Reconnection with the Ideal Tree A New Approach to Real-Time Search

León Illanes

Department of Computer Science School of Engineering Pontificia Universidad Católica de Chile Santiago, Chile

January 10, 2014

Agent-centered Search Issue: Heuristic Depressions

Agent-centered Search

• Search in initially unknown environments.

Agent-centered Search Issue: Heuristic Depressions

Agent-centered Search

- Search in initially unknown environments.
- Search in dynamic environments.

Agent-centered Search Issue: Heuristic Depressions

Agent-centered Search

- Search in initially unknown environments.
- Search in dynamic environments.
- Real-time search.

Agent-centered Search Issue: Heuristic Depressions

Agent-centered Search

- Search in initially unknown environments.
- Search in dynamic environments.
- Real-time search.

Agent-centered Search Issue: Heuristic Depressions

The LRTA* Algorithm

- Local A*-like search around the agent
- Move towards the best state in the local region

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work

Agent-centered Search Issue: Heuristic Depressions

Designing a solution The FRIT Algorithm Results Future work Agent-centered Search Issue: Heuristic Depressions

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

Heuristic learning (à la LRTA*)

Agent-centered Search Issue: Heuristic Depressions

How do we avoid erratic movements?

- More lookahead
- More learning
- Pruning states

Agent-centered Search Issue: Heuristic Depressions

How do we avoid erratic movements?

- More lookahead
- More learning
- Pruning states

We asked ourselves: Anything simpler?
Design principles

Design principles

1

2

Design principles

Design principles

Avoid expensive computation

- Sorting
- Learning
- 2

Design principles

Design principles

Avoid expensive computation

- Sorting
- Learning
- 2 Exploit the heuristic

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The FRIT Algorithm

Follow and Reconnect with the Ideal Tree

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree

Definition (Ideal Tree)

For a problem graph G with goal g and free-space assumption graph G_M , we define an Ideal Tree to be any spanning tree for G_M rooted at g.

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree

Definition (Ideal Tree)

For a problem graph G with goal g and free-space assumption graph G_M , we define an Ideal Tree to be any spanning tree for G_M rooted at g.

In practice:

$$parent(s) = \underset{u:(s,u)\in E(G_M)}{\operatorname{argmin}} c(s,u) + h(u)$$

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT

Input: Given the free-space assumption graph G_M , a goal g, and a starting node s_0 .

 $s \leftarrow s_0$ // Set the current state to s_0 while $s \neq g$ do

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT

Input: Given the free-space assumption graph G_M , a goal g, and a starting node s_0 .

 $s \leftarrow s_0$ // Set the current state to s_0 while $s \neq a$ do

while $s \neq g$ do

Observe the environment around s and remove non-existent arcs from G_M .

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

```
Input: Given the free-space assumption graph G_M, a goal g, and a
       starting node s_0.
                              // Set the current state to s_0
s \leftarrow s_0
while s \neq g do
   Observe the environment around s and remove non-existent
   arcs from G_M.
   if s has no parent node then
       Reconnect:
```

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

```
Input: Given the free-space assumption graph G_M, a goal g, and a
       starting node s_0.
                              // Set the current state to s_0
s \leftarrow s_0
while s \neq g do
   Observe the environment around s and remove non-existent
   arcs from G_M.
   if s has no parent node then
       Reconnect:
   Follow:
```

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

```
Input: Given the free-space assumption graph G_M, a goal g, and a
       starting node s_0.
                             // Set the current state to s_0
s \leftarrow s_0
while s \neq g do
   Observe the environment around s and remove non-existent
   arcs from G_M.
   if s has no parent node then
       Reconnect:
   Follow:
   s \leftarrow parent(s) // Move the agent to the parent of s
```

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

```
Input: Given the free-space assumption graph G_M, a goal g, and a
       starting node s_0.
                              // Set the current state to s_0
s \leftarrow s_0
while s \neq g do
   Observe the environment around s and remove non-existent
   arcs from G_M.
   if s has no parent node then
       Reconnect:
       Locally search around s to find any state s' connected to
       g.
       Update the Ideal Tree to include the path from s to s'.
   Follow:
   s \leftarrow parent(s) // Move the agent to the parent of s
```

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

FRIT by example

Observe Follow Reconnect

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

Video!

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Real-Time Property

- As described, FRIT is not a Real-Time Search Algorithm.
- We need a bound on the amount of states visited while reconnecting.

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

The Real-Time Property

- As described, FRIT is not a Real-Time Search Algorithm.
- We need a bound on the amount of states visited while reconnecting.
- What to do when the bound is surpassed?

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

Two approaches

León Illanes Reconnection with the Ideal Tree

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

Standard FRIT: Do nothing... [RIBH13, RIBH14]

León Illanes Reconnection with the Ideal Tree

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search Properties

- Standard FRIT: Do nothing... [RIBH13, RIBH14]
- FRIT_{RT}: Use a Real-Time Search Algorithm for Reconnection. [RIBH14]

Complexity

• Follow is O(1)

Properties

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

- Follow is O(1)
- **Reconnect** can be O(|V|)

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

- Follow is O(1)
- **Reconnect** can be O(|V|)

Reconnect can be O(|V|).

Using BFS as the local search algorithm, we check at most |V| nodes to see if they are connected to the goal. This check can be done as a recursive function with no side effects and can thus be memoized, ensuring that for each reconnection search we do at most |V| comparisons.

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

- Follow is O(1)
- **Reconnect** can be O(|V|)

Reconnect can be O(|V|).

Using BFS as the local search algorithm, we check at most |V| nodes to see if they are connected to the goal. This check can be done as a recursive function with no side effects and can thus be memoized, ensuring that for each reconnection search we do at most |V| comparisons.

Additionally, we prove correcteness and completeness for both FRIT and FRIT_{RT}, while giving an explicit upper bound of $\frac{(|V|+1)^2}{4}$ moves for FRIT and $O(|V|^3)$ moves for FRIT_{RT}.

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

Convergence

FRIT immediately converges to a suboptimal solution

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

Convergence

FRIT immediately converges to a suboptimal solution

The Ideal Tree Follow and Reconnect FRIT and Real-Time Search **Properties**

Convergence

FRIT immediately converges to a suboptimal solution

FRIT_{RT} FRIT with BFS Comparison between approaches

Games: FRIT_{RT} halves daRTAA*'s solutions

FRIT_{RT} FRIT with BFS Comparison between approaches

Mazes: Similar tendencies

FRIT_{RT} FRIT with BFS Comparison between approaches

Games: FRIT dominates for very small t

Results Future work

FRIT with BFS

Mazes: Again, similar tendencies

FRIT_{RT} FRIT with BFS Comparison between approaches

FRIT(BFS) obtains better solutions

Other applications

- Optimizing for pathfinding in grids [RIB14]
- Moving-target search
- Dense graphs (e.g.: Airport networks)

We presented a family of real-time search algorithms which:

- Are easy to implement
- Avoid expensive computations
- Converge to suboptimal solutions in the second trial
- Significantly outperform standard real-time search algorithms when time constraints are tight

Bibliography

- Nicolás Rivera, León Illanes, and Jorge A. Baier, *Real-time* pathfinding in unknown terrain via reconnection with an ideal tree, Proceedings of the 14th Ibero-American Conference on Artificial Intelligence (IBERAMIA) (Santiago, Chile), November 2014, **To appear**.
- Nicolas Rivera, Leon Illanes, Jorge A. Baier, and Carlos Hernández, *Reconnecting with the ideal tree: An alternative to heuristic learning in real-time search*, Proceedings of the 6th Symposium on Combinatorial Search (SoCS), 2013.
- Nicolás Rivera, León Illanes, Jorge A. Baier, and Carlos Hernández, *Reconnection with the ideal tree: A new approach to real-time search*, Journal of Artificial Intelligence Research 50 (2014).

Reconnection with the Ideal Tree A New Approach to Real-Time Search

León Illanes

Department of Computer Science School of Engineering Pontificia Universidad Católica de Chile Santiago, Chile

January 10, 2014

	FRIT(BFS)			AA*		
k	Avg. Its	Time/ep	No moves	Avg. Its	Time/ep	No moves
		(μs)	(%)		(μs)	(%)
1	1508631	0.0430	99.80	1144680	0.4152	99.84
5	303483	0.2148	99.01	229967	2.0727	99.25
10	152858	0.4283	98.03	115628	4.1376	98.51
50	32401	2.0940	90.71	24156	20.378	92.86
100	17370	4.0678	82.67	12723	40.004	86.44
500	5449	16.115	44.74	3607	172.41	52.15
1000	4035	24.840	25.38	2583	274.35	33.20
5000	3073	39.316	2.046	1854	474.29	6.904
10000	3026	40.487	0.501	1775	514.88	2.764
50000	3011	40.851	0.030	1728	524.55	0.117
100000	3011	40.869	0.007	1726	543.66	0.014

