
S -16

Introduction to the
C Shell

S -17

What is the Shell? (Ch.6)

• A command-line interpreter program that is the interface between the
user and the Operating System.

• The shell:

– analyzes each command

– determines what actions to be performed

– performs the actions

• Example:
wc -l file1 > file2

S -18

csh Shell Facilities

• Automatic command searching (6.2)

• Input-output redirection (6.3)

• Pipelining commands (6.3)

• Command aliasing (6.5)

• Job control (6.4)

• Command history (6.5)

• Shell script files (Ch.7)

S -19

I/O Redirection (6.2)

• stdin (fd=0), stdout (fd=1), stderr (fd=2)

• Redirection examples: (<, >, >>, >&, >!, >&!)

fmt

fmt < personal_letter

fmt > new_file

fmt < personal_letter > new_file

fmt >> personal letter

fmt < personal_letter >& new_file

fmt >! new_file

fmt >&! new_file

S -20

Pipes (6.3)

• Examples:
who | wc -l

ls /u/csc209h |& sort -r

• For a pipeline, the standard output of the first process is connected to
the standard input of the second process

S -21

Filename Expansion (6.5 p170)
• Examples:

ls *.c

rm file[1-6].?

cd ~/bin

ls ~culhane

 * Matches any string (including null)

 ? Matches any single character

[...] Matches any one of the enclosed characters

[.-.] Matches any character lexically between the pair

[!...] Matches any character not enclosed

S -22

Command Aliases (6.5 p167)

• Examples:
alias md mkdir

alias lc ls -F

alias rm rm -i

\rm *.o

unalias rm

alias

alias md

alias cd 'cd \!*; pwd'

S -23

Job Control (6.4)

• A job is a program whose execution has been initiated by the user

• At any moment, a job can be running or stopped (suspended)

• Foreground job:

– a program which has control of the terminal

• Background job:

– runs concurrently with the parent shell and does not take control of
the keyboard

• Initiate a background job by appending the “&” metacharacter

• Commands: jobs, fg, bg, kill, stop

S -24

Some Examples
a | b | c

– connects standard output of one program to standard input of another

– shell runs the entire set of processes in the foreground

– prompt appears after c completes
a & b & c

– executes a and b in the background and c in the foreground

– prompt appears after c completes

a & b & c &

– executes all three in the background

– prompt appears immediately
a | b | c &

– same as first example, except it runs in the background and prompt
appears immediately

S -25

The History Mechanism (6.5 p164)

• Example session:
alias grep grep -i

grep a209 /etc/passwd >! ~/list

history

cat ~/list

!!

!2

!-4

!c

!c > newlist

grpe a270 /etc/passed | wc -l

^pe^ep

S -26

Shell Variables
(setting)

• Examples:
set V

set V = abc

set V = (123 def ghi)

set V[2] = xxxx

set

unset V

S -27

Shell Variables
(referencing and testing)

• Examples:
echo $term

echo ${term}

echo $V[1]

echo $V[2-3]

echo $V[2-]

set W = ${V[3]}

set V = (abc def ghi 123)

set N = $#V

echo $?name

echo ${?V}

S -28

Shell Control Variables (6.6)

filec a given with tcsh

prompt my favourite: set prompt = “%m:%~%#”

ignoreeof disables Ctrl-D logout

history number of previous commands retained

mail how often to check for new mail

path list of directories where csh will look for commands (†)

noclobber protects from accidentally overwriting files in redirection

noglob turns off file name expansion

• Shell variables should not to be confused with Environment variables.

S -29

Variable Expressions

• Examples:
set list1 = (abc def)

set list2 = ghi

set m = ($list2 $list1)

@ i = 10 # could be done with “set i = 10”

@ j = $i * 2 + 5

@ i++

• comparison operators: ==, !=, <, <=, >, >=, =~, !~

S -30

File-oriented Expressions

Usage:
-option filename

where 1 (true) is returned if selected option is true, and 0 (false) otherwise

-r filename Test if filename can be read

-e filename Test if filename exists

-d filename Test if filename is a directory

-w filename Test if filename can be written to

-x filename Test if filename can be executed

-o filename Test if you are the owner of filename

• See Wang, table 7.2 (page 199) for more

S -31

csh

S -32

csh Script Execution (Ch.7)

• Several ways to execute a script:
1) /usr/bin/csh script-file

2) chmod u+x script-file, then:

a) make first line a comment, starting with “#”

– (this will make your default shell run the script-file)
b) make first line “#!/usr/bin/csh”

– (this will ensure csh runs the script-file, preferred!)

• Useful for debugging your script files:
“#!/usr/bin/csh -x” or “#!/usr/bin/csh -v”

• Another favourite:
“#!/usr/bin/csh -f”

S -33

if Command

• Syntax:
if (test-expression) command

• Example:
if (-w $file2) mv $file1 $file2

• Syntax:
if (test-expression) then

shell commands

else

shell commands

endif

S -34

if Command (cont.)

• Syntax:
if (test-expression) then

shell commands

else if (test-expression) then

shell commands

else

shell commands

endif

S -35

foreach Command

• Syntax:
foreach item (list-of-items)

shell commands

end

• Example:
foreach item (‘ls *.c’)

cp $item ~/.backup/$item

end

• Special statements:
break causes control to exit the loop

continue causes control to transfer to the test at the top

S -36

while Command
• Syntax:

while (expression)

shell commands

end

• Example:
set count = 0

set limit = 7

while ($count != $limit)

echo “Hello, ${USER}”

@ count++

end

• break and continue have same effects as in foreach

S -37

switch Command

• Syntax:
switch (test-string)

case pattern1:

shell commands

breaksw

case pattern2:

shell commands

breaksw

default:

shell commands

breaksw

end

S -38

goto Command

• Syntax:
goto label

...

other shell commands

...

label:

shell commands

S -39

repeat Command

• Syntax:
repeat count command

• Example:
repeat 10 echo “hello”

S -40

Standard Variables

 $0 ⇒ calling function name

 $N ⇒ Nth command line argument value

$argv[N] ⇒ same as above

 $* ⇒ all the command line arguments

 $argv ⇒ same as above

 $# ⇒ the number of command line arguments

 $< ⇒ an input line, read from stdin of the shell

 $$ ⇒ process number (PID) of the current process

 $! ⇒ process number (PID) of the last background process

 $? ⇒ exit status of the last task

S -41

Other Shell Commands

source file

shift

shift variable

rehash

• Other commands … see Wang, Appendix 7

S -42

Example: ls2
Usage: ls2

produces listing that separately lists files and dirs

set dirs = `ls -F | grep '/'`

set files = `ls -F | grep -v '/'`

echo "Directories:"

foreach dir ($dirs)

 echo " " $dir

end

echo "Files:"

foreach file ($files)

 echo " " $file

end

S -43

Example: components (Table 7.3)

#!/usr/bin/csh -f

set test = a/b/c.d

echo "the full string is:" $test

echo "extension (:e) is: " $test:e

echo "head (:h) is: " $test:h

echo "root (:r) is: " $test:r

echo "tail (:t) is: " $test:t

output:

the full string is: a/b/c.d

extension (:e) is: d

head (:h) is: a/b

root (:r) is: a/b/c

tail (:t) is: c.d

S -44

Example: debug
#!/usr/bin/csh -x

while ($#argv)

 echo $argv[1]

 shift

end

while (2) ⇒⇒ output of "debug a b"

echo a

a

shift

end

while (1)

echo b

b

shift

end

while (0)

S -45

Example: newcopy
#!/usr/bin/csh -f

An old exam question:

Write a csh script “newcopy <dir>” that copies files

from the directory <dir> to the current directory.

Only the two most recent files having the name progN.c

are to be copied, however, where N can be any of 1, 2,

3, or 4. The script can be written in 3 to 5 lines:

set currdir = $cwd

cd $argv[1]

set list = (`ls -t -1 prog[1-4].c | head -2 |

 awk '{print $8}'`)

foreach file ($list)

 cp $file $currdir/.

end

