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1 Introduction

The Web wrapping problem, i.e., the problem of ex-
tracting structured information from HTML docu-
ments, is one of great practical importance. The often-
observed information overload that users of the Web
experience witnesses the lack of intelligent and encom-
passing Web services that provide high-quality col-
lected and value-added information. The Web wrap-
ping problem has been addressed by a significant
amount of research work. Previous work can be clas-
sified into two categories, depending on whether the
HTML input is regarded as a sequential character
string (e.g., [34, 27, 24, 30, 23]) or a pre-parsed docu-
ment tree (for instance, [35, 25, 22, 29, 3, 2, 26]). The
latter category of work thus assumes that systems may
make use of an existing HTML parser as a front end.

Robust wrappers are easier to program using a
wrapper programming language that models docu-
ments as pre-parsed document trees rather than as text
strings. Writing a fully standards-compliant HTML
parser is a substantial task, which should not have to
be redone from scratch for each wrapper being created.
The use of an existing parser allows the wrapper im-
plementor to focus on the essentials of each wrapping
task and to work on a higher, more user-friendly level.

Simplifications such as this one are important, since
Web service designers often face the task of wrapping
a large number of Web sites. In order to provide a
useful Web service, the information from a significant
number of source sites relevant to the domain of the
service has to be integrated and made accessible in a
uniform manner. Otherwise, a Web service may fail to
attract the acceptance of the users it is intended for.

Moreover, Web page layouts may be subject to fre-
quent change. This is often intentional – to discourage
screen-scraping wrapper access and to force humans to
personally visit the sites. In such a case wrapper pro-
grams may need to be adapted.
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These are just two reasons for which wrapping tools
need to assist humans to render the creation of wrap-
pers a more manageable task. Two ways to approach
this requirement have been proposed: the use of ma-
chine learning techniques to create wrappers automat-
ically from annotated examples (e.g. [23, 30]) and the
visual specification of wrappers. The first approach
currently suffers from the need to provide machine
learning algorithms with too many example instances
– which have to be wrapped manually – and from neg-
ative theoretical results that put a bound on the ex-
pressive power of learnable wrappers.1

By the second candidate2 for a substantial produc-
tivity leap, the visual specification of wrappers, we
ideally mean the process of interactively defining a
wrapper from one (or few) example document(s) using
mainly “mouse clicks”, supported by a strong and intu-
itive design metaphor. During this visual process, the
wrapper program should be automatically generated
and should not actually require the human designer
to know the wrapper programming language. Visual
wrapping is now a reality supported by several imple-
mented systems (cf. XWrap [25], W4F [35], and Lixto
[2]), however with varying thoroughness.

One may thus want to look for a wrapping language
over HTML document trees that

(i) has a solid theoretical foundation,

(ii) provides a good trade-off between complexity and
the number of practical wrappers that can be ex-
pressed,

(iii) is easy to use as a wrapper programming lan-
guage, and

(iv) is suitable for being incorporated into visual tools,
since ideally all constructs of a wrapping lan-
guage can be realized through corresponding vi-
sual primitives.

1For example, it is known that even regular string languages
cannot be learned from positive examples only [12].

2A promising direction of future work on Web wrapping may
be to combine visual specification with machine learning tech-
niques, in order to make the visual specification process more
“intelligent” and at the same time guide the learning process to
reduce the number of examples needed to learn a wrapper.



Clearly, languages which do not have the right ex-
pressive power and computational properties cannot
be considered satisfactory, even if wrappers are easy
to define. A few words on the “right expressiveness”
of a wrapper programming language are in order here.

Throughout the literature, the scope of wrapping is
a conceptually limited one (see e.g. [11, 20]). Informa-
tion systems architectures that employ wrapping usu-
ally consist of at least two layers, a lower one that is re-
stricted to extracting relevant data from data sources
and making them available in a coherent representa-
tion using the data model supported by the higher
layer, and a higher layer in which data transformation
and integration tasks are performed which are neces-
sary to fuse syntactically coherent data from distinct
sources in a semantically coherent manner. With the
term wrapping we refer to the lower, syntactic integra-
tion layer. The higher, semantic integration layer will
not be further considered in this article. Therefore,
a wrapper is assumed to extract relevant data from a
possibly poorly structured source and to put it into the
desired representation formalism by applying a num-
ber of transformational changes close to the minimum
possible. A wrapping language that permits arbitrary
data transformations may be considered overkill.

In this article, we provide a survey of the (logic-
based) approch to visual wrapping that has been in-
troduced in [2, 3, 16] and has been implemented in a
commercial software product, the Lixto Visual Wrap-
per [26]. The core notion that this wrapping approach
is based on is that of an information extraction func-
tion, which takes a labeled unranked tree (representing
a Web document) and returns a subset of its nodes. A
wrapper is a program which implements one or several
such functions, and thereby assigns unary predicates to
document tree nodes. Based on these predicate assign-
ments and the structure of the input document viewed
as a tree, a new tree can be computed as the result of
the information extraction process in a natural way,
along the lines of the input tree but using the new la-
bels and omitting nodes that have not been relabeled.
(See Figure 1 for an example of such a transforma-
tion.) That way, we can take a tree, re-label its nodes,
and declare some of them as irrelevant, but we cannot
significantly transform its original structure. This co-
incides with the intuition that a wrapper may change
the presentation of relevant information, its packaging
or data model (which does not apply in the case of
Web wrapping), but does not handle substantial data
transformation tasks. We believe that this captures
the essence of wrapping.

We assume unary queries in monadic second-order
logic (MSO) over trees as our expressiveness yardstick
for information extraction functions. MSO over trees
is well-understood theory-wise [38, 7, 5, 8] (see also
[39]) and quite expressive. In fact, it is considered by
many as the language of choice for defining expressive
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Figure 1: Tree annotated with predicates P , Q, and
R defined by information extraction functions (a), and
wrapping result (b). (Original node labels of the input
tree are not shown.)

node-selecting queries on trees (see e.g. [33, 32, 16, 21];
[36] acknowledges the role of MSO but argues for even
stronger languages). In our experience, when con-
sidering a wrapping system that lacks this expressive
power, it is usually quite easy to find real-life wrapping
problems that cannot be handled (see also the related
discussion on MSO expressiveness and node-selecting
queries in [21]).

In this article, we discuss monadic datalog over
trees, a simple form of the logic-based language data-
log, as a wrapper programming language. As argued
for in detail in [16], monadic datalog is the first and
currently only language which satisfies desiderata (i)
to (iv) raised above.

The article is structured as follows. We start with
preliminaries regarding trees and MSO in Section 2
and introduce monadic datalog in Section 3. In Sec-
tion 4, we discuss the complexity of monadic datalog
over trees and its expressive power. Interestingly, mo-
nadic datalog is equivalent to MSO in its ability to
express unary queries on trees. Monadic datalog can
be evaluated in linear time both in the size of the data
and the query, given that tree structures are appropri-
ately represented. We also define a simple normal form
for monadic datalog over trees, TMNF, to which any
monadic datalog program over trees can be mapped in
linear time. In Section 5, we discuss monadic datalog
as a wrapper programming language. Finally, in Sec-
tion 6, we look at the specification of wrappers based
on monadic datalog without requiring the wrapper im-
plementor to deal with or know datalog, by an entirely
visual process that works on example Web documents.
We conclude with Section 7.

2 Tree Structures

Trees are defined in the normal way and have at least
one node. We assume that the children of each node
are in some fixed order. Each node has a label taken
from a finite3 nonempty set of symbols Σ, the alpha-
bet. We consider only unranked finite trees, which cor-

3The finite alphabet choice is discussed in more detail below,
in Remark 2.1.



respond closely to parsed HTML or XML documents.
In an unranked tree, each node may have an arbitrary
number of children. An unranked ordered tree can be
considered as a structure

tur = 〈dom, root, leaf, (labela)a∈Σ,

firstchild, nextsibling, lastsibling〉

where “dom” is the set of nodes in the tree, “root”,
“leaf”, “lastsibling”, and the “labela” relations are
unary, and “firstchild” and “nextsibling” are binary.
All relations are defined according to their intuitive
meanings. “root” contains exactly one node, the
root node. “leaf” consists of the set of all leaves.
“firstchild(n1, n2)” is true iff n2 is the leftmost child
of n1; “nextsibling(n1, n2)” is true iff, for some i, n1

and n2 are the i-th and (i + 1)-th children of a com-
mon parent node, respectively, counting from the left
(see also Figure 2). labela(n) is true iff n is labeled a
in the tree. Finally, “lastsibling” contains the set of
rightmost children of nodes. (The root node is not a
last sibling, as it has no parent.) Whenever the struc-
ture t may not be clear from the context, we state it
as a subscript of the relation names (as e.g. in domt,
roott, . . . ).

By default, we will always assume trees to be rep-
resented using the schema (signature) outlined above,
and will refer to them as τur.

The document order relation ≺ is a natural total
ordering of dom used in several XML-related standards
(see e.g. [42]). It is defined as the order in which the
opening tags of document tree nodes are first reached
when reading an HTML or XML document (as a flat
text file) from left to right.

Remark 2.1 In the context of wrapping HTML doc-
uments, it is worthwhile to consider an infinite al-
phabet Σ, which allows to merge both HTML tags
and attribute assignments into labels. This re-
quires a generalized notion of relational structures
〈dom, R1, R2, R3, . . . 〉 consisting of a countable (but
possibly infinite) set of relations, of which only a fi-
nite number is nonempty. All results in this article
also hold for infinite alphabets in case the symbols
of the alphabet (i.e., the node labels) are not part of
the domain, labels of domain elements are expressed
via predicates such as labela only (rather than, say, a
binary relation label ⊆ dom× Σ), and for each predi-
cate labela we can also use its complement labela (in
the finite-alphabet case such a complement can be ob-
tained by the union

⋃
l∈(Σ−{a}) labell). Given these

requirements, it is impossible to quantify over sym-
bols of Σ and any query in finitary logical languages
can only refer to a finite number of symbols of the
alphabet Σ.

Another way to cope with composite tags and at-
tribute values is to encode such values as lists of char-
acter symbols modeled as subtrees in our document

tree. Whatever way is preferred, it should be clear
that the assumption of a finite alphabet Σ made in
this article is not a true limitation for representing
real-world documents. �

3 Monadic Datalog

We define the function-free logic programming syntax
and semantics of datalog in brief (cf. [1, 40] for detailed
surveys of datalog).

A datalog program is a set of datalog rules. A dat-
alog rule is of the form

h← b1, . . . , bn.

where h, b1, . . . , bn are called atoms, h is called the
rule head, and b1, . . . , bn (understood as a conjunc-
tion of atoms) is called the body. Each atom is of
the form p(x1, . . . , xm), where p is a predicate and
x1, . . . , xm are variables and constants (from a finite
domain dom). Variable-free atoms, rules, or programs
are called ground . Rules are required to be safe, i.e.,
all variables appearing in the head also have to ap-
pear in the body. Predicates that appear in the head
of some rule of a program are called intensional , all
others are called extensional. An extension is a set of
ground atoms that are assumed to be true. We assume
that for each extensional predicate, a (possibly empty)
extension is given as input data. By signature, we de-
note the (finite) set of all extensional predicates (with
fixed arities) available to the program. By default, we
use the signature τur for unranked trees.4

Let r be a datalog rule. By Vars(r) we denote the
set of variables occurring in r and by Body(r) we de-
note the set of body atoms of r.

A valuation is a function φ : (Vars(r)∪dom)→ dom
which maps each variable to an element of dom and is
the identity on dom. Given an atom p(x1, . . . , xm), let
φ(p(x1, . . . , xm)) := p(φ(x1), . . . , φ(xn)).

We define the semantics of datalog as the fixpoint
T ω

P of the immediate consequence operator TP .

Definition 3.1 Let P be a datalog program and B the
(finite) set of all ground atoms over the domain dom
and a given signature. The immediate consequence
operator TP : 2B → 2B is defined as

TP(X):= X ∪ {φ(h) | ex. a rule h← b1, . . . , bn.
in P and a valuation φ
on the rule s.t.
φ(b1), . . . , φ(bn) ∈ X}.

Let T 0
P :=X and T i+1

P :=TP(T i

P ) for each i ≥ 0, where
X is the database given as a set of ground atoms. The
fixpoint T n

P = T n+1
P of the sequence T 0

P , T 1
P , T 2

P , . . . is
denoted by T ω

P . �

4Note that our tree structures contain some redundancy (e.g.,
a leaf is a node x such that ¬(∃y)firstchild(x, y)), by which
(monadic) datalog becomes as expressive as its semipositive gen-
eralization. Semipositive datalog allows to use the complements
of extensional relations in rule bodies.
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Figure 2: (a) An unranked tree and (b) its representation using the binary relations “firstchild” (↙) and
“nextsibling” (↘).

It is clear that TP eventually reaches a fixpoint
because it ranges over a finite universe dom given
with the database and the sequence T 0

P , T 1
P , T 2

P , . . . is
strictly (because TP is deterministic) monotonically in-
creasing until the fixpoint is reached. The semantics
of P on X is defined as T ω

P .
Monadic datalog is obtained from full datalog by

requiring all intensional predicates to be unary. By
unary query, we denote a function that assigns a pred-
icate to some elements of dom (or, in other words,
selects a subset of dom). For monadic datalog, one ob-
tains a unary query by distinguishing one intensional
predicate as the query predicate. In the remainder
of this article, when talking about a monadic datalog
query, we will always refer to a unary query specified
as a monadic datalog program with a distinguished
query predicate.

Example 3.2 We construct a monadic datalog pro-
gram over τur which, given an unranked tree (rep-
resenting an HTML parse tree), computes all those
nodes whose contents are displayed in italic font (i.e.,
for which an ancestor node in the parse tree corre-
sponds to a well-formed piece of HTML of the form
〈i〉 . . . 〈/i〉 and is thus labeled “i”). The program uses
a single intentional predicate, Italic, which computes
this unary query. It consists of the rules

Italic(x) ← labeli(x). (1)

Italic(x) ← Italic(x0), firstchild(x0, x). (2)

Italic(x) ← Italic(x0), nextsibling(x0, x). (3)

The computation of fixpoint T ω

P for this program
proceeds as follows. T 0

P consists of the nodes labeled
“i”, T 1

P of the first children and neighboring right sib-

lings of those nodes in T 0
P , if they exist, and T k+1

P

contains a node v ∈ dom if there is a node v0 in T k

P
that is k + 1 layers above v in the binary tree defined
by the firstchild and nextsibling relations (see Figure 2
for an example of such a tree). If d is the depth of the
HTML tree, this fixpoint computation terminates af-
ter at most d + 2 steps (T d+1

P = T d+2
P ). �

Monadic second-order logic (MSO) over trees is a
second-order logical language consisting of (1) individ-
ual variables ranging, (2) variables ranging over sets
of nodes, (3) parentheses, (4) boolean connectives ∨
and ¬, (5) quantifiers ∀ and ∃ over both node and set
variables, (6) the relation symbols of the tree struc-
ture in consideration, = (equality of node variables),
and, as syntactic sugaring, possibly (7) the boolean
operations ∧, →, and ↔ and the relation symbols =
and ⊆ between sets. A unary MSO query is defined
by an MSO formula ϕ with one free first-order vari-
able. Given a tree t, it evaluates to the set of nodes
{x ∈ dom | t � ϕ(x)}.

The following holds for arbitrary finite structures:

Proposition 3.3 (Folklore) Each monadic datalog
query is MSO-definable.

Throughout the article, our main measure of query
evaluation cost is combined complexity , i.e. where both
the database and the query (or program) are consid-
ered variable.

Proposition 3.4 ([16]) Monadic datalog (over arbi-
trary finite structures) is NP-complete w.r.t. combined
complexity.

This is is stark contrast to full datalog, which
is known to be EXPTIME-complete w.r.t. combined
complexity (implicit in [41, 19]; cf. [6]). Monadic dat-
alog has some other nice properties which have been
studied; in particular, the containment and bounded-
ness properties – which are both considered relevant
to query optimization – for monadic datalog are de-
cidable [4], while they are undecidable for full datalog
[37, 10].

4 Monadic Datalog over Trees

By restricting our structures to trees, monadic datalog
acquires a number of additional nice properties. First,
the query evaluation complexity is linear in the size of
the data and of the program:



Theorem 4.1 ([16]) Over τur, monadic datalog has
O(|P| ∗ |dom|) combined complexity (where |P| is the
size of the program and |dom| the size of the tree).

This follows from the fact that all binary relations
in τur have bidirectional functional dependencies; for
instance, each node has at most one first child and is
the first child of at most one other node. Thus, given
a program P , an equivalent ground program can be
computed in time O(|P| ∗ |dom|). Ground programs
can be evaluated in linear time [28].

A unary query over trees is MSO-definable exactly
if it is definable in monadic datalog.

Theorem 4.2 ([16]) Each unary MSO-definable
query over τur is definable in monadic datalog over
τur.

(The other direction follows from Proposition 3.3.)
Interestingly, judging from our experience with the
Lixto system, real-world wrappers written in monadic
datalog are small. Thus, in practice, we do not trade
the complexity compared to MSO (for which the query
evaluation problem is known to be PSPACE-complete)
for considerably expanded program sizes.

Theorem 4.2 also asserts that monadic datalog pro-
grams can define “universal” properties over trees,
such as that a certain fact holds everywhere or nowhere
in a tree. This may seem somewhat unintuitive be-
cause monadic datalog does not feature negation. Still,
it follows from the fact that the relations defining the
tree in τur allow us to traverse the tree (starting from
its “ends” such as the leaves or the root) using a re-
cursive program and to compute universal properties
along the way.

Example 4.3 Consider the problem of selecting all
those nodes from an HTML tree which are italic (us-
ing the program from Example 3.2) and do not contain
an HTML “table” in their subtrees. We can define a
monadic datalog program for this (with query predi-
cate Q) as follows.

NoTableBelow(x) ← leaf(x).

NoTableBelow(x) ← firstchild(x, y),NoTable(y).

NoTableRight(x) ← lastsibling(x).

NoTableRight(x) ← nextsibling(x, y),NoTable(y).

NoTable(x) ← labeltable(x),

NoTableBelow(x),

NoTableRight(x).

Q(x) ← Italic(x), labeltable(x),

NoTableBelow(x).

Here we may either assume that there is a predi-
cate labeltable true for those nodes not labeled “table”
(this predicate then needs to be added to τur) or we

can define labeltable in monadic datalog by the rules
{labeltable(x) ← labell(x). | l ∈ Σ, l 6= “table”}. (See
Remark 2.1 for a related discussion.)

Note that both labeltable and NoTableBelow are true
for a node iff it does not contain a “table” in its sub-
tree, while NoTable is true for a node iff the same holds
(i.e., it does not contain a “table” in its subtree) in the
binary-tree model of Figure 2 (b). �

Each monadic datalog program over trees can be
efficiently rewritten into an equivalent program using
only very restricted syntax. This motivates a normal
form for monadic datalog over trees.

Definition 4.4 A monadic datalog program P over
τur is in Tree-Marking Normal Form (TMNF) if each
rule of P is of one of the following four forms:

(1) p(x)← p0(x).

(2) p(x)← p0(x0), R(x0, x).

(3) p(x)← p0(x0), R(x, x0).

(4) p(x)← p0(x), p1(x).

where the unary predicates p0 and p1 are either inten-
sional or from τur and R is a binary predicate from
τur. �

In the next result, the signature for unranked trees
may extend τur to include the natural child relation –
likely to be the most common form of navigation in
trees.

Theorem 4.5 ([16]) For each monadic datalog pro-
gram P over τur ∪ {child}, there is an equivalent
TMNF program over τur which can be computed in
time O(|P|).

5 Monadic Datalog as a Wrapper Pro-
gramming Language

We now make a bridging step from the main topic
of this article so far, monadic datalog over trees, to
extracting information from parse trees of Web docu-
ments. In our framework, a wrapper is defined via a set
of unary queries, “information extraction functions”,
that select tree nodes. A monadic datalog program
can compute a set of such queries at once. Each inten-
sional predicate of a program selects a subset of dom
and can be considered to define one information ex-
traction function. (However, in general, not all inten-
sional predicates define information extraction func-
tions, some are auxiliary.)

Given a set of information extraction functions, one
natural way to wrap an input tree t is to compute a
new label for each node n (or filter out n) as a func-
tion of the predicates assigned using the information
extraction functions. The output tree is computed by
connecting the resulting labeled nodes using the (tran-
sitive closure of) the edge relation of t, preserving the



document order of t. In other words, the output tree
contains a node if a predicate corresponding to an in-
formation extraction function was computed for it, and
contains an edge from node v to node w if there is a di-
rected path from v to w in the input tree, both v and w
were assigned information extraction predicates, and
there is no node on the path from v to w (other than v
and w) that was assigned information extraction pred-
icates. We do not formalize this operation here; the
natural way of doing this is obvious.

In the previous section, we have shown that
monadic datalog has the expressive power of our yard-
stick MSO (on trees), can be evaluated efficiently, and
is a good (easy to use) wrapper programming language.
Indeed,

• The existence of the normal form TMNF demon-
strates that rules in monadic datalog never have
to be long or intricate. 5

• The monotone semantics makes the wrapper pro-
gramming task quite modular and intuitive. Dif-
ferently from an automaton definition that usu-
ally has to be understood entirely to be certain of
its correctness, adding a rule to a monadic data-
log program usually does not change its meaning
completely, but adds to the functionality.

• Wrappers defined in monadic datalog only need to
specify queries, rather than the full source trees on
which they run. This is very important to prac-
tical wrapping, because this way changes in parts
of documents not immediately relevant to the ob-
jects to be extracted do not break the wrapper.

Thus, monadic datalog over trees as a framework
for Web information extraction satisfies the first three
of our desiderata from the introduction (efficient eval-
uation, appropriate expressiveness, and suitability as
a practical wrapper programming language). Only the
fourth desideratum remains to be addressed, the visual
specification of wrappers.

6 Visual Wrapper Specification

In this section, we introduce the core visual specifi-
cation procedure used in the Lixto wrapper generator
[2, 3]. Lixto uses a wrapping language called Elog.
Elog programs can be completely visually specified and
are actually very similar to monadic datalog; the core
of the language (called Elog− in [16] and studied there
in detail) is monadic datalog as discussed before with a
few minor syntactic restrictions which do not lower its
expressiveness. Thus, the property that unary queries
can be entirely visually specified is also inherited by
MSO.

5The simple structure of TMNF rules is actually essential to
visual wrapper specification. Compared to MSO with its first-
and second-order quantifiers, few syntactical features remain for
which viable visual design metaphors have to be developed.

As discussed in the introduction, by visual wrapper
specification, we refer to the process of interactively
defining a wrapper from few example documents using
ideally mainly “mouse clicks”.

The visual wrapping process in systems such as
Lixto heavily relies on one main operation performed
by users: By marking a region of an example Web doc-
ument displayed on screen using an input device such
as a mouse, the node in the document tree best match-
ing the selected region can be robustly determined. By
selecting a reference region followed by a second region
inside the former, it is possible to define a fixed path
π in an example document.

Let subelema1...an
(x, y), where a1 . . . an ∈ Σ∗ is a

word from the labeling alphabet interpreted as a di-
rected path in the tree, be true if, for each 1 ≤ i ≤ n,
the i-th node in the path from node x to y excluding
x is labeled ai. Note that “subelem” can be expressed
by a fixed conjunction of child and label atoms, so
we will consider it as a shortcut rather than a new
built-in predicate. (Theorem 4.5 provides a method to
eliminate child atoms to obtain programs strictly over
τur.) For example, subelema.b(x, y) is a shortcut for
child(x, z), labela(z), child(z, y), labelb(y), where z is
a new variable.

To provide a useful metaphor for the building blocks
of wrappers, Lixto calls the visual counterparts of
monadic intensional predicates patterns and those of
rules filters .

Given an example document representative for a
family of documents to be wrapped, a user may be
guided in the visual specification of a rule as follows.

• First, a destination pattern p is selected from
those existing or newly created and a parent pat-
tern p0 is selected from among the patterns de-
fined so far. Initially, the only pattern available is
the “root” pattern.

The “root” pattern corresponds to the extensional
predicate root of τur and is the only exception
to the correspondence of patterns and intensional
predicates.

• The system can then display the document and
highlight those regions in it which correspond to
nodes in its parse tree that are classified p0 using
the wrapper program specified so far.

• A new rule is defined by selecting – by a few mouse
clicks over the example document – a subregion
of one of those highlighted. The system can au-
tomatically decide which path π relative to the
highlighted region best describes the region se-
lected by the user.

• The rule p(x) ← p0(x0), subelemπ(x0, x). ob-
tained in this way can be refined by generalizing
the path π (dropping “label” atoms) or adding
conditions. These tasks can be carried out visu-
ally as well (see [2]).



To obtain the expressiveness of MSO, little power
has to be added via conditions; one only has to be
able to refer to root, leaf, and leftmost sibling nodes
of the tree and to patterns via unary atoms; moreover,
one has to be able to specify “nextsibling” atoms [16].
TMNF rules such as p(x) ← p0(x0),firstchild(x0, x)
can then be specified by selecting a child node (say)
labeled a of an instance of pattern p0 in an exam-
ple document, selecting p as destination pattern (this
produces the rule p(x) ← p0(x0), subelema(x0, x)),
generalizing from the specified path a (the result is
p(x) ← p0(x0), subelem (x0, x)), and adding the con-
dition that x has no left sibling (= is a first sibling).
The Elog− fragment of Elog, discussed in detail in [16],
has precisely the expressive power of MSO.

Very few example documents are needed for defin-
ing a wrapper program: It is only required that for
each rule to be specified, there exists a document in
which an instance of the parent pattern can be recog-
nized and an instance of the destination pattern relates
to it in the desired manner.

The process outlined is used in the Lixto system
and is described in more detail in [3, 2], where many
examples and screenshots are dedicated to the visual
specification process. Note that the full Elog language
discussed there supports Web crawling, stratified (dat-
alog) negation, and navigation via certain forms of
regular paths (optionally with so-called distance tol-
erances). Presenting these features in detail is beyond
the scope of this article. Many features only serve as
shortcuts to simplify the wrapper specification process
and the improve productivity, but some actually ren-
der the full Elog language of [2] strictly more expressive
than MSO [16].

7 Conclusions

We have presented a significant new application of
logic (programming) to information systems. The
database programming language datalog , which has re-
ceived considerable attention from the database theory
community over many years (see e.g. [1]) but has ulti-
mately failed to attract a large following in database
practice, would deserve to experience a “rebirth” in
the context of trees and the Web. Indeed, for dat-
alog as a framework for selecting nodes from trees,
the situation is substantially different from the general
case of full datalog on arbitrary databases. Monadic
datalog over trees has very low evaluation complexity,
programs have a simple normal form, so rules never
have to be long or intricate, and various automata-
theoretic, language-theoretic, and logical techniques
exist (cf. [39, 31, 4, 16, 18]) for evaluating programs or
optimizing them which are not available for full data-
log.

We have omitted the presentation of a number of
results showing that Elog is actually currently the only
language of its kind with the expressive power of MSO;

in particular, it is shown in [13, 15] that the only other
visual, tree-based wrapping system in the literature for
which a formal specification exists, W4F [35], is based
on a strictly weaker wrapping language.

As a final remark, monadic datalog also has ap-
plications in querying XML and checking the confor-
mance of XML documents to DTD’s and regular tree
languages. For example, Core XPath [17], the logi-
cal core fragment of the popular XPath language, can
be mapped efficiently to monadic datalog [14, 9] and
thus inherits its very favorable worst-case evaluation
complexity bounds.
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