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ABSTRACT

Motivation: Structure-based protein redesign can help engineer

proteinswithdesirednovel function. Improvingcomputational efficiency

while still maintaining the accuracy of the design predictions has been

a major goal for protein design algorithms. The combinatorial nature

of protein design results both from allowing residue mutations and

from the incorporation of protein side-chain flexibility. Under the

assumption that a single conformation can model protein folding and

binding, the goal of many algorithms is the identification of the Global

Minimum Energy Conformation (GMEC). A dominant theorem for

the identification of the GMEC is Dead-End Elimination (DEE). DEE-

based algorithms have proven capable of eliminating the majority of

candidate conformations, while guaranteeing that only rotamers not

belonging to the GMEC are pruned. However, when the protein design

process incorporates rotameric energy minimization, DEE is no longer

provably-accurate. Hence, with energy minimization, the minimized-

DEE (MinDEE) criterion must be used instead.

Results: In this paper, we present provably-accurate improvements

to both theDEE andMinDEE criteria.We show that our novel enhance-

ments result in a speedup of up to a factor of more than 1000 when

applied in redesign for three different proteins: Gramicidin Synthetase

A, plastocyanin, and protein G.

Availability: Contact authors for source code.

Contact: Bruce.R.Donald@dartmouth.edu

1 INTRODUCTION

Desired novel protein function can result from the structure-based

redesign of known protein sequences. In order to expedite the design

process, a number of computational approaches for making redesign

predictions have been successfully applied. In many protein

design algorithms, the accuracy of the protein model is improved

by incorporating protein flexibility (Street and Mayo, 1999; Jin

et al., 2003; Jaramillo et al., 2001; Bolon and Mayo, 2001;

Looger et al., 2003; Lilien et al., 2005). In (Najmanovich et al.,
2000), a number of bound and unbound structures are compared,

and the conclusion is drawn that only a small number of residues

undergo conformational change, and that the structural changes are

primarily side-chains, and not backbone. Hence, many protein

design algorithms start with a rigid backbone conformation and

optimize the residue sequence and the side-chain placements.

Side-chain flexibility is typically modeled using a discrete set of

low-energy rigid conformations, called rotamers (Lovell et al.,
2000; Ponder and Richards, 1987). A major challenge for protein

design algorithms is thus the combinatorial nature of the design

process, resulting both from allowing residue mutations and from

the incorporation of side-chain flexibility.

Under the assumption that a single conformation can accurately

model protein folding and binding, the goal of many algorithms is

the identification of the Global Minimum Energy Conformation

(GMEC). It has been proven that protein design for a rigid backbone

and using rotamers and a pairwise energy function is NP-hard

(Pierce and Winfree, 2002; Chazelle et al., 2004). Hence, some

heuristic approaches that do not make provable guarantees about

the accuracy of the results have been developed (Street and Mayo,

1999; Kuhlman and Baker, 2000; Jin et al., 2003; Jaramillo et al.,
2001; Marvin and Hellinga, 2001; Desmet et al., 2002; Shah et al.,
2004). In contrast to such heuristic approaches (e.g., Monte Carlo,

neural network, genetic algorithm), Dead-End Elimination (DEE)

(Desmet et al., 1992; Lasters and Desmet, 1993) is a provable and

efficient deterministic algorithm that is capable of eliminating the

majority of the conformations, while guaranteeing that the GMEC

is not pruned.

1.1 Traditional Dead-End Elimination

The DEE criterion (Desmet et al., 1992) uses rotameric energy

interactions to identify and prune rotamers that are provably

not part of the GMEC. The total energy of a conformation can

be written as

ET ¼ Et0 þ
X
i

EðirÞ þ
X
i

X
j>i

Eðir‚ jsÞ: ð1Þ

Here, ir specifies the particular rotamer identity r at residue position
i; Et

0 is the template energy (the energy of the rigid portion of the

molecule); E(ir) is the self-energy (the intra-residue and residue-to-

template energies) of rotamer ir; and E(ir,js) is the non-bonded

pairwise energy between rotamers ir and js. In the original DEE

criterion (Desmet et al., 1992), a target rotamer ir could be provably�To whom correspondence should be addressed.
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pruned if a competitor rotamer it is found, such that the best (lowest)
possible energy among conformations containing rotamer ir is

worse (higher) than the worst possible energy among conformations

containing it. Hence, an alternative rotamer that is energetically

more favorable than ir exists for the entire conformation space,

so ir cannot be part of the GMEC and can thus be provably pruned.

Formally, the DEE condition for pruning rotamer ir is:

EðirÞ þ
X
j6¼i

min
s

Eðir‚ jsÞ > EðitÞ þ
X
j6¼i

max
s

Eðit‚ jsÞ: ð2Þ

All the pairwise and self-energy terms are precomputed and a

lookup is performed during the evaluation of the DEE condition.

Eq. (2) is evaluated for each target rotamer ir until either a superior
competitor it is found and ir can be pruned, or there are no unex-

amined competitors remaining, in which case ir would not be

pruned. For a protein with n residues and a maximum of q rotamers

per residue, the complexity of evaluating Eq. (2) for all target

rotamers is O(q2n2).
The evaluation of Eq. (2) for all target rotamers represents a

single DEE pruning cycle. Since rotamers that are pruned in a

given cycle are not used in the evaluation of subsequent cycles,

multiple repetitions of the DEE cycle can result in pruning a larger

number of rotamers. Several extensions and enhancements to the

original DEE criterion use more complex energy interactions and

allow for additional pruning, at the cost of some additional com-

plexity (Desmet et al., 1992; Lasters and Desmet, 1993; Goldstein,

1994; Gordon and Mayo, 1998; Pierce et al., 2000; Looger and

Hellinga, 2001). Algorithms that combine several of these

extensions into the DEE cycle significantly improve the pruning

efficiency, thus allowing for the redesign of larger protein motifs

(Gordon et al., 2003; Pierce et al., 2000). For a summary of DEE

conditions, see Fig. 3(top).

The DEE pruning cycle can be repeated until the identification of

the GMEC or until no more prunings are identified during a given

cycle. Although DEE is a powerful algorithm, it does not guarantee

a unique solution: multiple unpruned conformations may remain

after pruning with DEE is exhausted. If DEE does not produce a

unique conformation, the algorithm can report an unsuccessful

design (Gordon et al., 2003; Pierce et al., 2000). As an alternative,

the DEE pruning stage can be followed by an enumeration stage, in

which the remaining conformations are examined and the GMEC is

identified. In (Leach and Lemon, 1998), A� branch-and-bound

search is used after pruning with DEE to expand a conformation

tree, so that conformations are extracted in order of conformational

energy; the first conformation that is returned by the A� search is the
GMEC. The need to generate all unpruned conformations is thus

eliminated, resulting in a combinatorial-factor reduction in the

search space. However, since the enumeration stage is still expo-

nential in nature, an efficient DEE pruning cycle is essential for

making complex design problems computationally feasible.

1.2 Minimized Dead-End Elimination

Although rotamers represent low-energy side-chain conformations,

the resulting discretization of the conformation space may decrease

the accuracy of the underlying model (Desmet et al., 2002). The
motivation for performing rotameric energy minimization is thus

well-founded. However, when the protein design process incor-

porates energy minimization, DEE is no longer provably-accurate,

since a pruned conformation may subsequently minimize to a lower

energy than the energy of the DEE-identified GMEC. In (Georgiev

et al., 2006), MinDEE, a novel generalized DEE algorithm is

presented. In contrast to traditional-DEE (the DEE conditions

described in Sec. 1.1), MinDEE guarantees that no rotamers belong-

ing to theminimized-GMEC (minGMEC), the conformation with the

lowest energy among all energy-minimized conformations, are

pruned. Thus, in order to be provably-correct, MinDEE (instead

of traditional-DEE) must be used for a design process that incor-

porates energy minimization.

In (Georgiev et al., 2006), it was experimentally confirmed that

traditional-DEE can prune rotamers belonging to the minGMEC.

For the 9-residue active site of the phenylalanine adenylation

domain of the non-ribosomal peptide synthetase (NRPS)

Gramicidin Synthetase A (GrsA-PheA) (PDB id: 1AMU)

(Conti et al., 1997), traditional-DEE and MinDEE were applied

in a 2-point-mutation redesign search1 for switching the binding

affinity of the protein from Phe to Leu. Traditional-DEE was

shown to prune 2 of the 9 rotamers belonging to the minGMEC.

Moreover, the energy of the minGMEC was approx. 5 kcal/mol

lower than the energy of the rigid-GMEC.2 The results in

(Georgiev et al., 2006) thus confirm both that traditional-DEE

is not provably-correct with energy minimization and that

MinDEE is more capable of returning lower-energy (and

hence, more stable) conformations.

The idea underlying MinDEE is analogous to the traditional-DEE

approach: rotameric energy interactions are used to determine

which rotamers are provably not part of the minGMEC and can

be pruned. In contrast to traditional-DEE, however, since rotamers

are allowed to energy-minimize, lower and upper bounds on the

self- and pairwise rotamer energies must be used, instead of the

rigid-energy terms E(ir) and E(ir, js) in Eq. (2). We will now

describe the initial MinDEE criterion, closely following

(Georgiev et al., 2006).
Without energy minimization, a rotamer stays in the same rigid

conformation, independent of the rotamer identities for the remain-

ing residues. In contrast, with energy minimization, a rotamer r at
residue i may minimize from its initial conformation in order to

accommodate a change from rotamer s to rotamer u at residue j. So
that one rotamer does not minimize into another, rotameric move-

ment is constrained to a voxel of conformation space. The voxel

V(ir) for rotamer ir contains all conformations of residue i within ±�
degrees around each rotamer dihedral. Similarly, the voxel for the

pair of rotamers ir and js is V (ir, js) ¼ V(ir) · V(js). The self-energy
of a given rotamer can change as different conformations within the

voxel are assumed. We can thus define the maximum, minimum, and
range of voxel self-energies:

E�ðirÞ ¼ max
z2VðirÞ

EðzÞ‚ E�ðirÞ ¼ min
z2VðirÞ

EðzÞ‚

EgðirÞ ¼ E�ðirÞ � E�ðirÞ:

The maximum, minimum, and range of pairwise voxel energies

are defined analogously (see Fig. 3). We now define the initial

1In a 2-point mutation search, any 2 of the 9 active site residues are allowed

to mutate simultaneously.
2For clarity, we will henceforth call the GMEC returned by traditional-DEE,

the rigid-GMEC.
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MinDEE criterion as:

E�ðirÞ þ
X
j 6¼i

min
s

E�ðir‚ jsÞ �
X
j6¼i

max
s

EgðjsÞ

�
X
j6¼i

X
k 6¼i‚ k>j

max
s‚u

Egðjs‚kuÞ > E�ðitÞ

+
X
j 6¼i

max
s

E�ðit‚ jsÞ:

ð3Þ

If Eq. (3) holds, then there exists a competitor it whose worst

possible conformational energy is lower than the best possible con-

formational energy for the target rotamer ir. Hence, ir cannot belong
to the minGMEC and can be provably pruned (for a proof, see

(Georgiev et al., 2006)). Eq. (3) for MinDEE is hence the analog

of Eq. (2) for traditional-DEE. The most significant difference

between traditional-DEE and MinDEE is the accounting for

possible energy changes during minimization, which are incor-

porated through the introduction of the terms
P

j max
s

EgðjsÞ andP
j

P
k max

s‚u
Egðjs‚kuÞ. Similarly to traditional-DEE, the min and

max self- and pairwise energy terms are precomputed and a lookup

is performed during the pruning stage. Note that the termsP
j max

s
EgðjsÞ and

P
j

P
k max

s‚u
Egðjs‚kuÞ can also be precom-

puted, since they are a function only of residue i. Thus, the MinDEE

criterion (Eq. 3) can be computed as efficiently as the traditional-

DEE criterion (Eq. 2).

The MinDEE criterion has been shown to be applicable both to

GMEC-based and ensemble-based protein design (Georgiev et al.,
2006). For the ensemble-based redesign, MinDEE was applied as

a provable conformational-space filter in K�, a scoring and search

protein design algorithm that incorporates energy minimiza-

tion (Lilien et al., 2005). Combined with A� search, the Hybrid

MinDEE-K� algorithm introduced a significant improvement in

computational efficiency over the original K� results in (Lilien

et al., 2005). InMinDEE/A� (the GMEC-based algorithm), similarly

to (Leach and Lemon, 1998) for traditional-DEE, MinDEE was

first used to prune a large portion of the conformational space;

the minGMEC was then extracted by A� from the remaining con-

formations. Although MinDEE/A� made the search for the minG-

MEC computationally feasible, the provable guarantees of the

algorithm resulted in more conservative pruning and, hence, in

slow running times (Georgiev et al., 2006). The derivation of

novel techniques for improved pruning efficiency that can be incor-

porated into MinDEE/A� is thus essential.

1.3 Contributions of the Paper

In this paper, we present novel provable enhancements both to

traditional-DEE and MinDEE, for improved pruning efficiency.

When applied in protein design searches, our enhancements yield

a speedup of up to a factor of more than 1000. In particular, our

paper makes the following contributions:

1. DACS: a provably-accurate divide-and-conquer enhancement

to traditional-DEE. DACS is shown to obtain improved pruning

efficiency and much faster running times. Due to its divide-and-

conquer nature, DACS is especially beneficial in design problems

where enumeration (Sec. 1.1) must be performed. The DACS
algorithm is also extended to incorporate energy minimization.

2. MinBounds: a novel provable pruning criterion that incorpor-

ates energy minimization, generalizing the Bounds technique

(Gordon et al., 2003) for protein design without energy minimiza-

tion. MinBounds prunes all rotamers ir for which the lower bound

on the energy of all conformations that contain ir is greater than a

computed reference energy.

3. Analogously to the enhancements to traditional-DEE, we

derive enhancements to the initial MinDEE criterion (Eq. 3) for

additional pruning. The MinDEE analogs to the traditional-DEE

simple and generalized Goldstein (Goldstein, 1994), conformational

splitting (Pierce et al., 2000), and dead-ending pairs (Desmet et al.,
1992; Lasters and Desmet, 1993) conditions are presented here; the

simple Goldstein criterion was previously applied in (Georgiev

et al., 2006).
4. A more efficient and powerful version of the MinDEE/A�

algorithm (Georgiev et al., 2006), incorporating MinBounds,

DACS, and the enhancements to the initial MinDEE criterion.

The new MinDEE/A� algorithm is shown to lead to a significant

improvement in pruning efficiency;

5. Application of our novel algorithms in GMEC-based searches

for redesigning plastocyanin and the b1 domain of protein G, and

for switching the substrate specificity of GrsA-PheA.

2 APPROACH

2.1 DACS

By partitioning the conformational search space, the original

conformational splitting DEE (split-DEE) criterion (Pierce et al.,
2000) (see Fig. 3g) enhances the pruning efficiency of traditional-

DEE. Fig. 1a shows a simple example of the power of confor-

mational splitting. In Fig. 1a, the simple Goldstein criterion

((Goldstein, 1994) and Fig. 3c) would not prune rotamer ir, since
it requires that there exist a competitor rotamer with better con-

formational energies than ir for all conformations. In contrast, when

split-DEE is used, the conformational space can be divided into

several partitions, such that for each partition, there is some com-

petitor that always has better conformational energies than ir within
that partition. In Fig. 1a, the dashed line divides the space into

two partitions, P1 and P2. With this division, the competitor rotamer

Fig. 1. Pruningwith split-DEEandDACS.Apoint on the curve for rotamer

ir represents the energy of the corresponding conformationwhen residue i has

the specific rotamer identity r. (a) Whereas the simple Goldstein criterion

cannot prune ir, conformational splitting can prune ir by partitioning the

conformational space. The dashed line shows a splitting of the conformational

space into the two partitions P1 and P2. (b) Conformational splitting cannot

prune rotamer ir in partition P2, so ir must remain unpruned for the full

conformational space. In contrast, DACS leaves ir unpruned only for P2;

the local GMECs for P1 and P2 are computed and compared to obtain the

overall GMEC. Note that the conformational space is discrete; continuity is

shown here only for illustration purposes.

I.Georgiev et al.
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iu always outperforms ir in partition P1, while rotamer it is

always better than ir in partition P2. Thus, ir can now be pruned,

since there is always a better alternative for residue i, for any

conformation. Hence, ir is provably not part of the rigid-GMEC.

The advantage of split-DEE is that no single competitor is required

to outperform ir for every conformation; as long as there exists a

(different) dominant competitor for each partition, rotamer ir can be
pruned. A simplified schematic of split-DEE is given in Fig. 2a.

We now describe a modification of the split-DEE criterion that

will allow for a further increase in pruning efficiency. Fig. 1b shows

a different energy landscape. In this case, neither it nor iu outperform
ir for all conformations in partition P2. Thus, the original split-DEE

criterion can no longer prune rotamer ir and the potentially bene-

ficial information that iu is always better than ir in partition P1 is

discarded. In general, it may be possible to prune ir in the majority

of the partitions, but so long as there exists a partition where no

competitor is always better than ir, the original split-DEE criterion

must keep ir unpruned. To remedy this loss of information, we relax

the requirement that ir be outperformed in all partitions; instead, we

use a provably-accurate divide-and-conquer approach.

As in the original split-DEE criterion, we divide the conforma-

tional space into partitions. Within each partition, we apply DEE

pruning to determine if there exists a competitor at residue i that
always outperforms rotamer ir. We then identify the local rigid-
GMEC, restricted to the current partition, independently of the other

partitions. If DEE pruning does not produce a unique solution,

enumeration of the conformations in the current partition must

be performed. The lowest-energy conformation among the local

rigid-GMECs for all partitions is the overall rigid-GMEC (the

rigid-GMEC among all conformations, for all partitions). We

call this new approach DACS (Divide-And-Conquer Splitting)

(Fig. 2b). Note that in Fig. 1b, rotamer ir is still unpruned in partition
P2, so the enumeration stage for P2 must consider conformations

containing ir. However, in partition P1, rotamer ir can be provably

pruned and hence all conformations in P1 containing ir can be

eliminated from further consideration. With split-DEE, the con-

formations containing ir for both partitions must still be enumerated.

Hence, the general advantage of DACS over split-DEE is the ability

to prune an additional combinatorial subset of the conformational

space by exploiting partition-specific prunings.

The DEE pruning stage in DACS can incorporate any com-

bination of the available provably-accurate traditional-DEE tech-

niques (e.g., simple Goldstein and split-DEE). The enumeration

stage is implemented using A� search, which results in an additional
combinatorial-factor reduction in the search space (see Sec. 1.1).

Several approaches based on ideas related to conforma-

tional splitting have been previously described. In (Looger and

Hellinga, 2001), a generalized version of the split-DEE algorithm

that is capable of pruning rotamer clusters, and not just single

rotamers, was derived independently from (Pierce et al., 2000).
A split flags technique was introduced in (Gordon et al., 2003)
that is closely related to the approach in (Looger and Hellinga,

2001). With split flags, if a target rotamer ir cannot be pruned

for all partitions, the partitions in which ir can be pruned are flagged
as dead-ending. These split flags effectively represent dead-ending

rotamer pairs.3 Since the dead-ending pairs are not used in the

evaluation of the DEE equations (e.g., Eq. 2), more single dead-

ending rotamers may be identified in the subsequent DEE cycles.

Thus, both DACS and the split flags technique use pruning

information that is otherwise discarded by split-DEE. However,

there is one major advantage of the DACS algorithm over split

flags, that can be attributed to the divide-and-conquer paradigm.

Since the cost of expanding the A� search tree depends combinat-

orially on the number of rotamers for each residue position,4

a divide-and-conquer approach (in which the number of rotamers

for each partition is reduced) can be more efficient than finding the

global solution directly. Hence, for design problems in which the

enumeration stage cannot be avoided, DACS should be especially

useful.

In (Desmet et al., 1997), a divide-and-conquer algorithm for DEE

pruning was described. In this algorithm, a list of dead-ending

rotamers is constructed for each part of the divided conformational

space; the intersection of all such lists gives the final list of pruned

rotamers. Hence, this algorithm suffers from the same drawback as

split-DEE: since a rotamer ir cannot be pruned unless it is identified
as dead-ending in all parts of the conformational space, potentially

beneficial pruning information is often discarded.

The DACS algorithm benefits both from its divide-and-conquer

nature and from the use of partition-specific prunings; DACS thus

presents advantages over the other algorithms discussed in this

section.

Correctness

We now prove the correctness of the DACS algorithm. Let C be the

initial set of conformations and let q be the number of partitions Pi,

1 � i � q, into which C is divided. Proposition 1 proves that

DACS correctly identifies the local rigid-GMEC for each partition.

C C

C’

rigid-GMEC

(enumerate)

split-DEE

PkP1 P2 ...

DEE DEE

C1
Ck

(enumerate) (enumerate)

...

local GMEC local GMEC...

rigid-GMEC

(a) (b)

partition

Fig. 2. Schematic of the (a) split-DEE, and (b) DACS algorithms. In (a),

the reduced set C0 of conformations is obtained after split-DEE is applied to

the initial conformational set C. If jC0 j ¼ 1, then split-DEE has output a

unique solution, the rigid-GMEC; otherwise, enumeration must be per-

formed. In (b), the initial set C is first partitioned. DEE pruning is performed

for each partition and the corresponding local rigid-GMEC is obtained. The

lowest-energy conformation among the local GMECs for all partitions is the

overall rigid-GMEC.

3In a dead-ending rotamer pair (ir, js), either ir or jsmay be part of the GMEC,

but not both.
4For a protein with n residues and at most q rotamers per residue, the worst-

case cost of expanding the A� conformation tree is O(qn).
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Proposition 2 shows that the overall GMEC is obtained as the

lowest-energy conformation among the local GMECs, thus

completing the proof of correctness for DACS.

PROPOSITION 1. DACS identifies the local rigid-GMEC for each
partition Pi.

Proof: Let Cj denote the set of conformations for a given

partition Pj, for an arbitrary j. Since the DEE pruning stage in

DACS incorporates only provably-accurate traditional-DEE tech-

niques the rigid-GMEC gj 2 Cj is guaranteed not to be pruned. The

rigid-GMEC for Pj is then extracted using the A� search. &

PROPOSITION 2. Let gi be the local rigid-GMEC for partition Pi

and let E(gi) be the total conformational energy of gi. Then the
overall rigid-GMEC is obtained as argmingi E (gi), for 1 � i � q:

Proof: We give a proof by contradiction. Let h 2 C; h 6¼ gi, 8i,
be the overall rigid-GMEC, so that E(h) < mini E(gi); that is, the
overall rigid-GMEC h is not a local rigid-GMEC. By definition,

h can be in exactly one partition of C; let this partition be Pj. It

follows that E(h) < E(gj), so gj is not the local rigid-GMEC for

partition Pj. We thus have a contradiction. Hence, h must be a local

GMEC; the lowest-energy local GMEC, argmingi E(gi), for 1 �
i � q, is the overall rigid-GMEC. &

Partitioning

For each rotamer ir, the original split-DEE (Pierce et al., 2000)
forms partitions by choosing one or more of the protein residues

as the splitting positions (residues).5 Ideally, for n residues and s
split positions, all n�1

s

� �
possible combinations would be examined,

until ir can be pruned for all partitions in some combination. For s >
2, however, the increased algorithmic complexity suggests the use

of a magic bullet approach to splitting (Gordon and Mayo, 1998).

With this approach, a single combination (a magic bullet) of split

positions is chosen, based on a heuristic ranking criterion.

In the original split-DEE, different rotamers can be pruned using

different combinations of splitting residues, since the pruning

information is combined before the enumeration stage of the search

for the rigid-GMEC. DACS uses partition-specific pruning informa-

tion, so the prunings for one partition are generally not valid for a

different partition (see Fig. 1b). If different rotamers are pruned

using different splitting residues, the divide-and-conquer-type

approach can no longer be used. Thus, the DACS partitions must

be identical for all rotamers tested for pruning. To partition the set of

conformations, we therefore choose t split residues, 1 � t � n,
before applying the DACS criterion; we will henceforth refer to

these split residues as major split residues, in contrast with the

original split-DEE splitting positions.

We use a magic-bullet-type approach for choosing themajor split
residues. Assuming preliminary DEE pruning has been performed,

we can rank residues in terms of the corresponding p-ratio (the ratio
of pruned rotamers to total number of rotamers). The top t residues
with the lowest p-ratio are chosen as the major split positions.

Intuitively, residues with a low p-ratio are less prone to pruning

and should thus minimize the cost of not being able to prune

rotamers at the split positions.6 Note that the method for choosing

the major split residues does not affect the correctness of the

algorithm, but may affect its pruning efficiency, so alternative

methods for choosing the major split positions can also be applied.

Complexity

For t major split residues and at most q rotamers per residue, DACS
divides the conformational space into O(qt) partitions. The cost of

running the DEE cycle for each partition is determined by the

complexity of the DEE algorithms in the cycle. As noted in

Sec 1.1, the cost of the initial DEE criterion (Desmet et al.,
1992) is O(q2n2). The simple Goldstein criterion (Goldstein,

1994) has a complexity of O(q3n2). An implementation of the ori-

ginal split-DEE (Pierce et al., 2000) with s ¼ 1 split positions has

the same complexity as simple Goldstein, assuming (q > n). The
computation of split flags is done during the split-DEE run at no

additional complexity. Hence, for a DEE cycle in which the most

costly algorithm used is split-DEE, the general complexity ofDACS
is O

�
q2+s+tn n � 1

s

� ��
, where O

�
q2+sn n � 1

s

� ��
is the cost of each split-

DEE run. With t ¼ 1 (a single magic bullet split position) for major
splitting and s ¼ 1 split-DEE in the inner loop, DACS runs in

O(q4n2), which is less than the cost of s ¼ 2 split-DEE, O(q4n3).
Note that since the computation of the results for each partition is

independent of the other partitions, DACS is easily parallelizable,

which further reduces the effective complexity of the algorithm.

2.2 MinDEE Extensions

As already discussed, extensions to the initial traditional-DEE cri-

terion have resulted in improved computational efficiency (Desmet

et al., 1992; Lasters and Desmet, 1993; Goldstein, 1994; Pierce

et al., 2000). Analogous MinDEE extensions for additional pruning

are presented in Fig. 3. For example, the conformational splitting

extension to MinDEE in Fig. 3(h) is the analog of the original split-

DEE extension to traditional-DEE (Fig. 3g). The DACS algorithm is

easily extended to incorporate energy minimization; in order to only

prune rotamers that are provably not part of the minGMEC, the
traditional-DEE criteria (Fig. 3, top) in the DEE cycle of DACS
must be discarded and their MinDEE equivalents (Fig. 3, bottom)

used instead.

2.3 MinBounds

We now present a provably-accurate pruning technique that is based

on rotameric minimum energy bounds. The technique, MinBounds,
is analogous to the Bounds approach of (Gordon et al., 2003)
for traditional-DEE. In contrast to Bounds, however, MinBounds

is provably-correct with energy minimization. Similarly to

(Georgiev et al., 2006), we define the lower bound Bir on the

minimized energy of all conformations containing rotamer ir as:

Bir ¼ Et0 + E�ðirÞ þ
X
j6¼i

min
s

E�ðjsÞ þ
X
j6¼i

min
s

E�ðir‚ jsÞ

+
X
j 6¼i

X
k 6¼i‚ k>j

min
s‚u

E�ðjs‚kuÞ:

Thus, Bir is the best energy that a conformation can achieve after

minimization if residue i has the particular rotamer identity r. Now,
5A splitting position (residue) divides the conformational space into parti-

tions, such that each rotamer at that residue forms a separate partition. 6In each partition, there is only one rotamer for each major split residue.
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let Ec be the minimized energy of a given conformation and Eg be

the energy of the minGMEC, so that Ec� Eg. For a given rotamer ir,
if Bir > Ec‚ then Bir > Eg‚ so ir cannot belong to the minGMEC and

can thus be provably pruned.

In (Gordon et al., 2003), multiple Monte Carlo searches are used

throughout the design process, in order to compute lower values

for Ec (called the reference energy), so that more rotamers could

be pruned by the Bounds criterion. Alternatively, in order to reduce

the computational burden, MinBounds obtains Ec by energy-

minimizing the wildtype only.

The MinBounds approach is most beneficial if used in a com-

bination with the MinDEE criteria described in Sec. 2.2. Since the

MinDEE conditions are conservative, a rotamer ir cannot be pruned
unless a better alternative is found, so some rotamers with bad

(high) lower energy bounds may not be pruned by MinDEE.

Using MinBounds with a good reference energy guarantees that

rotamers with bad lower energy bounds will be pruned, further

reducing the conformational search space.

Fig. 3. Dead-End Elimination Pruning Conditions. A summary of the previously-described traditional-DEE pruning conditions (top) and our newly

derived minimized-DEE pruning conditions (bottom). (a) is the initial criterion for traditional-DEE (Desmet et al., 1992), and (b) is the generalization for

minimized-DEE (Eq. 3). The simple (d) and general coupled (f)minimized-DEE pruning conditions are analogous (resp.) to the correspondingGoldstein pruning

conditions (c, e) of traditional-DEE (Goldstein, 1994). General Goldstein (e), in traditional-DEE, compares the energy of ir to a weighted average of the

interaction energies among T candidate pruning rotamers itx .Cx� 0 is the weight given to the energy computed using rotamer itx . The traditional conformational

splitting criterion (Pierce et al., 2000) and the analogous MinDEE condition are given in (g) and (h), respectively. In the minimized-DEE generalization (j) of

traditional Dead-Ending Pairs (i), E�ð½ir js�Þ ¼ E�ðirÞ þ E�ðjsÞ þ E�ðir; jsÞði 6¼ jÞ;E�ð½ir; js�Þ; htÞ ¼ E�ðir ; htÞ þ E�ðjs; htÞði; j 6¼ hÞwhere E� 2 fE�;E�g:

Traditional-DEE

(a) EðirÞ � EðitÞ þ
X
j6¼i

min
s

Eðir ; jsÞ �
X
j 6¼i

max
s

Eðit; jsÞ > 0 (Desmet et al., 1992)

(c) EðirÞ � EðitÞ þ
X
j;j6¼i

min
s

Eðir ; jsÞ � Eðit; jsÞð Þ > 0 (Goldstein, 1994)

(e) EðirÞ �
X
x¼1;T

CxEðitx Þ þ
X
j;j 6¼i

min
s

Eðir; jsÞ �
X
x¼1;T

CxEðitx ; jsÞ
 !

> 0 (Goldstein, 1994)

(g) EðirÞ � EðitÞ þ
X

j; j 6¼h 6¼i

min
s

Eðir; jsÞ � Eðit; jsÞð Þ
� �

þ Eðir ; hvÞ � Eðit; hvÞð Þ > 0 (Pierce et al., 2000)

(i) Eð½ir js�Þ � Eð½iujv�Þ þ
X
h6¼i;j

min
t

Eð½ir js�; htÞ �
X
h6¼i;j

min
t

Eð½iujv�; htÞ > 0 (Desmet et al., 1992; Lasters and Desmet, 1993)

Minimized-DEE

(b) E�ðirÞ � E�ðitÞ þ
X
j 6¼i

min
s

E�ðir ; jsÞ �
X
j 6¼i

max
s

E�ðit; jsÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ > 0 (Georgiev et al., 2006)

(d) E�ðirÞ � E�ðitÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i

min
s

E�ðir ; jsÞ � E�ðit; jsÞð Þ > 0

(f) E�ðirÞ �
X
x¼1;T

CxE�ðitx Þ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>i

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i

min
s

E�ðir ; jsÞ �
X
x¼1;T

CxE�ðitx ; jsÞ
 !

> 0

(h) E�ðirÞ � E�ðitÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i;h

min
s

E�ðir ; jsÞ � E�ðit; jsÞð Þ
� �

þ E�ðir ; hvÞ � E�ðit; hvÞð Þ > 0;

(j) E�ð½ir js�Þ � E�ð½iujv�Þ þ
X
h6¼i;j

min
t

E�ð½ir js�; htÞ �
X
h6¼i;j

max
t

E�ð½iujv�; htÞ �
X
h6¼i;j

max
t

E�ðhtÞ �
X
h 6¼i;j

X
k 6¼i;j;k>h

max
t;w

E�ðht; kwÞ > 0

Table 1. Traditional-DEE algorithms. The name of the algorithms (left) is

shown with the corresponding sequence of pruning criteria (right). Each of

the pruning criteria (as well as the full DEE cycle) is repeated until no further

prunings are obtained. For each target rotamer ir, full split-DEE attempts

pruning for all possible combinations of n�1
s

� �
split positions. The algorithms

with DACS use t ¼ 1 major split positions

SD1f Bounds, simple Goldstein, full s ¼ 1 split-DEE;

SD2f Bounds, simple Goldstein, full s ¼ 1 split-DEE,

full s ¼ 2 split-DEE;

SF2f Bounds, simple Goldstein, full s¼ 1 split-DEEw/ split flags,

full s ¼ 2 split-DEE w/ split flags;

DACS-SD1f SD1f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SD1f criteria;

DACS-SD2f SD2f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SD2f criteria;

DACS-SF2f SF2f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SF2f criteria.
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3 ALGORITHMS

3.1 Traditional-DEE

The performance advantage of DACS for protein design without

energy minimization is evaluated in comparison to the original split-

DEE and split flags. The DEE pruning stage of the benchmarking

algorithms is presented in Table 1. DACS-SD1f, DACS-SD2f, and

DACS-SF2f introduce an additional complexity factor of only O(q),
compared to, respectively, SD1f, SD2f, and SF2f (see Sec. 2.1,

Complexity). For all algorithms, the pruning stage is followed

by an A�-search enumeration stage.

3.2 MinDEE

We now present an improvement of the MinDEE/A� algorithm

(Georgiev et al., 2006), incorporating the simple Goldstein and

conformational splitting extensions to the MinDEE criterion

(Sec. 2.2), MinBounds (Sec. 2.3), and DACS for MinDEE (Sec.

2.2). In addition, the MinDEE/A� algorithm is adapted to allow

the use of the volume filter applied in the ensemble-based searches

of (Lilien et al., 2005; Georgiev et al., 2006). The volume filter is

applied to the initial set of mutation sequences.7 pruning over- and

under-packed sequences, relative to the original sequence. For each

of the remaining sequences, the MinDEE analog of the DACS-SD1f

algorithm (Sec. 3.1) is used to eliminate the majority of the can-

didate conformations. A� search is then applied in the enumera-

tion stage to extract the minGMEC from the set of remaining

conformations. Similarly to the DACS algorithm, the lowest-energy

conformation among the rigid-GMECs for all mutation sequences is

identified as the overall rigid-GMEC. If conformations within Ew

of the minGMEC energy are to be generated, the pruning criteria

and the A� search can be modified accordingly (Georgiev et al.,
2006). The application of the enhanced pruning conditions and the

use of the volume filter aim at improving the pruning capabilities

and the computational efficiency of the algorithm.

4 METHODS

Structural Model. The NRPS enzyme GrsA-PheA (PDB id: 1AMU) (Conti

et al., 1997) is used both for the traditional-DEE and MinDEE redesigns.

Similarly to (Lilien et al., 2005; Georgiev et al., 2006), the residues modeled

as flexible are the 9 active site residues (D235, A236, W239, T278, I299,

A301, A322, I330, C331). In addition, our structural model consists of the

steric shell (the 30 residues with at least one atom within 8 Å of a residue in

the active site: 186Y, 188I, 190T, 210L, 213F, 214F, 230A, 234F, 237S,

238V, 240E, 243M, 279L, 300T, 302G, 303S, 320I, 321N, 323Y, 324G,

325P, 326T, 327E, 328T, 329T, 332A, 333T, 334T, 515N, and 517K), the

amino acid substrate, and the AMP cofactor. The 9 flexible residues are

allowed to mutate to the set (GAVLIFYWM) of hydrophobic amino acids.

Traditional-DEE experiments are also performed on plastocyanin (PDB id:

2pcy) (Garrett et al., 1984). Based on (Gordon et al., 2003), we model as

flexible 18 residues in the core of plastocyanin (5, 14, 21, 27, 29, 31, 37, 38,

39, 41, 72, 74, 80, 82, 84, 92, 96, 98), allowing them to mutate to the set

(AVLIFYW) of hydrophobic amino acids. Similarly to (Gordon et al., 2003),
redesign with traditional-DEE was also performed on 14 surface residues

(4, 6, 8, 13, 15, 17, 42, 44, 46, 48, 49, 51, 53, 55) of the b1 domain of protein

G (PDB id: 1pga) (Gallagher et al., 1994). The 14 residues modeled as

flexible are allowed to mutate to the set (ANQSTDE); the remaining residues

(except for the N-terminus) are modeled as part of the steric shell. Further,

similarly to (Shah et al., 2004), 1pga redesign was performed on 12 core

residues (3, 5, 7, 9, 20, 26, 30, 34, 39, 41, 52, 54), allowed to mutate to

(GAVLIFYWM). Rotamer Library. Side-chain flexibility is modeled

using the Richardsons’ rotamer library (Lovell et al., 2000). Energy

Minimization. Conformations are energy-minimized using steepest-descent

Table 2. Traditional-DEE redesign for GrsA-PheA (a), plastocyanin (b), and the b1 domain of protein G (surface) (c). The total number of conformations

for cases (a), (b), and (c) is 4.78 · 1015, 2.06 · 1027, and 2.25 · 1022, respectively. The Enum values show the number of remaining conformations after pruning

with the algorithmgiven in the corresponding column; these conformationsmust be considered byA� in the enumeration stage. Time shows the total running time

(in minutes) consumed by each algorithm for the identification of the rigid-GMEC. All experiments were performed on a single processor.

SD1f SD2f SF2f DACS-SD1f DACS-SD2f DACS-SF2f

(a) Enum 4.14 · 108 2.67 · 108 2.25 · 108 1.04 · 107 1.46 · 107 3.87 · 106

Time 46.1 34.3 25.0 2.34 3.36 2.12

(b) Enum 6.78 · 1012 4.52 · 1012 1.86 · 1012 5.11 · 1011 3.84 · 1011 6.44 · 1010

Time 2057.1 1192.8 207.4 769.1 534.4 55.6

(c) Enum 3.7 · 1012 1.47 · 1011 1.6 · 1010 3.56 · 109 2.97 · 106 2.13 · 108

Time � � 4540.2 171.3 6.5 154.1

� Did not complete in 10,000 minutes.

Table 3. Partition Pruning with DACS-SF2f for GrsA-PheA. The conformational space was divided into 16 partitions by splitting at residue 322 (with a

p-ratio of 29/45 after the initial pruningwith SF2f). TheEnum values show the number of remaining conformations after pruning withDACS-SF2f, for each of the

16 partitions. Due to rounding, these values do not sum exactly to the corresponding total number of conformations shown in Table 2.

1 2 3 4 5 6 7 8

Enum 5.8 · 105 2.2 · 105 1.8 · 105 2.2 · 105 7.3 · 104 3.3 · 104 3.1 · 105 0.8 · 103

9 10 11 12 13 14 15 16

Enum 1.1 · 103 2.0 · 104 5.3 · 103 1.1 · 104 2.8 · 105 4.5 · 105 4.4 · 104 1.5 · 106

7A mutation sequence is a particular assignment of amino acid types for each

residue.
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minimization and the AMBER energy function (electrostatic, vdW, and

dihedral energy terms) (Weiner et al., 1984; Cornell et al., 1995). A

voxel of � ¼ ±9 	 is allowed around each rotamer dihedral. Volume Filter.

(MinDEE/A� only) Over-/under-packed mutation sequences (by more than

30Å3) relative to wildtype GrsA-PheA are pruned.

5 RESULTS AND DISCUSSION

Traditional-DEE. The results of applying the 6 different

algorithms described in Sec. 3.1 to GrsA-PheA are shown in

Table 2, Case (a). With s¼ 1 split-DEE (SD1f), the redesign process

took 46.1 minutes on a single processor, but the introduction of

DACS (DACS-SD1f) decreased the execution time by a factor of

20. For s ¼ 2 split-DEE without and with split flags (SD2f and SF2f,

respectively), the application of DACS resulted in a speedup factor

of approx. 10 and 12, respectively. Thus, the minor additional

complexity of the algorithms incorporating DACS (see Sec. 3.1)

is outweighed by a significant increase in computational efficiency

over the corresponding algorithms withoutDACS. Moreover,DACS
performed better even when compared to more costly algorithms:

DACS-SD1f was a factor of 10 faster than the SF2f algorithm.

A major factor for the speedup associated with the DACS
algorithms is the corresponding increase in pruning efficiency

(Table 2). By using a divide-and-conquer approach to partition

the conformational space and identify partition-specific prunings,

DACS allows for additional elimination, after pruning with the

original split-DEE and split flags techniques is exhausted.

Table 3 shows the DACS-SF2f pruning results for all 16 partitions.

As can be seen from Table 3, the remaining conformations after the

DEE stage of DACS differ widely for each partition, ranging from

less than 1,000 (partition 8) to approx. 1.5 million (partition 16).

This variation shows that a different subset of rotamers can be

pruned for each of the partitions, confirming the significance of

using the DACS partition-specific prunings.

The improved execution times of the DACS redesigns can further
be explained by the reduced cost of expanding the A� search trees

for each partition, resulting from the divide-and-conquer approach,

as opposed to expanding the single A� tree for the full conforma-

tional space. For example, for the SF2f algorithm, A� must simul-

taneously consider all of the remaining 2.25 · 108 conformations,

whereas the largest partition for DACS-SF2f has only 1.5 · 106

candidate conformations.

Table 2, Case (b), shows the plastocyanin redesign results for

the six different algorithms used. Similarly to GrsA-PheA, the

DACS algorithms (columns 4 � 6) outperform the corresponding

split-DEE/split flags algorithms in columns 1 � 3, resulting in a

speedup of up to a factor of 4. Unlike GrsA-PheA, however, the

execution time for SF2f was less than that for DACS-SD1f, although

the total number of unpruned conformations for DACS-SD1f was

smaller. We can thus conclude that the overhead of expanding

separate A� trees for each partition can be outweighed only by a

significant improvement in pruning efficiency. However, in all

of the redesign results presented in Table 2, the addition of the

DACS algorithm (columns 4 � 6) shows the necessary substantial

increase in pruning efficiency over the respective algorithms (with-

out DACS) in columns 1 � 3. Hence, we conclude that, in general,

DACS should be used as an enhancement, and not a substitute, to the

other available DEE techniques.

The core redesign of the b1 domain of protein G was completed

within 5 minutes by all six algorithms (data not shown), which

precludes a differential performance comparison for this case.

However, our conclusions so far are confirmed by the (more diffi-

cult) surface redesigns of b1 of protein G (Table 2, Case c). When

compared to the algorithms without DACS, the respective DACS
algorithms show a speedup of up to three orders of magnitude. In

fact, the SD1f and SD2f algorithms exceeded the maximum allotted

time of 10,000 minutes, so the use of DACS for these redesigns was
essential. Moreover, similarly to Case (a),DACS-SD1f performed an

order of magnitude better than the more costly SF2f.

Note that SF2f in Case (c) ran 20 times slower than SF2f in

Case (b), although the number of unpruned conformations for

Case (c) was two orders of magnitude lower. This is a direct result

of the expansion mechanism of A� and implies that, in order to

generate the best conformation, a larger portion of the A� conforma-

tion tree had to be expanded for SF2f in Case (c) than in Case (b).
Indeed, the A� tree in Case (c) contained approx. 1.9 · 106 nodes at

the time of completion, whereas the Case (b) tree contained only

5 · 105 nodes.

Also note the increased running time of DACS-SD2f as compared

to DACS-SD1f (Case a) and DACS-SF2f as compared to DACS-SD2f

(Case c). This can be explained by the choice of an inefficient

major splitting residue. To test this hypothesis, we examined a

different heuristic for choosing the major splitting positions, so

that preference is given to lower-numbered residues.8 With the

new approach, a higher-numbered residue ni+k is chosen as the

major split position if its p-ratio is at least a value of a lower

than the p-ratio of the lower-numbered residue ni, 1 � i � n. In
our experiments, we used a ¼ 0.15. The new splitting approach

significantly reduced the running times for most DACS redesigns

(data not shown).DACS-SD2f andDACS-SD1f in Case (a) ran in 2.15
and 2.04 minutes, respectively. The running time of DACS-SD2f

(Case c) remained unchanged, whereas that of DACS-SF2f was

reduced by a factor of 44 to a total of 3.5 minutes. We can thus

conclude that more sophisticated alternatives for choosing themajor
splitting positions should further improve the computational

efficiency.

Table 4. MinDEE/A� Redesign for GrsA-PheA using MAnew (a) and

MAsimple (b). The number of conformations remaining after the volume filter

is 1.7 · 108. Pruned shows the number and percentage (in parentheses) of

conformations pruned by the MinDEE stage of the corresponding algorithm;

the number of remaining unpruned conformations is shown in Remaining;

Minimized represents the number of conformations generated by A� and

energy-minimized. Time/Seq. is the average CPU time (in minutes) for

the evaluation of a single mutation sequence.

(a) (b)

Pruned 1.697 · 108 (99.8%) 1.66 · 108 (97.6%)

Remaining 3.86 · 105 4.0 · 106

Minimized 9.3 · 104 9.64 · 104

Time/Seq. 16.11 16.66

8Lower-numbered residues are at lower depths of the A� conformation tree

and are thus expanded first.
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The results in this section show the additional pruning power

and computational speedup of the DACS algorithm for traditional-

DEE design, compared to the original split-DEE and split flags

techniques, thus confirming the significance of this new approach.

MinDEE/A�. Results from a 2-point mutation redesign search

with energy minimization for switching the binding affinity of

GrsA-PheA from Phe to Leu are shown in Table 4. Our improved

version of the MinDEE/A� algorithm9 (Sec. 3.2), Table 4(a), is

compared against the original MinDEE/A� algorithm10 (Georgiev

et al., 2006), Table 4(b), which uses only the MinDEE analog of

the simple Goldstein criterion. In order to fairly evaluate the effects

of using the novel pruning criteria presented in this paper, the

original MinDEE/A� algorithm was also modified to incorporate

the volume filter described in Sec. 3.2. For our experiments, we

used a value of 6.0 for Ew (Sec. 3.2). The redesigns were performed

on a cluster of 36 processors.

Only 30% of the mutation sequences passed the volume filter.

The application of the MinDEE criteria in MAnew resulted in the

elimination of (99.8%) of the remaining conformations, while the

same algorithmic stage in MAsimple eliminated only (97.6%).

The number of remaining conformations that had to be considered

by A� in the enumeration stage was consequently an order of

magnitude smaller for the MAnew algorithm. Thus, as desired,

the incorporation of the novel pruning techniques significantly

enhanced the pruning capabilities of the MinDEE stage.

When considering the execution times, however, the speedup

resulting from the use of the MAnew algorithm was not significant.

The reason that the increased pruning efficiency did not lead to

increased computational efficiency can be explained by the role

of the MinDEE stage in the MinDEE/A� algorithm. By pruning

the majority of the possible rotamers, MinDEE reduces the cost

of expanding the A� search tree.11 Since the number of rotamers

for a singlemutation sequence is comparatively small, the overhead

of expanding the A� tree is also smaller. Hence, for a single

sequence, the execution time will be dominated mostly by the

conformational energy minimization, and not by the tree expansion.

Since an approximately equal number of conformations are

energy-minimized by both MAnew and MAsimple, the similar exe-

cution times of both algorithms are not surprising. However, the fact

that the novel advanced pruning techniques resulted in a significant

increase in pruning efficiency, leads to the conclusion that the

improved MinDEE/A� algorithm will be especially useful in

redesigns of larger systems12 with energy minimization where

the cost of managing the search tree dominates the computational

effort.

6 CONCLUSION

In this paper, we presented novel enhancements for increased

pruning efficiency, applicable in protein design problems both

with and without energy minimization. The additional pruning

power and the divide-and-conquer nature of the DACS algorithm

were shown to lead to a significant computational speedup over

other conformational-splitting-based algorithms, for the redesigns

of GrsA-PheA, plastocyanin, and b1 of protein G. Plastocyanin and

protein G redesigns were also described in (Pierce et al., 2000;
Gordon et al., 2003), using conformational splitting techniques

in a combination with other advanced pruning criteria, such as

dead-ending pairs. It would thus be interesting to incorporate

such advanced pruning techniques into the DACS algorithms, in

order to facilitate the faster design of larger systems. Moreover,

since the choice of major splitting residues was shown to impact

the efficiency of the algorithm, a further improvement of DACS
could involve the derivation of a better approach for choosing the

split positions. For larger systems, the use of multiple major split
positions should also prove beneficial.

Our improved MinDEE/A� algorithm incorporated the

MinBounds technique, the simple Goldstein and split-DEE exten-

sions to MinDEE, and the MinDEE version of DACS, resulting in a
significant improvement in pruning efficiency over the original

MinDEE/A� algorithm. Similarly to traditional-DEE, further

improvements to MinDEE/A� could include the incorporation of

s ¼ 2 split-DEE and the split-flags techniques, as well as other

advanced pruning criteria. As suggested by our results, in order

to benefit from the increased pruning efficiency, MinDEE/A� should
be applied to larger systems, where the cost of expanding the search

tree in the enumeration stage, rather than the energy minimization,

will dominate the computation. MinDEE experiments on larger

systems are currently under way and will be reported in future work.

The pruning techniques presented in this paper add to the power

of available protein design algorithms and can be an important step

towards the development of algorithms for the efficient solution of

increasingly more computationally-expensive design problems.

More efficient algorithms will also allow the use of improved

models (e.g., larger rotamer libraries, improved energy functions,

and the incorporation of backbone flexibility), thus increasing the

accuracy of the design predictions.
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