correct tuples, finding all certain answers can be done
in polynomial time in the size of the view extensions.
In other cases, the problem is co-NP-hard.

Finally, [39] considers the problem of relative
query containment: is the set of certain answers of
a query Q1 always contained in the set of certain
answers of a query Q2. The paper shows that for
the conjunctive queries and views with no compari-
son predicates the problem is Πp

2-complete, and that
the problem is still decidable in the presence of access
pattern limitations.

5 Query language extensions
We briefly discuss results on answering queries using
views for several query language extensions.

Semi-structured data: The emergence of XML as
a standard for sharing data on the WWW has spurred
significant interest in building systems for integrat-
ing XML data from multiple sources. The emerging
formalisms for modeling XML data are variations on
labeled directed graphs, which have also been used to
model semi-structured data [2]. The model of labeled
directed graphs is especially well suited for modeling
the irregularity and the lack of schema which are in-
herent in XML data.

Several works have started considering the prob-
lem of answering queries using views when the views
and queries are expressed in a language for querying
semi-structured data. There are two main difficulties
that arise in this context. First, such query languages
enable using regular path expressions in the query, to
express navigational queries over data whose struc-
ture is not well known a priori. Regular path expres-
sions essentially provide a very limited kind of recur-
sion in the query language. In [9] the authors consider
the problem of rewriting a regular path query using a
set of regular path views, and show that the problem
is in 2EXPTIME (and checking whether the rewriting
is an equivalent one is in 2EXPSPACE). In [10] the
authors consider the problem of finding all the certain
answers when queries and views are expressed using
regular path expressions, and show that the problem
is co-NP-complete when data complexity (i.e., size of
the view extensions) is considered. In [11] the authors
extend the results of [9, 10] to path expressions that
include the inverse operator, allowing both forward
and backward traversals in a graph.



The second problem that arises in this context
stems from the rich restructuring capabilities which
enable the creation of arbitrary graphs in the out-
put. The output graphs can also include nodes that
did not exist in the input data. In [40] the authors
consider the rewriting problem in the case where the
query can create answer trees, and queries do not in-
volve regular path expressions with recursion.

Infinite number of views: Two works have con-
sidered the problem of answering queries using views
in the presence of an infinite number of views [37, 44].
The motivation for this seemingly curious problem is
that when a data source has the capability to perform
local processing, it can be modeled by a (possibly in-
finite) set of views it can supply, rather than a single
one. Hence, to answer queries using such sources, one
need not only choose which sources to query, but also
which query to send to it out of the set of possible
queries it can answer. In [37, 44] it is shown that in
certain important cases the problem of answering a
query using an infinite set of views are decidable. Of
particular note is the case in which the set of views
that a source can answer is described by the finite
unfoldings of a datalog program.

Description Logics: Description logics are a fam-
ily of logics for modeling complex hierarchical struc-
tures (see [8] for a survey). A description logic enables
to define sets of objects by specifying their properties,
and then to reason about the relationship between
these sets (e.g., subsumption, disjointness). Several
works have considered the problem of answering queries
using views when description logics are used to model
the domain. In [6] it is shown that in general, an-
swering queries using views in this context may be
NP-hard, and presents cases in which we can obtain
a maximally-contained rewriting of a query in recur-
sive datalog. The complexity of answering queries
using views for an expressive description logic (which
also includes n-ary relations) is studied in [12].

Other extensions: In [4, 21] the authors consider
the rewriting problem when the views may contain
unions. The presence of inclusion dependencies on
the database relations introduces several subtleties
to the query rewriting problem, which are considered
in [29]. Several works [16, 27, 28] consider the for-
mal aspects of answering queries using views in the
presence of grouping and aggregation. They present
cases in which it can be shown that a rewriting algo-
rithm can be complete, in the sense that it will find
a rewriting if one exists. Their algorithms are based
on insights into the problem of query containment for
queries with grouping and aggregation. In [38], the

author considers the query rewriting for a language
that enables querying the schema and data uniformly,
and hence, names of attributes in the data may be-
come constants in the extensions of the views.

6 Conclusions
The problem of answering queries using views raises
a multitude of challenges, ranging from theoretical
foundations to considerations of a more practical na-
ture. While algorithms for answering queries using
views are already being incorporated into commer-
cial database systems (e.g., [7, 46]), these algorithms
will have even more importance in data integration
systems and data warehouse design.

There are many issues that remain open in this
realm. Of particular note are studying rewriting al-
gorithms in the presence of a wider class of integrity
constraints on both the database and view relations,
and studying the effect of restructuring capabilities of
query languages for querying semi-structured data.

Finally, I believe that the next challenge is to de-
velop algorithms for selecting views to materialize in
a data warehouse, web site, or environment in which
data is spread over multiple (possibly mobile) devices
(e.g., [32]). Even though there has been work on
this problem, the research is still in its infancy. The
wealth of techniques developed for answering queries
using views will be key to developments in this realm.
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