
Symbolic Planning and Model-Free Reinforcement Learning:
Training Taskable Agents

León Illanes1 Xi Yan1 Rodrigo Toro Icarte1,2 Sheila A. McIlraith1,2

1Department of Computer Science, University of Toronto 2Vector Institute

Running Example

A D

CB
K

K

B[

[[

[[

[b

Symbol Meaning

Agent
[Furniture
K Coffee machine
B Mail room
b Office

A, B, C, D Marked locations

Motivation – Taskability

– Specify high-level, goal-directed tasks to an agent
– Avoid reexploration of the environment

Task examples

T1. Deliver mail to the office
T2. Deliver coffee and mail to the office
T3. Visit locations A, B, C, and D (in any order)

Possible approches

– Model-based Reinforcement Learning
– Hierarchical Reinforcement Learning
– Reward Shaping
– Modular RL and Policy Sketches
– Structured and Decomposable Reward Functions

In this work

– Where do the options come from?
– Where do reward functions come from?
– Where do policy sketches come from?

Answer: Typically, from a human expert.

The expert has a working model of the environment in mind and
chooses options, designs reward functions, or sketches policies
based on that. Given a new task, most of the expert’s work will
need to be repeated.

Our approach: Use an explicit high-level model.

– The model specifies abstract actions
– These correspond to relevant options

– New tasks are very easy to specify
– We automatically find abstract solutions
– We use these solutions to guide RL agent

Symbolic Planning

“Planning is the art and practice of thinking before acting.”
–Patrik Haslum

– State-space given by a set of state properties
– e.g., propositions

– Actions given as preconditions and effects
– Properties needed for the action to be applicable
– Properties that change after the action is applied

– Tasks are given by an initial state and a goal condition
– Solutions or plans are sequences of actions

In the example
Propositions: Actions:
have-mail/coffee get-mail/coffee
delivered-mail/coffee deliver-mail/coffee
visited-A/B/C/D go-to-A/B/C/D

get-coffee:
pre: (none)
eff: have-coffee

obs: coffee-machine

deliver-coffee:
pre: have-coffee
eff: delivered-coffee,

not have-coffee
obs: office

Plans

T1. 〈get-coffee,deliver-coffee〉
T2. 〈get-coffee,get-mail,deliver-coffee,deliver-mail〉
T3. 〈go-to-A,go-to-B,go-to-C,go-to-D〉

Executing Abstract Plans

Even assuming we have perfect policies for the high-level ac-
tions, execution of the plans results in suboptimal behavior. Con-
sider the plan for T2 (left) versus the optimal (right):

A D

CB
K

K

B[

[[

[[

[b

A D

CB
K

K

B[

[[

[[

[b

Can we relax the ordering constraints?

Partial-Order Plans

– A collection of actions and a partial order over them
– Every strict ordering that respects the partial order is a

valid sequential plan
– Well established in the Planning literature

– Some planners can produce partial-order plans
– Sequential plans can be relaxed into partial-order plans

Examples
T1. Actions: get-coffee, deliver-coffee

Order: get-coffee≺ deliver-coffee

T2. Actions: get-coffee, get-mail,
deliver-coffee, deliver-mail

Order: get-coffee≺ deliver-coffee,
get-mail≺ deliver-mail

T3. Actions: go-to-A, go-to-B, go-to-C, go-to-D
Order: (none)

From POP to RL

– We train a metacontroller to execute a given POP
– The metacontroller is trained in a standard HRL manner

– It is a-priori restricted to only select options that advance the
execution of the POP

Implementation details

– POPs are represented with Reward Machines
– Finite-state machines with transitions that match observations

in the environment

– The state in the machine represents which actions in the
POP have already occurred

– The transitions depend on the observed environment

Example (T2)

u0 u8

u6

u7u5

u4

u3
u2

u1h-c

h-c

h-m

h-m

h-m

h-co

o

o

o

o

u0: ∅ u5: {get-mail,deliver-mail}
u1: {get-coffee} u6: {get-coffee,get-mail,deliver-coffee}
u2: {get-mail} u7: {get-mail,get-coffee,deliver-mail}
u3: {get-coffee,get-mail} u8: {get-coffee,get-mail,deliver-coffee,
u4: {get-coffee,deliver-coffee} deliver-mail}

A D

CB
K

K

B[

[[

[[

[b

u0 u8

u6

u7u5

u4

u3
u2

u1h-c

h-c

h-m

h-m

h-m

h-co

o

o

o

o

metacontroller

get-coffee get-mail

Experiments

Assume we have a well trained set of policies for the high-level
actions. We compare our approach with standard HRL.

Discrete domains
OFFICEWORLD MINECRAFTWORLD

0 10K 20K 30K 40K 50K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

HRLr(seq)
HRLr(pop)
HRL(seq)
HRL(pop)

0 100K 200K 300K 400K 500K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

HRLr(seq)
HRLr(pop)
HRL(seq)
HRL(pop)

Continuous domain
FARMWORLD Solution quality

0 200K 400K 600K 800K 1000K
 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

HRLr(seq)
HRLr(pop)
HRL(seq)
HRL(pop)

0 100 200 300 400 500 n/a
0

100

200

300

400

500

n/a

H
R
L
r
(
p
o
p
)

HRL(pop)

Summary

– Specify abstract state and action models
– State properties, action preconditions and effects

– Use them to define tasks and solve them more efficiently
– Find a family of abstract plans and train a metacontroller to

instantiate it into a single plan

