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ABSTRACT
Web services technologies enable flexible and dynamic inter-
operation of autonomous software and information systems.
A central challenge is the development of modeling tech-
niques and tools for enabling the (semi-)automatic composi-
tion and analysis of these services, taking into account their
semantic and behavioral properties. This paper presents an
overview of the fundamental assumptions and concepts un-
derlying current work on service composition, and provides
a sampling of key results in the area. It also provides a brief
tour of several composition models including semantic web
services, the “Roman” model, and the Mealy/conversation
model.

1. INTRODUCTION
The web services paradigm promises to enable rich, flex-

ible, and dynamic interoperation of highly distributed and
heterogeneous web-hosted services. Substantial progress has
already been made towards this goal (e.g., emerging stan-
dards such as SOAP, WSDL, BPEL) and industrial tech-
nology (e.g., IBM’s WebSphere Toolkit, Sun’s Open Net
Environment and JiniTM Network technology, Microsoft’s
.Net and Novell’s One Net initiatives, HP’s e-speak, BEA’s
WebLogic Integration). Several research efforts are already
underway that build on or take advantage of the paradigm,
including the DAML-S/OWL-S program [14, 36, 24], and
automata-based models for web services [8, 26, 7]. But there
is still a long way to go, especially given the ostensible long-
term goal of enabling the automated discovery, composition,
enactment, and monitoring of collections of web services
working to achieve a specified objective. A fundamental
challenge concerning the design and analysis of composite
web services is to develop necessary techniques and tools to
handle the novel aspects of the web services paradigm.

The challenge raises a variety of questions, several of
which are relevant for the database research community.
Some of the questions are: What is the right way to model
web services and their compositions? What is the right way
to query them in order to support automated composition
and analysis algorithms? And how can the data manage-
ment aspects of composite web services be incorporated into
current web services standards? This paper attempts to pro-
vide the groundwork needed to address these questions, by
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describing emerging frameworks for studying composite ser-
vices, and identifying emerging tools and techniques for both
automated design and analysis of composite web services.

The focus of this short survey is on the foundations of
composition and related issues. From this perspective, it is
worthwhile to understand the overall process of designing
composite services. Fig. 1 shows the key elements in the
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Figure 1: Anatomy of Web Service Composition

typical design process. It is not surprising that the design
process is similar to planning studied in artificial intelligence
(e.g., [42]). In this case, activities that may contribute to
accomplish the overall goal need be discovered and orches-
trated. The orchestration has to be constrained by the flow
of available information, which is generally agreed to be in
the form of messages. Note that monitoring is closely related
to orchestration; specific models of the latter may determine
how and to some degree what to monitor. Interestingly, the
design process embodies elements from all four task groups
listed above.

Fig. 2 illustrates three dimensions that “measure” Web
service description/composition models. The component

service complexity dimension indicates the information ca-
pacity of the languages and model in representing a service.
In this dimension, OWL-S is low since it describes only the
input and output. On the other hand, WSDL captures
richer structural information with XML Schema and uses
messages for input and outputs, and other models including
BPEL, CSP [29] and π-Calculus [34], the Mealy model [8],
the Roman model [7], and BPML also model service states
and message or activity sequences. Clearly, the ability of
assembling individual services together in this “cluster” of
models make them high along the glue language complexity

dimension. The third dimension is the ability to describe
“semantics”. OWL-S can describe the properties on the in-
put and output of an operation, and also specify how the
service interacts with an abstract model of the “real world”,
which distinguishes it from the other models.
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Figure 2: Anatomy of Web Service Composition

This paper is organized as follows. Section 2 gives a short
overview of several standards related to Web services and
composition. Section 3 is intended to provide some high
level of key aspects web service composition and a discussion
on models that have been studied in the context. Section 4
briefly summarizes techniques and approaches for analyzing
Web services. Section 5 concludes the paper.

2. WEB SERVICES AND STANDARDS
A good starting point for understanding the web services

paradigm is to consider the stated goals, as found in the
literature and the standards communities. The basic moti-
vation of standards such as SOAP and WSDL is to allow a
high degree of flexibility in combining web services to cre-
ate more complex ones, often in a dynamic fashion. The
current dream behind UDDI is to enable both manual and
automated discovery of web services, and to facilitate the
construction of composite web services. Building on these,
the BPEL standard provides the basis for manually specify-
ing composite web services using a procedural language that
coordinates the activities of other web services.

Much more ambitious goals are espoused by the OWL-
S coalition [14] and more broadly the semantic web ser-
vices community (e.g., [15]). These goals are to provide
machine-readable descriptions of web services, which will
enable automated discovery, negotiation with, composition,
enactment, and monitoring of web services. OWL-S is an on-
tology language for describing web services, in terms of their
inputs, outputs, preconditions and (possibly conditional) ef-
fects, and of their process model. Importantly, OWL-S pro-
vides a formal mechanism for modeling the notion of the
state of the ”real world”, and describing how atomic web
services impact that state over time. (This is described in
more detail in Subsection 3.1 below.) OWL-S also provides
a grounding, which provides mechanisms for mapping an
OWL-S specification into a WSDL specification (e.g., see
[40]).

A kind of middle ground is also emerging, which provides
abstract “signatures” of web services that are richer than
WSDL but retain a declarative flavor. Most popular here
is the use of automata-based descriptions of permitted se-
quencing patterns of the web services, with a focus on either
activities performed [7] or messages passed [26].

The underlying structure for the web services paradigm

will most likely be guided by already established standards
and practices. Some of the current standards are illustrated
by the layered structure shown in Figure 3. Briefly, web
services interact by passing XML data, with types specified
using XML Schema. SOAP can be used as the communi-
cation protocol, and the i/o signatures for web services are
given by WSDL. All of these can be defined before binding
web services to each other. Behavioral descriptions of web
services can be defined using higher level standards such as
BPEL, WSCDL, BPML, DAML-S, etc.
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Figure 3: Web Service Standards Stack

In Figure 3, XML messaging and Network layers pro-
vide the foundation for interoperations or interactions be-
tween services. The starting point for service descriptions
is the W3Cs Web Service Description Language (WSDL)
[50]. WSDL describes a Web service via its set of visible
operations. They can be thought of as message endpoints,
or the set of messages that it can send and receive. WSDL
specifies on the one hand “reactive” operations in which a
message is received by the service. If the reactive opera-
tion is declared as “one-way”, then it does not return a re-
sponse, otherwise it is a “request-response” operation, and
the return type is also declared. It also describes proactive
operations that send out messages from the service. “Noti-
fication” operations send out messages without waiting for
a response, while “solicit-response” operations block wait-
ing for a response, with the response type being specified
with the operation. The receive and response types of the
operations are mapped onto concrete XML Schema types to
be used in messages. WSDL can thus be seen as an exten-
sion of traditional input/output signatures in programming
languages and distributed computing to a peer-to-peer set-
ting. A service is viewed both as a server (via its reactive
operations) a client (via its proactive operations).

WSDL models services that are essentially stateless.
(WSDL 2.0 incorporates a limited notion of state, since it en-
ables specification of certain message patterns that a service
should satisfy.) While it is clear that the complete internal

state of a running service is not expected to be known, it
is also commonly accepted that some execution states need
be visible either due to the fact that they are observable or
the necessity (e.g., to interact correctly with other services).
The Web Service Conversation Language (WSCL) [49] pro-
posal is an interesting approach in defining the overall input
and output message sequences for one service using essen-
tially a finite state automaton (FSA) over the alphabet of
message types. The FSA is called a conversation.

Note that WSCL complements extremely well with
WSDL. A WSDL description along with a WSCL conver-



sation of a service provide a rather rich semantics about the
service while keeping the internal implementation/execution
encapsulated. For this reason, they are combined into a layer
named “individual service description” in the stack in Fig.
3.

While WSDL and WSCL can define Web services, clearly
there is a need for languages in the corresponding level of
abstraction to compose services. BPEL [12] was developed
as a language both for programming Web services and for
specification of Web services (e.g., in legacy systems). For
example, [26] identified two topologies for service composi-
tion: “peer-to-peer”, and “hub-and-spoke” with a mediator.
Mediators play the role of coordinating the activities of other
web services. A primary goal of BPEL is provide a language
for specifying the behavior of mediator services, rather than
for general-purpose programming.

In contrast to specifying individual services that BPEL
provides, WS-Choreography (WSCDL) [48] attempts to
specify globally how different component services should be-
have. WSCDL emphasizes on the “choreography” aspects:
the roles of the participating services, information that be-
ing passed between services, and channels that enable the
information flow.

At the top of the standards stock is the UDDI (Version
3 was recently adopted as an OASIS standard). UDDI al-
lows services to be registered with a registry. Services in a
registry can be searched with querying abilities provided by
the standard.

3. FOUNDATIONS FOR SERVICE COM-
POSITION: A SAMPLING

Web service composition addresses the situation when a
client request cannot be satisfied by a single pre-existing
service, but can be satisfied by suitably combining some
available, pre-existing services. Reference [25, 1] identifies
two aspects of composition: composition synthesis is con-
cerned with synthesizing a specification of how to coordi-
nate the component services to fulfill the client request; and
orchestration, is concerned with how to actually achieve the
coordination among services, by executing the specification
produced by the composition synthesis and by suitably su-
pervising and monitoring that execution. The focus here is
on composition synthesis and related issues.

The theoretical study of (automatic) composition syn-
thesis for web services is still in its infancy. The models
underlying this work on automatic composition have roots
in AI, logic, situation calculi, transition systems, and au-
tomata theory, and thus rely on a variety of philosophical
bases. The discussion here is not intended to be compre-
hensive, but rather highlights some of the most important
foundations and results that might be most interesting to
the database community.

The initial results on automatic composition considered
here are grouped around three different models for web ser-
vices, which we identify here as (a) OWL-S (e.g., [14]), which
includes a rich model of atomic services and how they in-
teract with an abstraction of the “real world”, (b) Roman

(e.g., [7]), which uses a very abstract notion of atomic ser-
vice in a finite-state automata framework for describing pro-
cess flows, and (c) (message-based) Mealy machine (e.g., [8]),
which focuses on (message-based) “behavioral signatures” of
services, and again using a finite-state automata framework

for process flow.
The work on the different models has centered around

three different aspects of composition. To describe these,
we first establish some vocabulary. When a family of web
services interact, the overall topology may be, speaking in-
formally, mediator-based or peer-to-peer. By mediator-based
we mean that there is one web service, called the media-

tor, which has the specialized role of controlling the opera-
tion and interaction of the other services; the other services
are called component services. In a peer-to-peer framework,
each participating service is called a component service.

It is also useful to distinguish between compositions that
are intended for single or multiple use. In the former case,
a composition algorithm is invoked each time that a client
identifies a desired goal service, similar to typical scenarios
on AI planning. In the latter case, the goal established for
the composition algorithm is to produce a (composite) ser-
vice that can be run multiple times, in support of the same
or different clients.

The three families of initial results are now described;
more details are given below.

Synthesis of mediator from atomic component services. The
first category of results, which has been used successfully [38]
with OWL-S, is focused on building a workflow schema (e.g.,
flowchart, Petri net, composite OWL-S service, ...) that
invokes atomic services in order to achieve a specified goal
within specified constraints. This workflow schema would
typically be enforced by a mediator, and in practice might
be specified using BPEL. This work tends to focus on the
single-use case.

Selection of multi-step components and synthesis of medi-

ator. In this work, initiated with the Roman model, the
component services are generally non-atomic, and have pro-
cess flow specified using a transition system or finite-state
automata. Unlike the OWL-S work, however, the atomic
services inside the component services are very abstract. As
described below, seminal results here focus on the construc-
tion (if one exists) of a specialized kind of multi-use mediator
that achieves a desired goal behavior.

Synthesis of component services in peer-to-peer setting. The
results here focus on message-passing Mealy machines. In
this context, a composition schema is defined as a template
that component web services can be plugged into. The goal
behavior is specified as a family of permitted message ex-
change sequences, or conversations, that should be realized
by the system. Key results here characterize when a conver-
sation language can be realized, and synthesize component
services in that case. As detailed below, these results can
be used to help with practical composition, and they pro-
vide an approach to map “global” choreography constraints
onto “local” constraints concerning the message sequencing
behaviors of the component services.

In Subsection 3.1 below we describe the OWL-S model
and results in more detail. Special emphasis is placed on the
model, and a natural bridge from the AI foundations that
OWL-S relies on to a formal basis that essentially builds
on a relational database framework. In Subsection 3.2 we
describe the Roman model and results, and in Subsection 3.3
we describe the model and results on message passing and
Mealy machines. Finally, Subsection 3.4 presents a brief
overview of recent work on web service models and results



that combine the fundamental aspects of the above models.

3.1 OWL-S: Model and composition
We now consider salient aspects of the OWL-S model

and some of the key composition results obtained. In our
presentation we do not follow exactly the original formu-
lation [14], but instead adopt the approach recently intro-
duced by work on the First-order Logic Ontology for Web
Services (FLOWS) [9]. FLOWS provides the basis for the
first-order logic component of the recently released Semantic
Web Services Ontology (SWSO) [15]. We use the FLOWS
framework here, as it is somewhat closer to a relational
database formulation than the underpinnings originally used
by OWL-S.

A key contribution of OWL-S is the explicit modeling of
how web services in OWL-S interact with the “real world”.
The basic building block of the OWL-S process model is the
notion of “process”; this includes both atomic and compos-
ite processes. OWL-S processes are specified to have inputs,
outputs, pre-conditions, and conditional effects (IOPEs).
The IOPEs of two example OWL-S atomic processes taken
from a stock broker domain are informally sketched now.

select_stock
input: stock_name, quantity
output: price, reservation_id
pre-condition: the quantity of stock is

available for sale
conditional effects:
if true, then modify world state to
reflect the fact that this stock
is being held for sale

purchase_stock
input: reservation_id, billable_account
output: confirmation_id
pre-condition: reservation_id is valid

and has not expired
conditional effects:
if enough money in billable_account then

transfer of $$ to stock owner and
transfer of stock to buyer

if not enough money, then
make reservation_id void

A client would use select stock in order to check the
availability of a given quantity of some stock, and if it
is available, then reserve that for purchase. Speaking in-
tuitively, successful execution of the service would result
a commitment that this stock will be held for purchase
(e.g., for 10 minutes). After a successful reservation of
that sort, the client might invoke purchase stock to ac-
tually make the purchase, using some bank account to pay
for it. purchase stock will execute as long as the reserva-
tion is valid, but the outcome of this execution depends on
whether there are sufficient funds in the account. A compos-
ite OWL-S service might be created by combining these two
atomic processes using the sequence construct; in this case
the IOPE of this composite process can be inferred from the
IOPEs of the atomic processes.

To provide a formal basis for this interaction with the
real world, OWL-S takes the approach of the Situation Cal-
culus [41], a logic-based formalism which explicitly models
the fact that over time different “situations” or world states
will arise. To briefly illustrate this here we follow FLOWS,
and use the Process Specification Language (PSL) [43, 23], a
recent ISO standard which among other things incorporates

core aspects of the Situation Calculi. PSL is a first-order
logic ontology for describing the core elements of processes.
PSL is layered, with PSL-Core at the base and many ex-
tensions. PSL-Outercore is a natural family of extensions
above PSL-Core, useful for modeling processes. FLOWS is
a family of extensions on top of PSL-OuterCore.

PSL-OuterCore provides first-order predicates that can
be used to describe the basic building blocks of processes
and there execution. To give the flavor, we mention a few
highlights. Fundamental is the class of activity; an activ-
ity can be viewed as a process template, and there may be
zero or more occurrences of an activity (corresponding to
instances of a process or enactments of a workflow). The bi-
nary predicate occurrence of(occ, a) is used to specify that
occ is an occurrence of activity a. There are complex activi-
ties, and the binary subactivity predicate is used to specify
sub-activities of an activity. There are also atomic activi-
ties, such that, intuitively, the execution of an occurrence
of an atomic activity is “atomic” in the typical database
sense. A notion of time points in a discrete linear ordering
is included; occurrences have a begin time and an end time.

In a typical usage of PSL (FLOWS), an application do-
main is created by combining the PSL-OuterCore (FLOWS-
Core) axioms with domain-specific predicates and sentences
to form a (first order logic) theory. The models of this theory
can be thought of as a tree or forest, whose nodes correspond
to occurrences of (atomic) activities, and with edges from
one occurrence to another if they follow each other with no
intervening occurrence. A path in this tree (forest) can be
viewed as one possible sequence of steps in the execution of
the overall system.

Speaking loosely, each sentence in an application domain
theory can be viewed as a constraint or restriction on the
models (in the sense of mathematical logic) that satisfy the
theory. In particular, and following the spirit of Golog [41]
and similar languages, even process model constructs such as
while or if-then-else correspond formally to constraints
rather than procedural elements. A mapping of OWL-S to
PSL is provided in [24].

We now get back to our stock purchase example, and pro-
vide a database-oriented cast on PSL and OWL-S. The PSL-
and domain-specific predicates associated with our example
can be viewed essentially as relations in some (potentially
vast) relational database. Some of the domain-specific rela-
tions might be “accessible” by just one service, others acces-
sible by several services, and still others might be accessible
by all services. In the example, we might have the following
domain-specific relations

available_stock(stock_name, qty, price)
reserved_stock(stock_name, qty, price, res_id)
purchase_reservations(res_id, start_time)
billable_accounts(acct_id, current_balance)

Using the above relations it is now relatively straightfor-
ward to specify the behaviors of the atomic processes (which
can be viewed as atomic activities in the parlance of PSL).
For example, if select stock is called with inputs s, q, then
the pre-condition can be specified as a test against the cur-
rent contents of relation available stock, to see if there is a
tuple (s, q′, p) with q′ ≥ q. The effect (which in this case will
always occur if the pre-condition holds) might be to replace
that tuple with (s, q′ − q, p), create a “new” reservation id
r, and insert (s, q, p, r, t) into reserved stock, where t is a



time-stamp. All of these operations should be considered as
an atomic database transaction. (A refinement would be to
enable the case where the shares of stock fulfilling a single
request would have multiple prices.)

Now, there is one step remaining before we have the full
picture on how the behavior of the OWL-S atomic processes
can be formally specified in PSL. Two general approaches
have arisen in the context of the situation calculi (see [39] for
a detailed discussion). Under one approach, relations such
as available stock are transformed by adding a new field,
which holds a time value. Under a second approach, taken
by PSL, this relation would be transformed into a function,
say, f available stock that takes three arguments. Two
PSL predicates, holds and prior are used to associate (intu-
itively) truth values to terms created using this function. For
example, if the predicate holds(f available stock(s,q,p),
occ) is true in a model, this corresponds to the intuition that
the term holds(f available stock(s, q, p) is true “about
the world” immediately after the occurrence occ was exe-
cuted, or in terms of the relational perspective, that tuple
(s, q, p) was in the relation available stock at that time.
The predicate prior works analogously, referring to the time
immediately prior to the start of an occurrence.

OWL-S provides a variety of features beyond its rich no-
tion of IOPEs. We mention one here, which is a family
of constructs for building composite processes from atomic
ones. These constructs are inspired by GOLOG and are rem-
iniscent of flowchart-style constructs, but in OWL-S they
are viewed as declarative constraints in the specification of
a web service, rather than procedural imperatives.

We now briefly describe two of the key results concerning
automatic composition for OWL-S and OWL-S-like services.
The first is developed in [38], where salient aspects of the
OWL-S model are mapped first into a Situation Calculus,
and from there into the Petri net domain. In this compo-
sition result, it is assumed that all relevant aspects of the
application domain are represented using a finite number of
propositional fluents, and the family of permitted input and
output argument values is finite. (In a relational database
setting, this can be achieved by restricting attention to a
finite domain.) The goal of the (single-use) composition is
then specified in terms of an overall effect to be achieved
(on all of the relevant propositional fluents) starting from
some initial state (which in essence includes relevant input
argument values). Another element of the result is the trans-
lation of OWL-S atomic processes into Petri net fragments;
these are used to assemble a Petri net that corresponds to
all possible sequencing of the processes. (For simplicity, it
is assumed that no atomic service is invoked twice in these
sequences.) The overall complexity of determining the ex-
istence of a composition is expspace. Of course, various
heuristics can be applied to make this tractable. Also, the
technique can be generalized to support composition of com-
posite processes, as well as atomic ones.

Another approach to composition, also developed in the
context of OWL-S, is developed in [35]. This work pro-
poses a two-tier framework, based on generic programs and
customization via constraints. Beginning with a family of
atomic OWL-S services, a generic program can be specified
using the GOLOG language. Note that this generic program
may not be completely specified. As a second phase, addi-
tional constraints can be written to capture customizations
needed by a given client. (It is typical to express these using
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Horn clauses). If the overall family of constraints is satisfi-
able, then there is a composition, which can be equated with
a branch of the execution tree of the generic program that
satisfies certain properties. Reference [35] describes how a
ConGolog interpreter can be used to find such branches.

3.2 Roman Model perspective: Actions with
Automata-based Process Model

We now consider a family of results involving automated
composition of multi-step services. This work was launched
by the seminal work [7, 5], which is of interest for at least
two reasons: (a) the paper develops a novel, general frame-
work for studying composition of human-machine style web
services, and (b) the theoretical techniques developed in the
paper can be generalized to a much broader context.

The paper starts with a very abstract model of web ser-
vices, based on an abstract notion of activities. Basically,
there is a (finite) alphabet of activity names, but no inter-
nal structure is modeled (no input, output, or interaction
with the world). To specify the internal process flow of a
web service, [7, 5] starts with transition systems. In the
most general case, these are potentially infinite trees, where
each branch corresponds to a permitted sequencing of exe-
cutions of the activities. For the theoretical results they re-
strict attention to finitely specifiable transition systems; in
particular on systems that can be specified as deterministic
finite-state automata, where the activities act as the input
alphabet (i.e., where the edges are labeled by activities). It
is convenient to refer to this as the “Roman” model.

References [7, 5] focus on human-machine style web ser-
vices. As a simple illustration of how services work, consider
the service labeled Target in Figure 4. When this service
is being used by a client (could be human or automated) it
performs the following sequence of steps:

(1) Give the client a set S of activities to choose from
(possibly including the special “activity” terminate).

(2) Wait for the client to choose exactly one element of S

(3) Execute the chosen activity and return to step (1), or
terminate if that was chosen.

In each iteration, the set S is chosen according to the current
state of the service – in a state p the set S includes each
activity that labels an out-going edge from p, and includes
“terminate” if p is a final state.

To illustrate, when the Target is launched it gives the
client a choice of {select stock, select bond, terminate}.
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Supposing the client chooses select stock, in the next it-
eration the service gives the set {pay}. Execution continues
until the client chooses terminate.

We can now describe the basic composition problem stud-
ied with the Roman model. Consider now the two services
S1 and S2 shown in Figure 4. Suppose that these are the
only pre-existing services available. The question is whether
it is possible to use some or all of those to “build” a service
that acts the way Target does. One way to accomplish this
is with the “service” shown as Delegator in Figure 4. The
operation of this is similar to the operation of the other Ro-
man services, except that with each transition of Delegator
it is also assumed that one or more of the pre-existing ser-
vices performs a transition. In particular, the pre-existing
service must perform the same activity as the Delegator.
Intuitively, one can think of Delegator as not executing
the services, but rather, as delegating the execution to the
pre-existing services. Furthermore, in a valid execution of
Delegator, each of the pre-existing services must perform a
valid (and terminating) execution.

The central result of [7] is that the existence of a delegator
can be determined in exptime, and that there is a construc-
tive approach for building such delegators. Importantly, the
form or skeleton of the delegator may be different than the
form or skeleton of the target service (e.g., in the example
the delegator has more states than the target service).

This result can be proved by using a transformation of the
problem into Propositional Dynamic Logic (PDL), a well-
known logic for reasoning about programs [31]. As detailed
in [5], there is a natural, polynomial-size translation of a Ro-
man composition problem into deterministic PDL. The re-
sult then follows because satisfiability for deterministic PDL
is exptime, and a constructive technique is available. Fur-
ther, [6] describes how a description logic reasoner has been
adapted to perform this test and construction.

We briefly mention two extensions of the results in [7].
Reference [10] extends the basic model by considering (pre-
existing) services that can themselves delegate to other ser-
vices. In the model there, if an edge in a service S1 has
label >>a this indicates that S1 can perform activity a, and
if an edge in S2 has label a>> this indicates that S2 is able
to delegate activity a to some other service. The delegation
feature adds a level of non-determinism, but checking the
existence of, and constructing, a (generalized) delegator is
still possible in exptime.

Consider now the composition problem illustrated in Fig-
ure 5. There is no delegator that can simulate the target
service in this case. However, as discussed in [22], there is
a “1 look-ahead” delegator, that is, a delegator which can
make the correct delegations, as long as the delegator is
given information not only about the immediate choice of

the client, but also the choice that the client will make in
the next move. Reference [22] shows that there is a non-
collapsing hierarchy of k look-ahead delegation problems,
and there are examples requiring “infinite” or arbitrarily
long look-ahead. Also, the problem of checking existence of
a k look-ahead delegator can be transformed into a prob-
lem of checking existence of a conventional (0 look-ahead)
delegator, and has exptime complexity.

3.3 Conversations and Mealy services
The OWL-S and Roman models focus on what a service

or composition does, either in terms of the input/output of
services (activities) and their impact on the world, or the
sequencing of the activities in a service. At the operational
level, neither addresses the issue of how the component ser-
vices in composition should interact with each other. The
notion of “conversations” was naturally formulated in ad-
dressing this need [27, 28, 49]. Preliminary theoretical work
on conversations was reported in [8, 18]. In this subsection,
we highlight key technical notions and results. Much of this
work assumes a peer-to-peer framework.

To begin with, we assume the existence of an infinite set of
service names. These will act essentially as place-holders for
service spec(ification)s, which can be viewed as completely
or partially specified implementations for the service names.
We also assume an infinite set of message classes, where each
class mc has a service name as source and a service name
as target. A composition schema is a a pair (P, M) where P

is a finite set of service names and M is a finite set of mes-
sage classes. whose sources and targets are in P . Figure 6
shows a composition schema for a “stock analysis service”
(SAS) [20]. The SAS composition schema uses three service
names: Investor, Stock Broker, and Research Department,
and uses the 9 message classes indicated in the figure. This
composition schema models abstractly a domain in which
the Investor service can request reports on different stocks
from the Research Department. The requests are controlled
by the Stock Broker service, which handles issues such as
permissions and billing.

Investor Stock Broker

Research Department

register, ack, cancel

accept, reject, bill
request,

terminatereport

Figure 6: A Composition Schema

A composite service for composition schema (P, M) is
an association of actual web services to each service name
in P , where the actual web services are capable of send-
ing/receiving messages coming from the relevant message
classes in M . Given a composite service, a basic approach
for the underlying operational model is that each service has
a FIFO queue for all incoming messages (possibly from dif-
ferent services). This corresponds abstractly to the message
oriented model in SOA [25, 1]. Queuing of messages provides
a model asynchronous communication, which is realistic in
the web setting.

Given a composite service S over composition schema
(P, M), a conversation of S is the (global) sequence of mes-
sages sent during one successful execution of S. Several stan-
dards and research works are concerned with properties of



conversation languages. WS-Choreography [48], and refer-
ences [27, 28, 48] focus on “global” constraints on conversa-
tions. In contrast, the standards WSCL [49] and WSDL2.0
[51] focus on “local” constraints on conversations, in the
sense that they focus on constraints about message patterns
of the component services of a composite service.

Reference [8] initiated the formal study of the relationship
between such global and local constraints. A conversation

protocol for a composition schema (P, M) is a finite state
machine over the set of message classes in M . Figure 7 shows
a conversation protocol for the SAS service. In this example,
the register message from INV can include a list of stock
symbols. Upon acceptance of a message of this type, each
symbol will result in a separate request from the Stock Broker

service to the Research Department service (corresponding
to the request-report-ack loop in the protocol).
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Figure 7: A Conversation Protocol for SAS

Three natural questions are (Q1) Given a conversation
protocol over composition schema (P, M), can it be realized
by some composite service S over (P, M)? (Q2) If so, what
can be inferred about the individual services in S? (Q3)
If the individual services in a composition have a message-
passing behavior corresponding to a regular language, then
is the resulting conversation also characterized by a regular
language (i.e., by a conversation protocol)?

In [8] these questions are studied using the notion of
Mealy services. These are service specs based on finite state
automata whose transitions correspond to sending a mes-
sage m (denoted as !m) or receiving a message m (denoted
as ?m). Fig. 8 shows a Mealy service for INV. A Mealy com-
posite service is a composite service over Mealy services.

We note that a Mealy service can be viewed in three dif-
ferent ways: (a) as an implementation of a service name; (b)
as a “behavioral signature” that abstractly describes some
properties of a service behavior; and (c) as a constraint on
the local messaging behavior that a service should satisfy.

With regards to question (Q3), in [8], it was shown that
the conversation languages of some Mealy composite services
are not regular (see Fig. 9), nor even context-free in the
language hierarchy, but they are always context-sensitive.
The key factor here is the use of unbounded queues. This
is not surprising, since finite state automata with queues

!register

!ack

!cancel

?reject?accept

?report

?bill

?bill

Figure 8: A Mealy Service for Investor

!a?b
!b
?aa

b

Figure 9: A Non-regular Conversation Language

can simulate Turing machines [13]. When all queues are
bounded, the conversation languages are always regular.

Turning to question (Q1), a finer analysis reveals two im-
portant aspects of conversations languages: (a) What indi-
vidual Mealy service sees vs. the (global) conversation, and
(b) When two Mealy services are both ready to send, it isn’t
possible to force a particular ordering. These two factors are
formulated into two operators in [8]:

• Projecting a conversation to the message alphabet of a
single service name and joining message sequences of
Mealy services into a conversation, and

• Preponing (i.e., swapping) messages from different
senders (in a local perspective).

It turns out that Mealy conversation languages are closed
under (1) projection-join and (2) preponing.

The closure results indicate that if a conversation proto-
col is not closed under either operator, then it cannot be
realized by any composite service. Intuitively, this suggests
that during design it may not be a good candidate as a
global constraint on the composition during design. On the
other hand, it is interesting to know if the projection-join
and prepone closure of a regular language is realizable as
the conversation language of some Mealy composite service.
The answer turns out to be positive [8], and, relevant to
question (Q2), a construction is provided.

It is not clear whether one can always determine if a reg-
ular language is closed under projection-join and preponing,
though a sufficient condition was given in [18].

We conclude this discussion by describing two broad ways
in which the above results can be applied in practical set-
tings. One is to help in the process of practical compositions.
Suppose that one seeks to create a (peer-to-peer) composi-
tion, based on a pre-determined composition schema, and
satisfying a given conversation protocol. Suppose further
that a family of component Mealy services is synthesized to
satisfy this protocol. This family of Mealy services can be
used to select a family of candidate (real-world) web services
that satisfy the “local” constraints specified by the Mealy
services. Then perform further analysis of the candidate ser-
vices, on aspects that are not captured by the Mealy services
alone.

The second practical application is to view a conversation
language as a global constraint that should be satisfied by
a family of web services, essentially in the spirit of the WS-
Choreography standard. The results above can be used to
determine whether this global constraint can be realized at
all. It can also be used to infer local constraints, that specify
properties of the behavioral signatures of each component
service.

3.4 Selected Additional Developments
We close our sampling of composition models and results

with a brief overview of two very recent efforts, which hold
the promise of providing a unifying framework for this area.

The first, already touched upon in Subsection 3.1, is the
work on FLOWS [9, 15], which provides a first-order logic



ontology for web services. We provide here a little more
detail on FLOWS.

FLOWS includes objects of type service. These can be
related to several types of object, including non-functional
properties (e.g., name, author, URL), and also to its activ-

ity. This is a PSL activity, and may have specialized kinds
of subactivities. This includes (FLOWS) atomic processes,
which are based on OWL-S atomic processes with inputs,
outputs, pre-conditions and conditional effects. Some of
these atomic processes, as in OWL-S, are domain-specific,
in that they interact with the “real world” as represented
in the application domain, and others are service-specific, in
that they focus on the standardized mechanics of services,
e.g., message-passing and channel management (see below).

The flow of information between services can occur in
essentially two ways: (a) via message passing and (b) via
shared access to the same ”real world” fluent (e.g., an in-
ventory database, a reservations database). With regards to
message passing, FLOWS models messages as (conceptual)
objects that are created, read, and (possibly) destroyed by
web services. A message life-span has a non-zero duration.
Messages have types, which indicate the kind of informa-
tion that they can transmit. FLOWS also includes a flexible
channel construct.

To represent the acquisition and dissemination of infor-
mation inside a Web service, FLOWS follows the spirit of
the ontology for ”knowledge-producing actions” developed
in [45]; this also formed the basis for the situation calculus
semantics of OWL-S inputs and effects [38].

FLOWS is very open-ended concerning the process or
data flow between the atomic processes inside a services.
This is intentional, as there are several models for the inter-
nal processing in the standards and literature (e.g., BPEL,
OWL-S Process Model, Roman model, Mealy model) and
many other alternatives besides (e.g., rooted in Petri nets,
in process algebras, in workflow models, in telecommunica-
tions). The FLOWS work is still quite preliminary, but holds
the promise of providing a unifying foundation for the study
and comparison of these many variations on the notion of
web service.

A second very recent work is reported in [4, 3]. That
work develops Colombo, a formal model for web services
that combines

(a) A world state, representing the “real world”, viewed as
a database instance over a relational database schema

(b) Atomic processes in the spirit of OWL-S,

(c) Message passing, including a simple notion of ports
and links, as found in web services standards (e.g.,
WSDL, BPEL)

(d) An automata-based model of the internal behavior of
web services, where the individual transitions corre-
spond to atomic processes, message writes, and mes-
sage reads.

The first three elements parallel in several aspects the core
elements of FLOWS. Colombo also includes

(e) a “local store” for each web service, used manage the
data read/written with messages and input/output by
atomic processes; and

(f) a simple form of integrity constraints on the world
state

Using the Colombo model, [4] develops a framework for
posing composition problems, that closely parallels the way
composition will have to be done using standards-based web
services. Specifically, the basic composition problem studied
is how to build a mediator that simulates the behavior of a
target web service, where the mediator can only use mes-
sage passing to get the pre-existing web services to perform
atomic activities (which in turn impact the “real world”).
Under certain restrictions, [4] demonstrates the decidability
of the existence of a mediator and develops a method for
constructing them. This result is based on (a) a technique
for reducing potentially infinite domains of data values into
a finite set of symbolic data values, and (b) in a generaliza-
tion of [5], a mapping of the composition problem into PDL.
The results reported in [4] rely on a number of restrictions;
a broad open problem concerns how these restrictions can
be relaxed while still retaining decidability.

4. ANALYSIS COMPOSITE SERVICES
The need for analysis is particularly acute for composite

services, especially if they are to be created from pre-existing
services using automatic algorithms. The ultimate goal is
to ensure that the eventual execution of a composite service
produces the desired behavior. Ideally, one would be able
to statically verify properties (e.g., in temporal logic) for
composite services. There have been various attempts at
developing such static analysis methods for web services and
workflow systems.

Based on workflows represented in concurrent transac-
tion logic, [16] studied the problem of whether a workflow
specification satisfies some given constraints similar to the
Event Algebra of [44]. Algorithms were given for such anal-
ysis. An alternative approach is developed in [47], which
maps conventional workflows to Petri nets, and then applies
standard results to analyze properties such as termination
and reachability for workflows. Similar results have been
obtained for OWL-S compositions [38].

There are two recent projects that use model checking
techniques to verify BPEL composite web services. In [21],
mediated composite services specified in BPEL were verified
against the design specified using Message Sequence Chart
and Finite State Process notations, with a focus on the con-
trol flow logic. In [19], both conversation protocols and
Mealy services were extended to guarded automata which
incorporate (i) XML messages and (ii) XPath expressions
as the basis for verifying temporal properties of the conver-
sations of composite web services. The following shows an
example of a transition in a protocol for the SAS service:

t14 {
s8 -> s12 : bill,
Guard {
$request//stockID =
$reginfo//stockID [position() = last()]
=>
$bill[//orderID := $reginfo//orderID]

}
},

Roughly, the transition is defined from state “s8” to
“s12” on message “bill”. The part of guard prior to
“=>” defines an additional equality condition with both side
XPath expressions. The part after “=>” specified an assign-
ment.



The extended model makes it possible to verify designs
at a more detailed level and to check properties about mes-
sage content. A framework is presented where BPEL spec-
ifications of web services are translated to an intermediate
representation, followed by the translation of the interme-
diate representation to the verification language Promela,
input language of the model checker SPIN [30]. Since the
SPIN model checker is a finite-state verification tool, the
tool can only achieve partial verification by fixing the sizes
of the input queues in the translation. Sufficient conditions
for complete verification are also obtained.

An important step in statically analyzing Web services
defined in BPEL (or other languages) is to translate them
into formalisms that are suitable for analysis. Such for-
malisms include finite state machines [37, 21], extended
Mealy machines [19], process algebra [32]. Effectively, these
translations provide formal semantics to BPEL. Most of
the translations mentioned above focus only on control flow
structures, with an exception of [19] (where XML message
types, local data, and XPath expressions are also taken into
consideration. More recently, an extensive translation of
BPEL into a version of Petri nets was developed [33], which
deals with scoping rules, variable assignments, correlation
sets, among other things.

The presence of databases makes the static analysis ex-
tremely hard but not entirely impossible. In [17], a rule
based language was developed for specifying interactive
Web services. The rules may access associated (relational)
databases. Web service properties are defined using a lin-
ear temporal first-order logic. Based on the Abstract State
Machine techniques [46], it was shown that some properties
are verifiable for a subclass of Web services.

Service oriented architecture may “fundamentally change
the way software is made and used” [11]. The current de-
velopment platforms may no longer be suitable. While this
is a rare chance to revisit important software development
environment, there is no doubt that analysis tools (static or
dynamic), testing and debugging tools, monitoring tools are
becoming critically importance.

5. CONCLUSIONS
The web services paradigm raises a vast array of ques-

tions, including many that will be of interest to, and can
benefit from, the database research community. First is the
question of finding appropriate models and abstractions for
representing Web services and their “behaviors”, which are
suitable to the web services paradigm, and can support ef-
ficient querying and manipulation as needed by web service
composition and analysis algorithms. More broadly, to what
extent can the problem of automated composition be re-cast
to be a problem in writing and answering one or several
queries against behavioral descriptions of services? Another
aspect concerns the application of XML constraint-checking
techniques to perform compile-time or run-time checking of
Web service specifications (e.g., in WSDL and BPEL, or in
emerging behavioral specification languages).

A second category of questions is how to bring data ma-
nipulation more clearly into the web services paradigm and
their associated standards. The standards and most re-
search at present are focused primarily on process model
and I/O signatures, but not on the data flow and the ma-
nipulation of the data as it passes through this flow. Is there
value in associating integrity constraints with web service

I/O signatures? What is an appropriate way to model the
data transformations occurring in a web service, which will
enable reasoning about the behavior of data being passed or
written to databases by a composite web service? Are there
specialized models of Web service composition that will be
more suitable for applications that are targeted primarily at
data processing? A starting point here might be [2, 17].
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