
Numeric Planning via Search Space Abstraction

León Illanes and Sheila A. McIlraith
Department of Computer Science

University of Toronto, Toronto, Canada.
{lillanes,sheila}@cs.toronto.edu

Abstract

Many real-world planning problems are best mod-
eled as infinite search space problems, using nu-
meric fluents. Unfortunately, most planners and
planning heuristics do not directly support such flu-
ents. We propose a search space abstraction tech-
nique that compiles a planning problem with nu-
meric fluents into a finite state propositional plan-
ning problem. To account for the loss of precision
resulting from the abstraction, we leverage a policy
repair technique used for non-deterministic plan-
ning and describe a new algorithm for planning
with numeric fluents. We evaluate our approach on
a set of benchmarks and compare it to state-of-the-
art planners that deal with numeric fluents.

1 Introduction
Classical planning concerns itself with problems that are
modelled through a restrictive propositional description.
Since real-world applications often require richer modelling,
a number of extensions to the formalisms of planning have
been developed. For example, there has been interest in
modelling problems specifying interaction among actions
that can be executed concurrently [Boutilier and Brafman,
2001], problems with durative actions [Fox and Long, 2003],
problems in which there are many uncontrollable possi-
ble outcomes for any given action [Daniele et al., 1999;
Cimatti et al., 2003], problems in which the planner only
has partial knowledge of the state [Cimatti et al., 2004;
Hoffmann and Brafman, 2006], or problems in which the
planner has to keep track of physical state properties or quan-
tifiable resources.

In this work, we are concerned with so-called numeric
planning problems – problems modeled by the use of numeric
fluents in addition to standard propositional fluents. The use
of numeric fluents allows for modelling problems with either
infinite or with continuous state spaces and has been com-
monly used to represent problems in which there are multiple
interacting quantifiable resources.

Much of the work to date in numeric planning has
adapted successful techniques from classical planning, of-
ten re-interpreting well known heuristics in this context.

Some notable examples are the Metric-FF planner [Hoff-
mann, 2003], which extends the FF heuristic, and the LPRPG
planner [Coles et al., 2008], which augments RPG heuristics
with linear numeric programming to better address optimality
concerns. Other work has shown that local search techniques
can also be effective in this context [Gerevini et al., 2004].
More recent research suggests reformulation and abstraction
techniques as other interesting approaches to consider [Chrpa
et al., 2015; Aldinger et al., 2015].

Our work follows ideas related to these approaches. In-
deed, we propose an abstraction approach in which we pro-
duce a classical planning problem that roughly represents the
numeric problem with some loss in precision. We note that
the loss of precision implies that a single action can have
more than one possible outcome, depending on the underly-
ing concrete numeric state. This insight reveals some sim-
ilarities between planning with abstractions and a form of
non-deterministic planning, and we take advantage of some
existing techniques and concepts used to deal with non-
determinism [Muise et al., 2012] in order to build plans for
the numeric domain out of plans for the abstract classical do-
main.

Our main contributions are the description of an abstrac-
tion technique for numeric planning problems, and an algo-
rithm for a restricted class of these problems. We believe the
approach described in this paper is just one particular real-
ization of a very general idea regarding the use of abstraction
in planning, where an abstract or partial plan can be used to
generate a plan for a concrete problem.

2 Background
In this section, we give formal definitions relevant to our
work. We focus on both classical planning and planning with
numeric fluents, and on abstraction in the context of planning.

2.1 Classical Planning
A classical planning problem is a tuple P = 〈F,O, I,G〉.
Here, F is a finite set of propositional fluents, O is a finite
set of action operators, I ⊆ F is the set of all true valued
fluents in the initial state, and G is a conjunction of (possibly
negated) literals over F that defines the goal condition. Every
action operator o ∈ O is defined by two conjunctions of fluent
literals, pre(o) and eff(o), which respectively represent the

action’s preconditions and effects. Note that throughout this
paper, we will often treat these conjunctions of literals as sets.

In this formalism, a state s can be represented as the set of
fluents in F that correspond to everything that is true in the
state. As such, we obtain that the set of all possible states in
the problem is given by S(P) = 2F . For each state there is a
unique propositional valuation σ(s) : F → {true, false} that
results from assigning every fluent in s to true and the rest to
false. An operator o is applicable in s if the state’s valuation
is consistent with the action’s preconditions: σ(s) |= pre(o).

Given a state s ∈ 2F and an action operator o ∈ O such
that o is applicable in s, we can compute the successor state
that results from applying o over s as δ(s, o) = (s \ Del) ∪
Add, where Add = {f | f ∈ eff(o)} and Del = {f | ¬f ∈
eff(o)}.

2.2 Planning with Numeric Fluents
We define a planning problem with numeric fluents, hence-
forth a numeric planning problem, by extending the definition
for classical planning into a tuple P = 〈F,N,O, I,G〉, in-
troducing a set N of numeric fluents and associated numeric
conditions and effects.

For this formalism, a state s is represented as a tuple
〈sP , sN 〉 where sP is the set of fluents in F that are true
in the state and sN ∈ R|N | is a vector of real numbers
that corresponds to the values assigned to the numeric flu-
ents in N . Now, the set of all possible states is defined to be
S(P) = 2F × R|N |.

Numeric conditions are defined to be inequalities of arith-
metic expressions over N ∪ R. As such, the goal condition
can be defined as a pair of sets G = 〈GP , GN 〉, where GP
is a set of propositional fluent literals and GN is a set of
numeric conditions. An equivalent formulation can be used
for the preconditions of action operator o ∈ O: pre(o) =
〈preP (o), preN (o)〉.

A numeric effect can be formalized as the assignment of
the evaluation of an arithmetic expression over N ∪ R to a
particular numeric fluent. In this way, the effects of an op-
erator o ∈ O can be defined as a pair of sets eff(o) =
〈effP (o), effN (o)〉 where effP (o) is a set of propositional flu-
ent literals and effN (o) is a set of numeric effects.

With this, we can define the successor state δ(o, s) result-
ing from applying an applicable operator o ∈ O over some
state s ∈ S. As expected, the propositional part is identical
to the definition used for classical planning problems. The
numeric fluents are computed by evaluating all the assign-
ing expressions in effN (o) with respect to the numeric values
from s and subsequently assigning to δ(o, s). Any numeric
fluents that are not assigned via o are assigned the value from
s directly.

Restricted Case
For part of this paper, we will consider a very restricted form
of numeric planning in which numeric expressions in con-
ditions and effects are specially simple. In particular, we will
assume numeric conditions are inequalities of the form n ≥ c,
for n ∈ N and c ∈ R. Numeric effects will be of the form
n ← n + c, for n ∈ N and c ∈ R. These restrictions allow

for a clearer description of our approach, although they repre-
sent a serious limitation in expressivity. Nonetheless, extend-
ing our work to more expressive cases is possible and further
discussed in Section 6.

2.3 Transition Systems
Formally, a labelled transition system is defined as a tuple
T = 〈S,L, T, s0, SG〉. Here, S is the set of all possible states
in the system, L is a set of transition labels, T ⊆ S×L×S is
a set of labelled transitions, s0 ∈ S corresponds to the initial
state, and SG ⊆ S is the set of goal states.

A classical or numeric planning problem P induces a spe-
cific labelled transition system where the set of states is S =
S(P). The operators directly correspond to the labels and the
set of transitions is T = {〈s, o, δ(s, o)〉 | s ∈ S, o ∈ app(s)},
where app(s) ⊆ O is the set of operators that are applica-
ble in s. In both cases, s0 = I and SG is straightforwardly
derived from G.

A valid trace over T is any finite sequence
〈s0, o1, s1, o2, . . . , on, sn〉 where 〈si−1, oi, si〉 ∈ T for
all i ∈ {1, . . . , n}. A trace is, then, an interleaved sequence
of states and operators that represents a possible path within
the transition system. We will call a trace successful when
sn ∈ SG. For a successful trace, we have that the sequence
of operators 〈o1, o2, . . . , on〉 corresponds to a plan for the
problem P .

2.4 Abstraction in Planning
In the context of planning, abstraction techniques are used to
build smaller transition systems out of given planning prob-
lems by aggregating states together. Formally, an abstraction
is a function α : S → Sα that maps concrete states from S
to abstract states in Sα, with |Sα| ≤ |S|. This produces an
abstract transition system T α = 〈Sα, L, Tα, sα0 , SαG〉 where
sα0 = α(s0), SαG = {α(sG) | sG ∈ SG}, and 〈sα, o, sα′〉 ∈
Tα if and only if there is at least one transition 〈s, o, s′〉 ∈ T
such that α(s) = sα and α(s′) = sα′.

A common application of this idea is to automatically de-
rive a sufficiently small abstract transition system that can be
represented explicitly. Distances in this abstract space can be
used as admissible heuristics for the concrete problem. Many
leading approaches to optimal planning use abstractions in
this manner (e.g., [Sievers et al., 2012; Seipp and Helmert,
2013; 2014; Helmert et al., 2014]).

2.5 Goal and Affordance Preserving Abstractions
State aggregation will result in some loss of information as
whatever distinguishes two states s and s′ is evidently lost if
α(s) = α(s′). We can informally define a notion of perfect
abstraction as an abstraction that does not lose any relevant
information. Such an abstraction would be such that an ab-
stract plan always can be converted into a plan for the con-
crete problem1. We can define many other properties to cate-
gorize abstractions based on what information they preserve

1A number of other important details regarding what makes an
abstraction perfect go beyond the scope of this paper and are perhaps
application specific. Should all concrete plans be representable in the
perfect abstraction? Should optimality be a factor?

or lose. Two properties germaine to the work presented here
are formally defined below and refer to preserving informa-
tion that distinguishes goal states from non-goal states and in-
formation that distinguishes states in which different actions
are applicable.
Definition 1. A goal preserving abstraction α is an abstrac-
tion for transition system T = 〈S,L, T, s0, SG〉 such that
α(s) ∈ SαG if and only if s ∈ SG.
Definition 2. An affordance preserving abstraction α is an
abstraction for transition system T = 〈S,L, T, s0, SG〉 such
that for every pair of states s, s′ ∈ S, α(s) = α(s′) only if
app(s) = app(s′).

3 Abstraction for Numeric Planning
In this section we describe an abstraction for planning prob-
lems with numeric fluents as described in Section 2.2. The
method takes a planning problem with numeric fluents and
produces an abstract classical planning problem. In the next
section, we show how we can use a plan for the abstract prob-
lem to find a plan for the original problem.

The basic mechanism behind our abstraction is to replace
all numeric fluents by newly introduced propositional fluents
that represent the specific numeric conditions that are needed
to distinguish when actions are or are not applicable and when
the goal has been reached. To achieve this we simply add a
propositional fluent for each unique action precondition and
goal condition in the problem. In this way, we produce a goal
preserving and affordance preserving abstraction for the plan-
ning problem which maintains most of the dynamics of the
domain while removing all numeric fluents.

As an example, consider a robot that can pick and load
objects onto itself to carry them around. Assume the capabil-
ities of this robot have been modelled into a numeric plan-
ning problem in which battery levels and carrying capacity
are described through numeric fluents. Suppose the robot can
only load an object if the object’s weight does not exceed the
robot’s remaining capacity. Our abstraction would then intro-
duce propositional fluents that represent directly whether or
not each object in the model has a weight that exceeds the
robot’s current capacity. Furthermore, suppose the robot can
only move from one place to another if its current battery lev-
els surpass some value that is a function of its current load.
The abstraction we are interested would incorporate a single
propositional fluent that represents whether or not that con-
dition is met. If this were the only condition for performing
the move action, we would essentially include a fluent that
directly indicates if the action is applicable.

As mentioned in previous sections, abstractions often in-
duce some loss of information. Although we specifically pro-
duce goal preserving and affordance preserving abstractions,
there is an important loss of information with regards to the
effects of actions. This is easily illustrated through an exam-
ple. Consider a simple setting in which an automated vehicle
traverses through different locations using a unit amount of
fuel each time. If the amount of fuel in the vehicle’s tank is
modelled as a numeric fluent, the abstraction process we have
outlined would result in the introduction of a single propo-
sitional fluent to represent whether the amount of fuel is at

least one unit. It is unclear if the proposition should become
false or not after execution of the action. Indeed, both cases
should be possible and the abstraction cannot distinguish be-
tween them. A possible solution to this issue would be to
model the multiple possible effects as non-deterministic ef-
fects. Figures 1 and 2 show a more detailed example of this
situation as it applies to the move-ship action of the Set-
tlers domain [Long and Fox, 2003]. In this domain, there are
a number of different resources that can be produced and
consumed, and different actions consume different quantities.
The move-ship action consumes two units of the coal re-
source, whereas a different action (move-train) consumes
one unit. As such, our abstraction includes two new propo-
sitional fluents and effectively represents three intervals in
which the assignment for the numeric fluent (available
coal ?v) can be. Reducing the amount by two units can
have three possible effects in which both, one, or none of the
propositional fluents are deleted.

(:action move-ship
:parameters
(?v - vehicle
?p1 - place
?p2 - place)

:precondition (and
(is-ship ?v)
(connected-by-sea ?p1 ?p2)
(is-at ?v ?p1)
(>= (available coal ?v) 2))

:effect (and
(not (is-at ?v ?p1))
(is-at ?v ?p2)
(decrease (available coal ?v) 2)
(increase (pollution) 2)))

Figure 1: The move-ship action schema from the numeric
Settlers domain.

In general, identifying all the possible effects of an action is
a hard problem that merits further investigation. In this work,
we limit formal analysis of this topic to the restricted case
of numeric planning described in Section 2.2. Nonetheless, a
simple approach for the general case might be to use some
symbolic solver to test for each action and numeric condition
whether or not the application of the action can (or will) make
the condition true or false.

A final important point to make is that a correct policy for
the resulting non-deterministic problem would be effective as
a solution for the original problem. However, such a policy
may not exist or be too hard to find. That said, we can use
techniques similar to the ones used by non-deterministic plan-
ners to find solutions. In particular, we use the all-outcomes
determinization [Muise et al., 2012] to obtain a classical plan-
ning problem from the non-deterministic one. This point will
be revisited in Section 4.

3.1 Interval Abstraction for the Restricted Case
For numeric planning problems that belong to the restricted
case that we have described above, all numeric conditions are

(:action move-ship
:parameters

(?v - vehicle
?p1 - place
?p2 - place)

:precondition (and
(is-ship ?v)
(connected-by-sea ?p1 ?p2)
(is-at ?v ?p1)
(available-gte2 coal ?v))

:effect (and
(not (is-at ?v ?p1))
(is-at ?v ?p2)
(oneof

(and
(not (available-gte1 coal ?v))
(not (available-gte2 coal ?v)))

(and
(not (available-gte2 coal ?v)))

(and))))

Figure 2: The move-ship action schema from the Settlers
domain after abstraction. The only numeric precondition has
been replaced by a condition on a new propositional fluent.
The numeric effect on the (pollution) fluent is removed
since it does not affect the dynamics of the problem. The nu-
meric effect for the (available coal ?v) fluent has
been replaced by a set of different possible effects over some
of the new propositional fluents

of the form n ≥ c, where n is a numeric fluent and c is a
constant number. For any given problem, we might find a set
of conditions {n ≥ c0, n ≥ c1, . . . , n ≥ cm}. In the cor-
responding abstract problem we will have a set of proposi-
tional fluents respectively representing each of these condi-
tions: nα = {pc0 , pc1 , . . . , pcm}.

These propositional fluents correspond to an interval ab-
straction for the numeric fluent n. Indeed, if we assume
c0 < c1 < . . . < cm, we can easily see how an assignment
to the propositional fluents can be mapped to an interval. For
example, if all the fluents in nα are false, then the value must
be in the interval (−∞, c0). If only pc0 is true, then the value
must be in the interval [c0, c1), and if pc0 and pc1 are the only
true fluents the value must be in [c1, c2). Note that to be con-
sistent with the intended semantics the assignments have to be
so that all fluents below a particular level are set to true, and
all those above it are set to false. The point at which this phase
change occurs corresponds to the specific interval defined by
the assignment. If all the fluents are false or all are true then
the numeric value has to be in one of the edge intervals.

The advantage of using an interval abstraction is that to un-
derstand all the possible effects of actions in this context, we
only need to do basic interval algebra. Consider for instance
a numeric effect that increases a numeric fluent n by some
constant k > 0. If the numeric value for n was originally in
the interval [ci, cj), then the possible resulting intervals after
the effect are all those that have a non empty intersection with
the interval [ci + k, cj + k).

4 Planning with the Interval Abstraction
In this section, we will discuss how we can exploit the type of
abstraction described in Section 3 to obtain plans for planning
problems with numeric fluents. A very general overview of
the approach, the ASTER algorithm (AbSTract, Execute and
Repair), is shown in Algorithm 1.

Algorithm 1: ASTER
Input: P = 〈F,N,O, I,G〉, a planning problem with

numeric fluents
Output: π, a plan for P

1 Pα ← ABSTRACT(P)
2 πα ← PLAN(Pα)
3 Πα ← REGRESS(πα)
4 π ← 〈〉
5 s← I
6 while s is not consistent with G do
7 if sα is handled by Πα then
8 Append operator Πα[sα] to π
9 s← apply operator Πα[sα] over s

10 else
11 REPAIR(P, s,Πα)
12 if REPAIR was successful then
13 Append path from REPAIR to π
14 s← state reached by REPAIR
15 else
16 Backtrack and REPAIR

17 return π

The algorithm works in four stages. First, in line 1 we call
a procedure ABSTRACT that produces a classical planning by
abstracting the numeric problem into a non-deterministic one
as described in the previous sections and then returning the
all-outcomes determinization. In line 2, we use any classical
planner to obtain a plan in the abstract space. In line 3 we
use a procedure REGRESS over the plan. This procedure re-
peatedly applies operation regression [Waldinger, 1977] from
the goal over the operators in the plan, which results in a se-
quence of pairs of partial states and operators. We can inter-
pret this as a partial policy that maps any state consistent with
one of the partial states to the operator paired with that par-
tial state2. We will say that an abstract state sα is handled
by the policy if the policy contains some partial state that is
consistent with sα. We will refer to the operator paired with
the partial state as the operator selected by the policy for that
state.

In what remains of the algorithm, we attempt to execute
the policy over the original problem, repairing whenever we
reach a state that cannot be handled.

Since the abstract space is a classical planning problem,
we can use any classical planner to find a plan. This al-
lows us to take advantage of any and all the advancements
in the well developed field of classical planning. Regress-
ing the obtained plan can be done efficiently and the result

2If a state is consistent with more than one partial state, we use
the pair that is closest to the end of the sequence.

is a mapping of partial states to actions such that it effec-
tively corresponds to a partial policy for the abstract problem.
This approach is based on one used in PRP, a state-of-the-
art planner for fully observable non-deterministic planning
problems [Muise et al., 2012]. Indeed, as mentioned before,
there are a number of parallels between our abstract planning
space and non-deterministic planning. In particular, our ab-
straction considers multiple possible outcomes for operators
which can be interpreted as non-determinism. However, the
underlying dynamics of our problem are completely deter-
ministic, which violates some important assumptions often
used for non-deterministic planning.

Given a policy Πα for the classical problem and a state sα,
we let Πα[sα] refer to the operator selected by the policy for
the state sα. We extend this notation in the obvious way so
that for a state s from the original numeric planning prob-
lem Πα[s] refers to the operator selected by the policy for the
corresponding state sα.

4.1 Simulating and Repairing
Simulating the execution of the abstract policy over the con-
crete numeric problem space is a simple process. We just need
to keep track of a concrete numeric state and the correspond-
ing abstract state. Since our abstraction guarantees that all
concrete states matching a particular abstract state have the
same applicable operators, we know that if the partial policy
handles the abstract state then the specific selected operator
will be applicable on the concrete state. Similarly, we know
that if we reach the goal state in the abstract space we will
also have reached the goal in the concrete space. As such, the
only interesting consideration is the case in which execution
of an operator led to a concrete state that maps to some ab-
stract state that is not handled by the policy. It is precisely in
this case where we must perform some sort of repair.

Here we propose one of the simplest possible approaches to
the repair process, as outlined in Algorithms 2 and 3. The ap-
proach works by doing blind, breadth-first search in the con-
crete numeric space around the reached state until reaching
some other state that is handled by the policy. At this point
we verify whether continuing to follow the policy in the ab-
stract space will lead to the goal or would produce a loop. In
the first case, the repair is done. In the second case, the blind
search continues. If the repair fails, the planner must back-
track, effectively jumping back to the previous abstract state,
and then attempt to repair from there.

Algorithm 2: REPAIR

Input: P , a planning problem with numeric fluents; Π, a
partial policy for P ; and s, a state not handled by
Π

1 while it is possible to continue the search do
2 Start or continue BFS around s until reaching some

state t handled by Π
3 if SAFE(t,Π) then
4 return success

5 return failure

Algorithm 3: SAFE

Input: s, a state from a planning problem; Π a partial
policy for P

1 Let sα be the corresponding state for s in the abstract
problem Pα

2 c← sα

3 Loop
4 c← the result of applying operator Π[c] over state c
5 if c is consistent with Gα then
6 return true
7 else if c = sα then
8 return false

5 Experimental Evaluation
In this section we give some brief details regarding the imple-
mentation of our approach in practice, and show some basic
experimental results that validate the feasibility and effective-
ness of the method.

Our implementation was built on top of the implementation
of PRP [Muise et al., 2012], which is itself an augmentation
of the Fast Downward planning system [Helmert, 2006] to
effectively deal with non-deterministic actions. Since we use
many similar techniques, we can reuse some of the machinery
in place for finding and regressing the initial plan to generate
a policy. We further the augmentation by allowing the planner
to read and automatically abstract a numeric planning prob-
lem in the way described in the previous sections. We use the
FF heuristic [Hoffmann and Nebel, 2001] and a greedy search
algorithm to generate the initial plan.

We compare our approach, the ASTER algorithm, to the
Metric-FF algorithm [Hoffmann, 2003] and the LPRPG al-
gorithm [Coles et al., 2008]. For all experiments we use the
Settlers domain from the 3rd International Planning Com-
petition (IPC) [Long and Fox, 2003]. This is an interesting
domain that exhibits complex interaction between different
numeric fluents. The problems model a setting with a num-
ber of different locations that require collecting resources and
building infrastructure and transportation. Resources are con-
sumed when building, and while some resources can be pro-
duced directly at certain locations (e.g.: timber at a woodlands
location), other resources can only be produced by refining
existing resources (e.g.: refined wood is produced from tim-
ber).

In our experiments we consider the same problem instances
used for the IPC3. However, since our approach does not han-
dle optimization, we ignore the optimization requirements in
all cases. We ran all experiments on a Linux machine with
a 2.2GHz Intel Xeon E5 CPU, limiting the running time to
a maximum of 30 minutes. Resulting times and plan lengths
obtained by all three algorithms in each problem instance are
summarized in Table 1.

For the problems from the Settlers domain without opti-
mization, our approach seems to be more effective than either

3We omit problem 8, which is actually unsolvable. All three algo-
rithms considered in this section are immediately able to recognize
the problem as unsolvable.

Prob. Time (s) Plan length
M-FF LPRPG ASTER M-FF LPRPG ASTER

ipc-1 3.98 0.29 17.59 52 59 64
ipc-2 0.01 0.10 15.75 25 26 26
ipc-3 24.15 38.25 17.14 101 113 105
ipc-4 93.41 0.41 20.42 76 70 80
ipc-5 0.28 0.23 21.86 76 76 72
ipc-6 10.45 43.90 20.94 77 117 89
ipc-7 T/O T/O 33.69 — — 184
ipc-9 T/O T/O T/O — — —

ipc-10 T/O 607.52 63.74 — 245 167
ipc-11 1798.61 892.11 42.66 195 262 200
ipc-12 539.36 T/O 38.63 147 — 162
ipc-13 1105.52 T/O 70.98 230 — 241
ipc-14 T/O T/O T/O — — —
ipc-15 1114.18 T/O 84.39 235 — 240
ipc-16 T/O T/O 129.95 — — 340
ipc-17 T/O T/O T/O — — —
ipc-18 T/O T/O T/O — — —
ipc-19 T/O T/O T/O — — —
ipc-20 T/O T/O 280.10 — — 389
solved 10 8 14

Table 1: Results on the Settlers domain, where ASTER
finds more solutions than Metric-FF and LPRPG combined.
ASTER often finds a solution more than an order of magni-
tude faster than the other planners. T/O is time out.

Metric-FF or LPRPG. Indeed, our approach solves 3 more
problems than the other two algorithm combined, and finds
plans faster on 6 of the remaining problems. These solutions
are found at least one and sometimes two orders of magnitude
faster than the other planners.

At the same time, there is a small but somewhat consistent
degradation in the quality of the plans found. Nonetheless, a
particularly interesting point is that whenever our algorithm
terminates, it does so in under 5 minutes of time. In cases
where optimization is important, our algorithm could be used
as a first attempt to find a solution in a very short amount of
time before attempting to find a near optimal solution with
some other method. The suboptimal solution discovered by
ASTER can then be used as a fallback whenever the optimal
algorithm doesn’t terminate in time.

6 Extensions and Future Work
As described, our methods are practical for a restricted class
of numeric planning problems. In this section we discuss
what is required to extend the approach to a more general
case, and how the ideas presented in the paper could be ap-
plied in other contexts.

At a high level, our algorithm works by taking a numeric
planning problem and generating a roughly equivalent clas-
sical planning one in which all numeric conditions that are
mentioned in the original domain are associated to some new
propositional fluent that should hold whenever the numeric
condition holds. Identifying the possible outcomes of a given
numeric effect implies understanding which of the numeric
conditions can change from true to false or vice versa after

the numeric transformation represented by the effect is ap-
plied. If, as we’ve required so far, all conditions are of the
form n ≥ c where n is a fluent and c is a constant, then this
process is easy to do. As mentioned before, for this case the
resulting abstraction is an interval abstraction and all that is
needed to evaluate the effects is a basic use of interval arith-
metics.

Extending the abstractions to consider propositional flu-
ents that represent more elaborate conditions is certainly pos-
sible. Understanding the possible outcomes of some trans-
formation over the numeric variables requires the use of
some solver capable of handling the particular theory over
which the conditions are defined. Alongside interval abstrac-
tions, more expressive abstractions for numeric variables,
such as convex polyhedra, have been extensively studied
within the field of Abstract Interpretation for Static Anal-
ysis of Software [Cousot and Cousot, 1976; 1977; 1979;
Cousot and Halbwachs, 1978]. Techniques for applying the
corresponding numeric transformations over the abstractions
are well understood, and adapting them to our context is fea-
sible.

Other interesting directions in which the methods proposed
in this paper can be extended involve applying the basic idea
of abstracting or relaxing a planning problem and then gener-
ating a policy for the abstract plan that can be used to subse-
quently generate a plan for the original task. This approach
is not limited only to numeric planning problems. We are
interested in investigating abstraction techniques similar to
certain reformulation approaches that identify resources en-
coded into classical planning problems [Riddle et al., 2015;
Fuentetaja and de la Rosa, 2016]. In these works, indistin-
guishable objects from the planning problems are grouped
together to reduce symmetries and therefore reduce the com-
plexity of the task.

7 Conclusions
We have given a method for generating interval abstractions
for a class of numeric planning problems and described a
planning algorithm that exploits such abstractions to generate
plans for the original problems. For an interesting benchmark
domain, we find that our planner often obtains solution much
faster than two other very effective algorithms.

Although the class of problems we can handle is limited,
we’ve give insight into how we could adapt our algorithm
to work in more general cases. We believe our approach is
easy to extend into general techniques for many interesting
problems in planning, and that it offers worthy directions for
further research.
Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Council
of Canada (NSERC). We also would like to thank the anony-
mous reviewers for insightful feedback and helpful com-
ments.

References
[Aldinger et al., 2015] Johannes Aldinger, Robert Mattmüller, and

Moritz Göbelbecker. Complexity of interval relaxed numeric

planning. In KI 2015: Advances in Artificial Intelligence, pages
19–31. Springer, 2015.

[Boutilier and Brafman, 2001] Craig Boutilier and Ronen I Braf-
man. Partial-order planning with concurrent interacting actions.
Journal of Artificial Intelligence Research, pages 105–136, 2001.

[Chrpa et al., 2015] Lukáš Chrpa, Enrico Scala, and Mauro Vallati.
Towards a reformulation based approach for efficient numeric
planning: Numeric outer entanglements. In Proceedings of the
8th Symposium on Combinatorial Search (SOCS), 2015.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore, Marco
Roveri, and Paolo Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence,
147(1):35–84, 2003.

[Cimatti et al., 2004] Alessandro Cimatti, Marco Roveri, and Pier-
giorgio Bertoli. Conformant planning via symbolic model check-
ing and heuristic search. Artificial Intelligence, 159(1):127–206,
2004.

[Coles et al., 2008] Andrew Coles, Maria Fox, Derek Long, and
Amanda Smith. A Hybrid Relaxed Planning Graph-LP Heuris-
tic for Numeric Planning Domains. In Proceedings of the 18th
International Conference on Automated Planning and Sched.
(ICAPS), pages 52–59, 2008.

[Cousot and Cousot, 1976] Patrick Cousot and Radhia Cousot.
Static determination of dynamic properties of programs. In Pro-
ceedings of the 2nd International Symposium on Programming,
pages 106–130, 1976.

[Cousot and Cousot, 1977] Patrick Cousot and Radhia Cousot. Ab-
stract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 238–252. ACM, 1977.

[Cousot and Cousot, 1979] Patrick Cousot and Radhia Cousot.
Systematic design of program analysis frameworks. In Proceed-
ings of the 6th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 269–282. ACM, 1979.

[Cousot and Halbwachs, 1978] Patrick Cousot and Nicolas Halb-
wachs. Automatic discovery of linear restraints among variables
of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 84–
96. ACM, 1978.

[Daniele et al., 1999] Marco Daniele, Paolo Traverso, and Moshe Y
Vardi. Strong cyclic planning revisited. In Recent Advances in
AI Planning, pages 35–48. Springer, 1999.

[Fox and Long, 2003] Maria Fox and Derek Long. PDDL2.1: An
extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003.

[Fuentetaja and de la Rosa, 2016] Raquel Fuentetaja and Tomás
de la Rosa. Compiling irrelevant objects to counters. Special case
of creation planning. AI Communications, 29(3):435–467, 2016.

[Gerevini et al., 2004] Alfonso Gerevini, Alessandro Saetti, and
Ivan Serina. Planning with numerical expressions in LPG. In
Proceedings of the 16th European Conference on Artificial Intel-
ligence (ECAI). Citeseer, 2004.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg Hoff-
mann, and Raz Nissim. Merge-and-shrink abstraction: A method
for generating lower bounds in factored state spaces. Journal of
the ACM (JACM), 61(3):16, 2014.

[Helmert, 2006] Malte Helmert. The Fast Downward planning sys-
tem. Journal of Artificial Intelligence Research, 26:191–246,
2006.

[Hoffmann and Brafman, 2006] Jörg Hoffmann and Ronen I Braf-
man. Conformant planning via heuristic forward search: A new
approach. Artificial Intelligence, 170(6):507–541, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard Nebel.
The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Hoffmann, 2003] Jörg Hoffmann. The Metric-FF planning sys-
tem: Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20:291–341, 2003.

[Long and Fox, 2003] Derek Long and Maria Fox. The 3rd inter-
national planning competition: Results and analysis. Journal of
Artificial Intelligence Research, 20:1–59, 2003.

[Muise et al., 2012] Christian Muise, Sheila A. McIlraith, and
J. Christopher Beck. Improved Non-deterministic Planning by
Exploiting State Relevance. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Sched. (ICAPS),
2012.

[Riddle et al., 2015] Patricia J Riddle, Michael W Barley, Santiago
Franco, and Jordan Douglas. Automated transformation of pddl
representations. In Proceedings of the 8th Symposium on Combi-
natorial Search (SOCS), 2015.

[Seipp and Helmert, 2013] Jendrik Seipp and Malte Helmert.
Counterexample-guided cartesian abstraction refinement. In Pro-
ceedings of the 23rd International Conference on Automated
Planning and Sched. (ICAPS), 2013.

[Seipp and Helmert, 2014] Jendrik Seipp and Malte Helmert. Di-
verse and additive cartesian abstraction heuristics. In Proceed-
ings of the 24th International Conference on Automated Planning
and Sched. (ICAPS), 2014.

[Sievers et al., 2012] Silvan Sievers, Manuela Ortlieb, and Malte
Helmert. Efficient implementation of pattern database heuristics
for classical planning. In Proceedings of the 5th Symposium on
Combinatorial Search (SOCS), 2012.

[Waldinger, 1977] Richard Waldinger. Achieving several goals si-
multaneously. In Machine Intelligence 8, pages 94–136. Ellis
Horwood, Edinburgh, Scotland, 1977.

