

UNIVERSION TORONTO

Running Example

В		*	С
*			*
A	*	*	

Symbol	Meaning	
	Agent	
*	Furniture	
	Coffee machine	
\bowtie	Mail room	
	Office	
A, B, C, D	Marked locations	

Motivation – Taskability

- Specify high-level, **goal-directed tasks** to an agent
- Avoid reexploration of the environment

Task examples

- Deliver mail to the office
- Deliver coffee and mail to the office
- Visit locations A, B, C, and D (in any order) T3.

Possible approches

- Model-based Reinforcement Learning
- Hierarchical Reinforcement Learning Reward Shaping
- Modular RL and Policy Sketches
- Structured and Decomposable Reward Functions

In this work

- Where do the options come from?
- Where do reward functions come from?
- Where do policy sketches come from?

Answer: Typically, from a human expert.

The expert has a working model of the environment in mind and chooses options, designs reward functions, or sketches policies based on that. Given a new task, most of the expert's work will need to be repeated.

Our approach: Use an explicit high-level model.

Even assuming we have perfect policies for the high-level actions, execution of the plans results in suboptimal behavior. Consider the plan for T2 (left) versus the optimal (right):

Symbolic Planning and Model-Free Reinforcement Learning: **Training Taskable Agents**

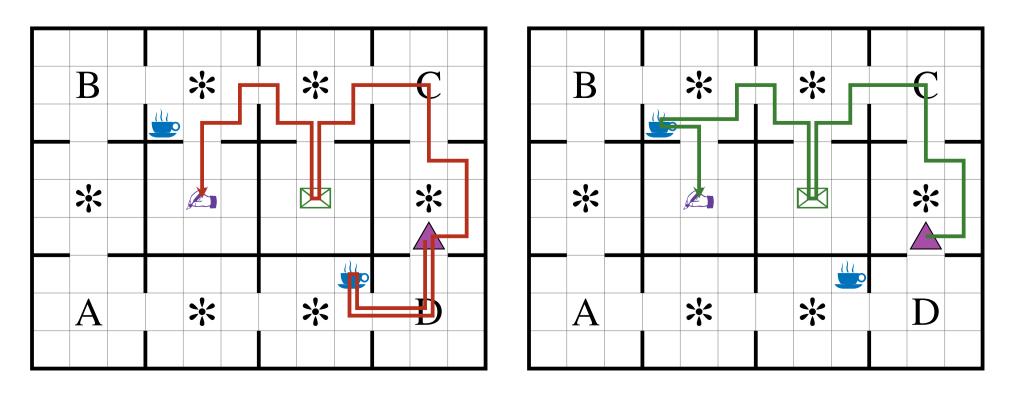
Rodrigo Toro Icarte^{1,2} León Illanes¹ Xi Yan¹

¹Department of Computer Science, University of Toronto ²Vector Institute

 The model specifies abst 	tract actions	
 These correspond to relevant 	evant options	
 New tasks are very easy 	to specify	
 We automatically find al 	ostract solutions	_
 We use these solutions to 	o guide RL agent	_
Symbolic	Planning	
"Planning is the art and pro	actice of thinking before acting." –Patrik Haslum	
 State-space given by a set of state properties e.g., propositions Actions given as preconditions and effects 		T1.
 Properties needed for the action to be applicable Properties that change after the action is applied 		
 Tasks are given by an inf Solutions or plans are se 	itial state and a goal condition equences of actions	
In the example		Т3.
Propositions:	Actions:	
have-mail/coffee	get-mail/coffee	
delivered-mail/coffee	deliver-mail/coffee	
visited-A/B/C/D	go-to-A/B/C/D	
	deliver-coffee:	_
get-coffee:	pre: have-coffee	_
pre: (none)	eff: delivered-coffee,	
eff: have-coffee	not have-coffee	
obs: coffee-machine	obs: office	
Pla	ans	
T1. $\langle \text{get-coffee}, \text{deliver-coff} \rangle$		

- T2. $\langle get-coffee, get-mail, deliver-coffee, deliver-mail \rangle$
- T3. $\langle go-to-A, go-to-B, go-to-C, go-to-D \rangle$

Executing Abstract Plans



Can we relax the ordering constraints?

Sheila A. McIlraith^{1,2}

Partial-Order Plans

- A collection of actions and a partial order over them Every strict ordering that respects the partial order is a valid sequential plan
- Well established in the Planning literature
- Some planners can produce partial-order plans
- Sequential plans can be relaxed into partial-order plans

Examples

_	get-coffee, deliver-coffee get-coffee \prec deliver-coffee
Actions:	get-coffee, get-mail, deliver-coffee, deliver-mail
Order:	get-coffee ≺ deliver-coffee, get-mail ≺ deliver-mail
Actions: Order:	go-to-A, go-to-B, go-to-C, go-to-D (none)

From POP to RL

We train a metacontroller to execute a given POP

The metacontroller is trained in a standard HRL manner – It is a-priori restricted to only select options that advance the execution of the POP

Implementation details

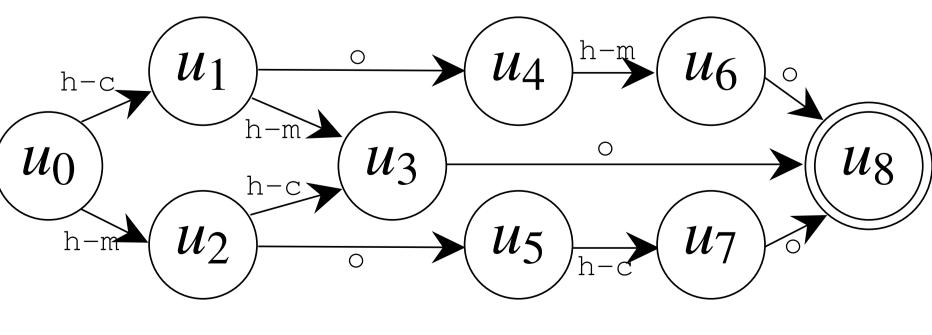
POPs are represented with Reward Machines

– Finite-state machines with transitions that match observations in the environment

– The state in the machine represents which actions in the POP have already occurred

The transitions depend on the observed environment

Example (T2)

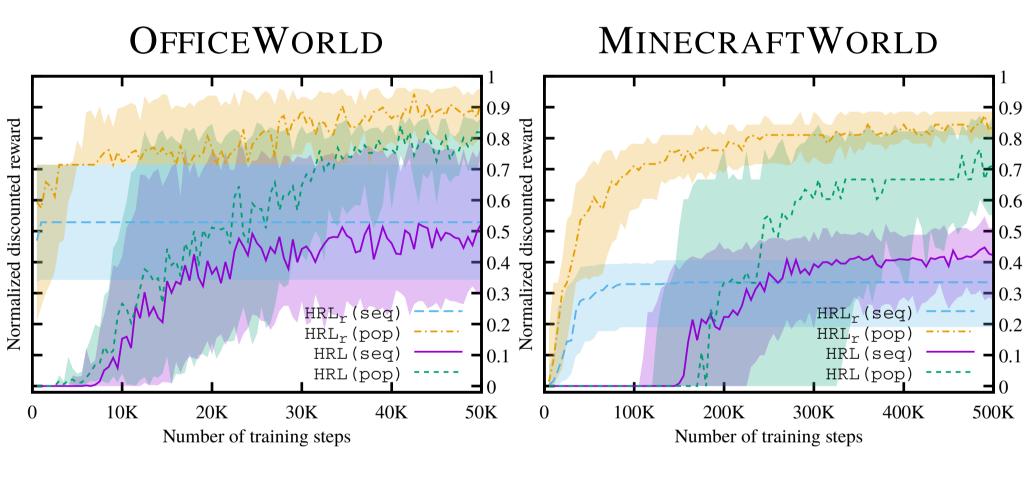


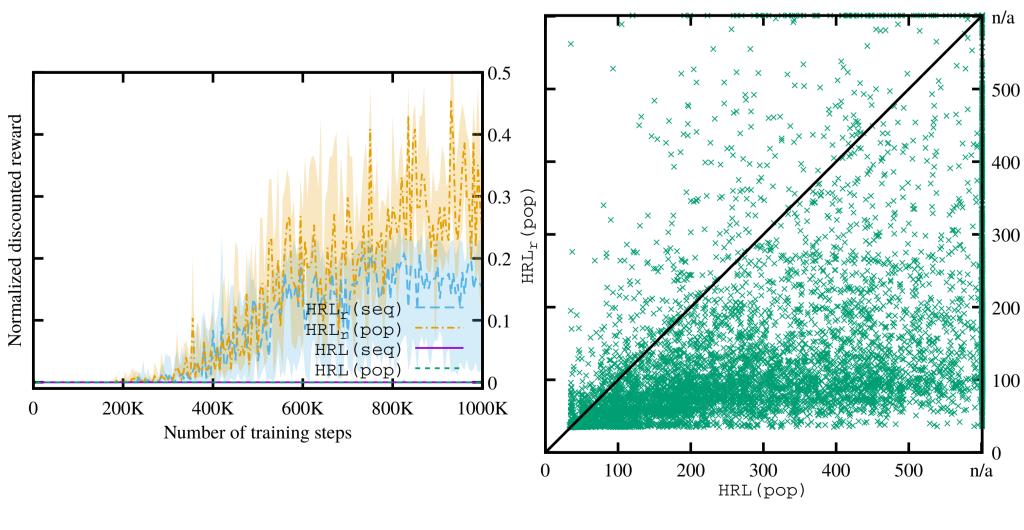
 $u_0: \varnothing$ u_1 : {get-coffee} u_2 : {get-mail} u_3 : {get-coffee, get-mail} u_4 : {get-coffee, deliver-coffee}

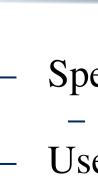
 u_5 : {get-mail, deliver-mail} u_6 : {get-coffee, get-mail, deliver-coffee} u_7 : {get-mail, get-coffee, deliver-mail} u_8 : {get-coffee, get-mail, deliver-coffee, deliver-mail}

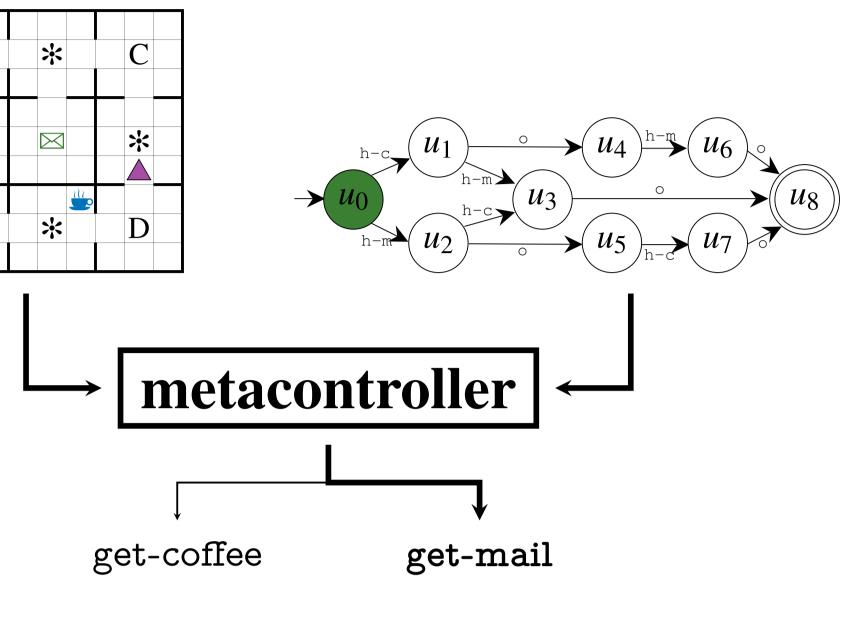
B	111	*	
*		Þ	
A		*	

Assume we have a well trained set of policies for the high-level actions. We compare our approach with standard HRL.



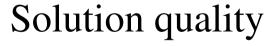






Experiments

Discrete domains



Summary

– Specify abstract state and action models

- State properties, action preconditions and effects
- Use them to define tasks and solve them more efficiently – Find a family of abstract plans and train a metacontroller to instantiate it into a single plan