
CSC209

Software Tools & Systems
Programming in UNIX

W. James MacLean
maclean@cdf.toronto.edu

LP290F, 978-6277

About CSC209

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 3

General Info

• Meets Tuesday & Thursday, 1pm in RW117

• Tutorials Fridays at 1pm (rooms TBA)

• Website:
http://www.cs.toronto.edu/~maclean/csc209/Fall99

• Newsgroup:
ut.cdf.csc209

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 4

Assignments

• Assignment #1: 5% Fri, Oct 8th

– Shell Scripts

• Assignment #2: 10% Fri, Oct 29th

– Utilities, File/Directories

• Assignment #3: 10% Fri, Nov 19th

– Inter-process communication

• Assignment #4: 15% Fri, Dec 10th

– Sockets & Threads

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 5

• Assignments are due at the beginning of
tutorials. Late assignments should be submitted
to D.L. Pratt Bldg., room 283. Penalties for late
submissions:

• Time of submission (based on electronic submission time):

• by 5pm on due date - penalty = - 20% (of the maximum
mark)

• by 9am three days after due date - penalty = - 40%

• after 9am three days after due date - penalty = - 100%

• The late penalties are only waived for a good
reason such as a documented medical or other
emergency. Discuss such excuses with the
instructor, not with your tutor.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 6

Plagiarism

• The work you submit must be your
own, done without participation by
others. It is an academic offence to
hand in anything written by someone
else without acknowledgement.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 7

Tutorials

• A — Hua, Jamie Ho, RW117, jamie@cs

• Hui — Pre, Kevin Hui, SS2111,
at209hui@cdf

• Pu — Z, Olga Kundzich, SS1070,
kundzich@interlog.com

• Lab Hours: Announced in advance of each
assignment due date, take place in EA107

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 8

Contacting Me

• Office Hours:
– Tuesdays, 4-5 pm, D.L. Pratt Bldg. 290F

– by special appointment

• Via e-mail:
– maclean@cdf.toronto.edu

– Important! Include "CSC209" in subject line

• Via phone:
– 978-6277 (I check messages only on days I'm in)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 9

Important Dates

• Last day to enrol: September 24th, 1999

• Last day to drop: November 5th, 1999

• Last class: December 9th, 1999

• Midterm: October 26th, 1999 (in class)

• Exam: TBA (schedule out Oct 22nd)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 10

Reference Material

• An introduction to UNIX, Paul S. Wang

• UNIX System Programming,
Haviland/Gray/Salama

• Programming with POSIX Threads, David
Butenhof

• Lecture Notes

• Advanced Programming in the UNIX
Environment, Richard Stevens

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 11

Reference Material (2)

• The C Programming Language, 2nd Ed.,
Kernighan & Ritchie

• Managing Projects with Make, Oram/Talbott

• UNIX for Programmers and Users, 2nd. Ed.,
Glass/Abels

• UNIX Network Programming, Richard
Stevens

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 12

Course Content

• Why UNIX? History

• UNIX Basics: Processes, Login

• Shells: command processing, running
programs, shell programming

• I/O: file descriptors vs. streams

• Processes: creating, destroying, monitoring

• System Calls, Standard C Library

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 13

• File/directory manipulation

• Signals

• Pipes, Sockets, Inter-process
communication

• Multiplexed I/O

• Shared Memory, Semaphores

• POSIX Threads

• Concurrency: Race Conditions, Deadlock,
Postponement, Producer-Consumer

• Project Management

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 14

Some Self Study Topics

• Standard UNIX Utilities

• Writing MAN pages

• 'C' Refresher

• String Handling in 'C'

Section I

UNIX FOR THE USER

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 16

What is UNIX good for?

• Supports many users running many programs at
the same time, all sharing (transparently) the same
computer system

• Promotes information sharing

• More than just used for running software …
geared towards facilitating the job of creating new
programs. So UNIX is “expert friendly”

• Got a bad reputation in business because of this
aspect

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 17

History (Introduction)

• Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

• He wrote UNIX which was initially written in assembler and could
handle only one user at a time

• Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20 in 1970

• Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

• In 1973 Ritchie and Thompson rewrote UNIX in “C” and enhanced it
some more

• Since then it has been enhanced and enhanced and enhanced and …

• See Wang, page 1 for a brief discussion of UNIX variations

• POSIX (portable operating system interface) - IEEE, ANSI

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 18

Some Terminology

• Program: executable file on disk (machine language binary or script)

• Process: executing instance of a program

• Process ID: unique, non-negative integer identifier (a handle by which
to refer to a process)

• UNIX kernel: a C program that implements a general interface to a
computer to be used for writing programs

• System call: well-defined entry point into kernel, to request a service

• UNIX technique: for each system call, have a function of same name in
the standard C library

– user process calls this function

– function invokes appropriate kernel service

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 19

Logging in

• Login name, password
• System password file: usually “/etc/passwd ”

• /etc/passwd has 7 colon-separated fields:

 maclean:x:132:114:James MacLean:

 ^^^1^^^ 2 ^3^ ^4^ ^^^^^^5^^^^^^

 /u/maclean:/var/shell/tcsh

 ^^^^^6^^^^ ^^^^^^^7^^^^^^^

1: user name 5: “in real life”
2: password (hidden) 6: $HOME
3: uid 7: shell
4: gid

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 20

Shells
• Bourne shell, C shell, Korn shell, tcsh

– command line interpreter that reads user input and executes commands

> ls -l /var/shell

 total 6

 lrwxrwxrwx 1 root 12 May 15 1996 csh ->
/usr/bin/csh

 lrwxrwxrwx 1 root 12 May 15 1996 ksh ->
/usr/bin/ksh

 lrwxrwxrwx 1 root 17 May 15 1996 newsh ->
/local/sbin/newsh

 lrwxrwxrwx 1 root 11 May 15 1996 sh -> /usr/bin/sh

 lrwxrwxrwx 1 root 15 May 15 1996 tcsh ->
/local/bin/tcsh

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 21

newsh “man page”

newsh
 newsh - shell for new users
SYNOPSIS
 newsh
DESCRIPTION
 newsh shows the CDF rules, runs passwd to force the user to
 change his or her password, and runs chsh to change the
 user's shell to the default system shell (/local/bin/tcsh).
FILES
 /etc/passwd
SEE ALSO
 passwd(1), chsh(1)
HISTORY
 Written by John DiMarco at the University of Toronto, CDF

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 22

Files and Directories

• UNIX filesystem is a hierarchical arrangement of directories & files

• Everything starts in a directory called root whose name is the single
character /

• Directory: file that contains directory entries

• File name and file attributes

– type

– size

– owner

– permissions

– time of last modification

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 23

Files: an example

> stat /u/maclean

 File: "/u/maclean" -> "/homes/u1/maclean"

 Size: 17 Allocated Blocks: 0
Filetype: Symbolic Link

 Mode: (0777/lrwxrwxrwx) Uid: (0/ root)
Gid: (1/ other)

Device: 0/1 Inode: 221 Links: 1
Device type: 0/0

Access: Sun Sep 13 18:32:37 1998

Modify: Fri Aug 28 15:42:09 1998

Change: Fri Aug 28 15:42:09 1998

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 24

Directories and Pathnames

• Command to create a directory: mkdir

• Two file names automatically created:
– current directory (“. ”)

– parent directory (“.. ”)

• A pathname is a sequence of 0 or more file names, separated by / ,
optionally starting with a /

– absolute pathnames: begins with a /

– relative pathnames: otherwise

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 25

Working directory

• Current working directory (cwd)

– directory from which all relative pathnames are interpreted

• Change working directory with the command: cd or chdir

• Print the current directory with the command: pwd

• Home directory: working directory when we log in
– obtained from field 6 in /etc/passwd

• Can refer to home directory as ~maclean or $HOME

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 26

"pushd" and "popd"
• Makes directory navigation easier
• pushd pushes CWD directory pathname onto a stack

maintained by the shell
• popd pops a directory pathname from the same stack and

makes it the CWD
• Example:

 % pwd
 /usr/bin
 % pushd ~/; pwd
 ~ /usr/bin
 % popd; pwd
 /usr/bin

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 27

Permissions
• When a file is created, the UID and GID of the creator are remembered

• Every named file has associated with it a set of permissions in the form
of a string of bits:

 rwxs rwxs rwx

 owner group others

 mode regular directory

 r read list contents

 w write create and remove

 x execute search

 s setuid/gid n/a

• setuid/gid executes program with user/group ID of file’s owner
• Use chmod to change permissions

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 28

Input and Output

• File descriptor

– a small non-negative integer used by kernel to identify a file

• A shell opens 3 descriptors whenever a new program is run:

– standard input (normally connected to terminal)

– standard output

– standard error

• Re-direction:
 ls >file.list

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 29

Basic UNIX Tools

man ("man -k", "man man") (1.13)

ls -la ("hidden files")

cd

pwd

du, df

chmod

cp, mv, rm (in cshrc: "alias rm rm -i" ...)

mkdir, rmdir (rm -rf)

diff

grep

sort

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 30

More Basic UNIX Tools

more, less, cat

head, tail, wc

compress, uncompress,

gzip, gunzip, zcat

lpr, lpq, lprm

quota -v a209xxxx

pquota -v a209xxxx

logout, exit

mail, mh, rn, trn, nn

who, finger

date, passwd

Introduction to the
C Shell

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 32

What is the Shell?
• A command-line interpreter program that is the

interface between the user and the Operating
System.

• The shell:

– analyzes each command

– determines what actions to be performed

– performs the actions

• Example:
wc -l file1 > file2

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 33

csh Shell Facilities

• Automatic command searching

• Input-output redirection

• Pipelining commands

• Command aliasing

• Job control

• Command history

• Shell script files

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 34

I/O Redirection

• stdin (fd=0), stdout (fd=1), stderr (fd=2)

• Redirection examples: (<, >, >>, >&, >!, >&!)

fmt

fmt < personal_letter

fmt > new_file

fmt < personal_letter > new_file

fmt >> personal letter

fmt < personal_letter >& new_file

fmt >! new_file

fmt >&! new_file

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 35

Pipes

• Examples:
who | wc -l

ls /u/csc209h |& sort -r

• For a pipeline, the standard output of the
first process is connected to the standard
input of the second process

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 36

Filename Expansion
• Examples:

ls *.c

rm file[1-6].?

cd ~/bin

ls ~culhane

 * Matches any string (including null)

 ? Matches any single character

[...] Matches any one of the enclosed characters

[.-.] Matches any character lexically between the pair

[!...] Matches any character not enclosed

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 37

Command Aliases

• Examples:
alias md mkdir

alias lc ls -F

alias rm rm -i

\rm *.o

unalias rm

alias

alias md

alias cd 'cd \!*; pwd'

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 38

Job Control
• A job is a program whose execution has been initiated by the

user

• At any moment, a job can be running or stopped (suspended)

• Foreground job:

– a program which has control of the terminal

• Background job:

– runs concurrently with the parent shell and does not take
control of the keyboard

• Initiate a background job by appending the “&” metacharacter

• Commands: jobs , fg , bg , kill , stop

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 39

Some Examples
a | b | c

– connects standard output of one program to standard input of another

– shell runs the entire set of processes in the foreground

– prompt appears after c completes
a & b & c

– executes a and b in the background and c in the foreground

– prompt appears after c completes
a & b & c &

– executes all three in the background

– prompt appears immediately
a | b | c &

– same as first example, except it runs in the background and prompt
appears immediately

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 40

nice , nohup
• nice (csh built-in) sets the priority level of a command. The higher

the priority number, the slower it will run.
• Usage: nice [+ n | - n] command

• Example:
nice +20 emacs &

nice -20 importantJob only root can give negative value

• nohup (csh built-in) makes a process immune to hangup conditions

• Usage: nohup command

• Example:
nohup bigJob &

• in ~/.logout : /usr/bin/kill -HUP -1 >& /dev/null

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 41

The History Mechanism
• Example session:

alias grep grep -i

grep a209 /etc/passwd >! ~/list

history

cat ~/list

!!

!2

!-4

!c

!c > newlist

grpe a270 /etc/passed | wc -l

^pe^ep

Section II

SHELL SCRIPTING

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 43

Core Functionality of Shells

• built-in commands

• variables

• wildcards (file name expansion)

• background processing

• scripts

• redirection

• pipes

• subshells

• command substitution

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 44

Executables vs. Built-ins

• Most UNIX commands invoke utility programs that are stored as
executable files in the directory hierarchy

• Shells also contains several built-in commands, which it executes
internally

• Type man shell_builtins for a partial listing

• Built-in commands execute as subroutines, and do not spawn a child-
shell via fork()

– Expect built-in (e.g. cd) to be faster than external (e.g. ls)

Built-In:

cd, echo, jobs, fg, bg

Non-Built-In:

ls, cp, more

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 45

Variables

• Two kinds of variables:

– local

– environment

• Both hold data in a string format

• Main difference: when a shell invokes another shell, the
child shell gets a copy of its parent’s environment
variables, but not its local shell variables

• Any local shell variables which have corresponding
environment variables (term , path , user , etc.) are
automatically inherited by subshells

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 46

Variables (cont.)

• Local (shell) variables:

– Simple variable: holds one value

– List variable: holds one or more values
– Use set and unset to define, delete, and list values

• Environment variables:
– Use setenv and printenv to set and list values

– All environment variables are simple (ie: no list
variables … compare shell variable $path to
enviroment variable $PATH)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 47

Shell Scripts

• Shell scripts are just files containing shell
commands to be executed

• also make use of shell flow-control
structures such as if … else , foreach ,
etc.

• like a simple program

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 48

Startup Files
• Every time csh is invoked, $HOME/.cshrc is

read, and contents of the file are executed
• If a given csh invocation is the login shell,

$HOME/.login will also be read and its
contents executed

• csh -f starts a shell without reading initialization
files

• opening a new xterm -ls under X-windows will
open a new login shell

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 49

Sourcing files

• Assume you create a file called “my_aliases”

• Typing csh my_aliases executes the lines in this file, but it
occurs in the forked csh, so it will have no lasting effect on the
interactive parent shell

• Correct method is to use the source command:
source my_aliases

• Common setup:
– put all aliases in a file called $HOME/.alias

– add the line “source .alias” to the last line of $HOME/.cshrc

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 50

Input Processing

• When a input is typed, it is processed as
follows:
– history substitution

– alias substitution

– variable substitution

– command substitution

– file name expansion

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 51

Command Substitution

• Can substitute the output from a command
into the text string of a command

set dir = `pwd`

set name = `pwd`/test.c

set x = `/bin/ls -l
$file`

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 52

Shell Variables
(setting)

• Examples:
set V

set V = abc

set V = (123 def ghi)

set V[2] = xxxx

set

unset V

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 53

Shell Variables
(referencing and testing)

• Examples:
echo $term

echo ${term}

echo $V[1]

echo $V[2-3]

echo $V[2-]

set W = ${V[3]}

set V = (abc def ghi 123)

set N = $#V

echo $?name

echo ${?V}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 54

Shell Control Variables

filec a given with tcsh

prompt my favourite: set prompt = “%m:%~%#”

ignoreeof disables Ctrl-D logout

history number of previous commands retained

mail how often to check for new mail

path list of directories where csh will look for commands (†)

noclobber protects from accidentally overwriting files in redirection

noglob turns off file name expansion

• Shell variables should not to be confused with Environment variables.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 55

Variable Expressions

• Examples:
set list1 = (abc def)

set list2 = ghi

set m = ($list2 $list1)

@ i = 10 # could be done with “set i = 10”

@ j = $i * 2 + 5

@ i++

• comparison operators: ==, !=, <, <=, >, >=, =~, !~

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 56

File-oriented Expressions
Usage:

-option filename

where 1 (true) is returned if selected option is true, and 0 (false) otherwise

-r filename Test if filename can be read

-e filename Test if filename exists

-d filename Test if filename is a directory

-w filename Test if filename can be written to

-x filename Test if filename can be executed

-o filename Test if you are the owner of filename

• See Wang, table 7.2 (page 199) for more

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 57

csh Script Execution
• Several ways to execute a script:

1) /usr/bin/csh script-file

2) chmod u+x script-file , then:

a) make first line a comment, starting with “#”

– (this will make your default shell run the script-file)
b) make first line “#!/usr/bin/csh ”

– (this will ensure csh runs the script-file, preferred!)

• Useful for debugging your script files:
“#!/usr/bin/csh -x ” or “#!/usr/bin/csh -v ”

• Another favourite:
“#!/usr/bin/csh -f ”

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 58

if Command

• Syntax:
if (test-expression) command

• Example:
if (-w $file2) mv $file1 $file2

• Syntax:
if (test-expression) then

shell commands

else

shell commands

endif

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 59

if Command (cont.)

• Syntax:
if (test-expression) then

shell commands

else if (test-expression) then

shell commands

else

shell commands

endif

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 60

foreach Command
• Syntax:

foreach item (list-of-items)

shell commands

end

• Example:
foreach item (‘ls *.c’)

cp $item ~/.backup/$item

end

• Special statements:
break causes control to exit the loop

continue causes control to transfer to the test at the top

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 61

while Command
• Syntax:

while (expression)

shell commands

end

• Example:
set count = 0

set limit = 7

while ($count != $limit)

echo “Hello, ${USER}”

@ count++

end

• break and continue have same effects as in foreach

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 62

switch Command

• Syntax:
switch (test-string)

case pattern1:

shell commands

breaksw

case pattern2:

shell commands

breaksw

default:

shell commands

breaksw

end

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 63

goto Command

• Syntax:
goto label

...

other shell commands

...

label:

shell commands

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 64

repeat Command

• Syntax:
repeat count command

• Example:
repeat 10 echo “hello”

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 65

Standard Variables

 $0 ⇒ calling function name

 $N ⇒ Nth command line argument value

$argv[N] ⇒ same as above

 $* ⇒ all the command line arguments

 $argv ⇒ same as above

 $# ⇒ the number of command line arguments

 $< ⇒ an input line, read from stdin of the shell

 $$ ⇒ process number (PID) of the current process

 $! ⇒ process number (PID) of the last background process

 $? ⇒ exit status of the last task

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 66

Other Shell Commands

source file

shift

shift variable

rehash

• Other commands … see Wang, Appendix 7

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 67

Example: ls2
Usage: ls2

produces listing that separately lists files and dirs

set dirs = `ls -F | grep '/'`

set files = `ls -F | grep -v '/'`

echo "Directories:"

foreach dir ($dirs)

 echo " " $dir

end

echo "Files:"

foreach file ($files)

 echo " " $file

end

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 68

Example: components

#!/usr/bin/csh -f

set test = a/b/c.d

echo "the full string is:" $test

echo "extension (:e) is: " $test:e

echo "head (:h) is: " $test:h

echo "root (:r) is: " $test:r

echo "tail (:t) is: " $test:t

output:

the full string is: a/b/c.d

extension (:e) is: d

head (:h) is: a/b

root (:r) is: a/b/c

tail (:t) is: c.d

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 69

Example: debug
#!/usr/bin/csh -x

while ($#argv)

 echo $argv[1]

 shift

end

while (2) ⇒ output of "debug a b"
echo a

a

shift

end

while (1)

echo b

b

shift

end
while (0)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 70

Example: newcopy
#!/usr/bin/csh -f

An old exam question:

Write a csh script “ newcopy <dir> ” that copies files

from the directory <dir> to the current directory.

Only the two most recent files having the name progN.c

are to be copied, however, where N can be any of 1, 2,

3, or 4. The script can be written in 3 to 5 lines:

set currdir = $cwd

cd $argv[1]

set list = (`ls -t -1 prog[1-4].c | head -2 |

 awk '{print $8}'`)

foreach file ($list)

 cp $file $currdir/.

end

Section III

SYSTEMS
PROGRAMMING

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 72

Initializing UNIX

• The first UNIX program to be run is called “/etc/init ”

• It forks and then execs one “/etc/getty ” per terminal

• getty sets up the terminal properly, prompts for a login name, and then
execs “/bin/login ”

• login prompts for a password, encrypts a constant string using the
password as the key, and compares the results against the entry in the
file “ /etc/passwd ”

• If they match, “/usr/bin/csh ” (or whatever is specified in the
passwd file as being that user’s shell) is exec’d

• When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 73

Initializing UNIX

• See “top ”, “ ps -aux ”, etc. to see what’s running at any given time

• The only way to create a new process is to duplicate an existing
process, therefore the ancestor of ALL processes is init , with pid=1

init init

init

init

getty

init

login

init

csh

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 74

How csh runs commands
> date

Sun May 25 23:11:12 EDT 1997

• When a command is typed csh forks and then execs the typed command:

• After the fork and exec, file descriptors 0, 1, and 2 still refer to the
standard input, output, and error in the new process

• By UNIX programmer convention, the executed program will use these
descriptors appropriately

csh csh

csh

csh

date

csh

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 75

duplicate:
fork()

How csh runs (cont.)

parent process running shell,
PID 34, waiting for child

child process running shell, PID 35

parent process running shell,
PID 34, awakens

wait for child:
wait()

process running shell,
PID 34

child process running utility, PID 35

child process terminates PID 35

terminate:
exit()

signal

differentiate:
exec()

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 76

UNIX system services

UNIX kernel in C

Tools and Applications

computer

csh (or any other shell)

 vi cat more date gcc gdb …

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 77

UNIX system services

UNIX kernel in C

C and libc

computer

C Application Programs

libc - C Interface to UNIX system services

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 78

Concurrency

• Most modern developments in computer systems & applications rely on:

– communication: the conveying of info by one entity to another

– concurrency: the sharing of resources in the same time frame

note: concurrency can exist in a single processor system as well as in
a multiprocessor system.

• Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

• More details on this in the last 1/3 or the course

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 79

Concurrency Example

Program a: Program b:
#!/usr/bin/csh -f #!/usr/bin/csh -f

@ count = 0 @ count = 0

while($count < 200) while($count < 200)

 @ count++ @ count++

 echo -n "a" echo -n "b"

end end

• When run sequentially (a;b) output is as expected

• When run concurrently (a&;b&) output is interspersed, and re-running
it may produce different output

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 80

Race conditions

• A race condition occurs when multiple processes are trying to
do something with shared data and the final outcome depends
on the order in which the processes run

• This is a situation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent
or child runs first after the fork

• A parent process can call wait() for a child to terminate
(may block)

• A child process can wait for the parent to terminate by
polling it (wasteful)

• Standard solution is to use signals

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 81

Example: Race Condition

#!/usr/bin/csh -f

set count = 0

while($count < 50)

 set sharedData = `cat shareVal`

 @ sharedData++

 echo $sharedData >! shareVal

 @ count++

end

• Create two identical copies, “a” and “b”

• Run as: ./a&; ./b&

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 82

Producer/Consumer Problem

• Simple example:
who | wc -l

• Both the writing process (who) and the reading
process (wc) of a pipeline execute concurrently

• A pipe is usually implemented as an internal OS
buffer

• It is a resource that is concurrently accessed by the
reader and by the writer, so it must be managed
carefully

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 83

Producer/Consumer (cont.)

• consumer should be blocked when buffer is empty

• producer should be blocked when buffer is full

• producer and consumer should run independently so far as
the buffer capacity and contents permit

• producer and consumer should never both be updating the
buffer at the same instant (otherwise, data integrity cannot
be guaranteed)

• producer/consumer is a harder problem if there is more
than one consumer and/or more than one producer

Intro to Systems Programming

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 85

Using argc & argv

• Function main() in C programs declared as
 int main(int argc, char *argv[])

• These parameters are passed by the O/S
–argc : The number of command-line

parameters plus one
–argv : An array of string pointers, each

of which points to one parameter

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 86

Example: argc/argv

#include <stdio.h>
#include <sys/stat.h>
int main(int argc, char *argv[])
{
 if(argc == 2)
 {
 struct stat buf;
 if(stat(argv[1], &buf) != -1)
 printf(“file %s has size %d\n”,

 argv[1], buf.st_size);
 }
 return(0);
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 87

System Calls

• System calls:
– perform a subroutine call directly to the UNIX

kernel

• 3 main categories:
– file management

– process management

– error handling

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 88

Error Handling

• All system calls return -1 if an error occurs
• errno :

– global variable that holds the numeric code of the last system call
• perror() :

– a subroutine that describes system call errors

• Every process has errno initialized to zero at process creation time
• When a system call error occurs, errno is set

• See /usr/include/sys/errno.h

• A successful system call never affects the current value of errno

• An unsuccessful system call always overwrites the current value of
errno

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 89

perror()

• Library routine:
void perror(char *str)

• perror displays str , then a colon (:), then an english
description of the last system call error, as defined in the
header file

 /usr/include/sys/errno.h

• Protocol:

– check system calls for a return value of -1
– call perror() for an error description during

debugging (see example on next slide)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 90

perror() example

#include <stdio.h>
#include <errno.h>

int main(void)
{
 int returnVal;
 printf("x2 before the execlp, pid=%d\n", getpid()

);
 returnVal = execlp("nonexistent_file", (char *)0);
 if(returnVal == -1)
 perror("x2 failed");
 return(1);
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 91

Fork

• The fork system call is used to create a duplicate of the currently
running program

• The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

• The only difference between the two processes is the fork return value,
i.e. (… see next slide)

process
A

process
A #1

process
A #2

fork

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 92

Fork example

int i, pid;

i = 5;

printf(“%d\n”, i);

pid = fork();

if (pid != 0)

 i = 6; /* only the parent gets to here */

else

 i = 4; /* only the child gets to here */

printf(“%d\n”, i);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 93

When fork() Fails

• There is a limit to the max number of
processes a user can create

• Once this limit is reached, subsequent calls
to fork() return -1

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 94

Exec

• The exec system call replaces the program being run by a process by a
different one

• The new program starts executing from its beginning

• Variations on exec: execl() , execv() , etc. which will be
discussed shortly

• On success, exec never returns; on failure, exec returns with value -1

process A

running

program X

process A

running

program Y

exec(“Y”)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 95

Exec example
PROGRAM X

int i;

i = 5;

printf(“%d\n”, i);

exec(“Y”);

i = 6;

printf(“%d\n”, i);

PROGRAM Y

printf(“hello”);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 96

Processes and File Descriptors

• File descriptors (11.1) belong to processes, not programs

• They are a process’ link to the outside world

process
A

0
1

2

3

4
5

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 97

PIDs and FDs across an exec

• File descriptors are maintained across exec calls:

process A
running

program X

3

process A
running

program Y

3

exec(“Y”)

/u/culhane/file /u/culhane/file

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 98

PIDs and FDs across a fork

• File descriptors are maintained across fork calls:

process A
#2

3

process A
#1

3

/u/culhane/file

fork

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 99

Fork: PIDs and PPIDs

• System call: int fork()

• If fork() succeeds, it returns the child PID to the parent and returns
0 to the child; if it fails, it returns -1 to the parent (no child is created)

• System call: int getpid()

 int getppid()

• getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 is 1)

• example (see next slide …)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 100

PID/PPID example
#include <stdio.h>

int main(void)

{

 int pid;

 printf("ORIGINAL: PID=%d PPID=%d\n", getpid(), getppid());

 pid = fork();

 if(pid != 0)

 printf("PARENT: PID=%d PPID=%d child=%d\n",

 getpid(), getppid(), pid);

 else

 printf("CHILD: PID=%d PPID=%d\n", getpid(), getppid());

 printf("PID %d terminates.\n\n", getpid());

 return(1);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 101

Processes Termination

• Orphan process

– a process whose parent is the init process (pid 1) because its
original parent died before it did

• Terminating a process: exit()

• System call:
int exit(int status)

• Every normal process is a child of some parent, a terminating process
sends its parent a SIGCHLD signal and waits for its termination code
status to be accepted

• The C shell stores the termination code of the last command in the
local shell variable status

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 102

wait()
• Waiting for a child: system call is

int wait(int *status)

• A process that calls wait() can:

– block (if all of its children are still running)

– return immediately with the termination status of a child (if a child
has terminated and is waiting for its termination status to be
fetched)

– return immediately with an error (it it doesn’t have any child
processes)

• More details in a few weeks, when we cover Chapter 11 of Wang

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 103

Zombies

• Zombie process:

– a process that is “waiting” for its parent to accept its
return code

– a parent accepts a child’s return code by executing
wait()

– shows up with 'Z' in ps -a

• A terminating process may be a (multiple) parent; the
kernel ensures all of its children are orphaned and adopted
by init

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 104

wait and waitpid

• Recall from a previous slide: pid_t wait(int *status)

• wait() can: (a) block; (b) return with status; (c) return with error

• If there is more than one child, wait() returns on termination of any
children

• waitpid can be used to wait for a specific child pid

• waitpid also has an option to block or not to block

pid_t waitpid(pid, &status, option);

pid == -1 waits for any child

option == NOHANG non-blocking

option == 0 blocking

waitpid(-1, &status, 0) equivalent to wait(&status)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 105

example: wait.c
#include <sys/types.h>
#include <sys/wait.h>
void main(void)
{
 int status;
 if(fork() == 0) exit(7); /* normal exit */
 wait(&status); prExit(status);

 if(fork() == 0) abort(); /* generates SIGABRT */
 wait(&status); prExit(status);

 if(fork() == 0) status /= 0; /* generates SIGFPE */
 wait(&status); prExit(status);
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 106

prExit.c

#include <sys/types.h>

#include <sys/wait.h>

void prExit(int status)

{

 if(WIFEXITED(status))

 printf("normal termination, exit status = %d\n",

 WEXITSTATUS(status));

 else if(WIFSIGNALED(status))

 printf("abnormal termination, signal number = %d\n",

 WTERMSIG(status));

 else if(WIFSTOPPED(status))

 printf("child stopped, signal number = %d\n",

 WSTOPSIG(status));

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 107

exec

• Six versions of exec:

execl(char *pathname, char *arg0, ... , (char*) 0);

execv(char *pathname, char *argv[]);

execle(char *pathname, char *arg0, ..., (char*) 0,

 char *envp[]);

execve(char *pathname, char *argv[],

 char *envp[]);

execlp(char *filename, char *arg0, ..., (char*) 0);

execvp(char *filename, char *argv[]);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 108

Signals
• Unexpected/unpredictable events:

– floating point error

– interval timer expiration (alarm clock)

– death of a child

– control-C (termination request)

– control-Z (suspend request)

• Events are called interrupts

• When the kernel recognizes such an event, it sends the corresponding
process a signal

• Normal processes may send other processes a signal, with permission
(useful for synchronization)

• Again, we’ll cover this in much more detail in a few weeks

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 109

System Calls & Pointers
• Consider the following prototype:

int stat(const char *path ,
 struct stat *buf);

• buf is a pointer to a var of type struct
stat

• many people do this:
struct stat *buf ;
int result ;
result = stat("hello.c",buf);
/* seg fault! */

Project Management

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 111

Dependencies

include.h

proto.h

globals.h

xserver.c

iserver.c

.

.

.
<stdio.h>

.

.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 112

Makefile
OBJS = iserver.o xserver.o

CC = gcc

CFLAGS = -g

.c.o:

 $(CC) $(CFLAGS) -c $<

IServer: $(OBJS)

 $(CC) $(CFLAGS) $(OBJS) -o $@

iserver.o: include.h globals.h proto.h

xserver.o: include.h globals.h proto.h

clean:

 rm -f *.o IServer

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 113

Makefile Macros

<NAME> = <STRING>
${<NAME>}

• used to simplify makefiles
• example: CFLAGS = -g -DDEBUG -DANSI , then can use

${CFLAGS} in all targets

• can omit {} if <NAME> is only one letter

• Special macros:
– $@ evaluates to current target

– $? evaluates to a list of prerequisites that are newer than the
current target

e.g. libops : interact.o sched.o gen.o
 ar r $@ $?

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 114

Suffix Rules

• Unix has many "standard" suffixes (.c .f .o .s .a .so)

• can specify the same make rule for all files with a given suffix,
.SUFFIXES : .o .c .s

.c.o :
${CC} ${CFLAGS} -c $<

.s.o :
${AS} ${ASFLAGS} -o $@ $<

• the macro $< is just like $? , except only for suffix rules

• $* evaluates to a filename (without suffix) of the prerequisite

cp $< $*.tmp

if main.c is the prerequisite, then this evaluates to

cp main.c main.tmp

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 115

Suffix Rules (cont'd)

• Only suffixes defined by .SUFFIXES will be used by make

– if this line is missing, only "standard suffixes" recognized (.o .c .f
.s etc.)

– both suffixes must be present or the suffix rule is ignored

– order of suffix definition sets "order of precedence", eg.
.SUFFIXES : .o .c .f .s
means that when creating a .o file, we first look for a .c file of
the same name, then a .f file, etc.

• You can override existing (default) suffix rules
• You can write your own suffix rules (eg. .prep.o)

• To delete default suffix rules, use
.SUFFIXES :

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 116

Multiply-defined globals

#include <stdio.h>
#include "proto.h"
#include "globals.h"

#include "include.h"

void main(void)
{
 X_ServerPid++;
 PrintPid();
}

#include "include.h"
void PrintPid()
{
 printf("X_ServerPid:%d\n",
 X_ServerPid);
}

void PrintPid();

int X_ServerPid = 14;

iserver.c:

xserver.c:

include.h:

proto.h:

globals.h:

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 117

Two Solutions

#ifdef _MAIN
 int X_ServerPid = 14;
#else
 extern int X_ServerPid;
#endif

globals.h:
#ifdef _MAIN
 #define EXTERN
#else
 #define EXTERN extern
#endif

EXTERN int X_ServerPid;
/* set in Init()*/

globals.h:

for initialized globals: for uninitialized globals:

#define _MAIN
#include "include.h"

iserver.c:

Libraries & Compilation

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 119

Machine Language

• CPU interprets machine language programs:
1100101 11111111 11100110 00000000

1010001 00000010 01011101 00000000

1100101 00000000 11111111 00100100

• Assembly language instructions bear a one-to-one
correspondence with machine language instructions

MOVE FFFFDC00, D0 % b = a * 2

MUL #2, D0

MOVE D0, FFFDC04

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 120

Compilation

• High Level Language (HLL) is a language for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

• A compiler translates a high-level language into object files (machine
language modules).

• A linker translates object files into a machine language program (an
executable)

• Example:
– create object file “fork.o ” from C program “fork.c ”:

gcc -c fork.c -o fork.o

– create executable file “fork ” from object file “fork.o ”:

gcc fork.o -o fork

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 121

Standard Libraries

• Any system call is not part of the C language definition
• Such system calls are defined in libraries, identified with the suffix .a

• Libraries typically contain many .o object files

• To create your own library archive file:
ar crv mylib.a *.o

• Disregard “ranlib ” command (no longer needed)

• Look in /usr/lib and /usr/local/lib for most system libraries

• Can list all .o files in an archive use “ar t /usr/lib/libc.a ”

• More useful to see all the function names:
/usr/ccs/bin/nm /usr/lib/libc.a | grep FUNC

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 122

Standard Libraries (cont)

• By default, gcc links /usr/lib/libc.a to all executables

• Typing “man 3 intro ” will give a list of most of the standard library
functions

• Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “-l ” gcc switch:

gcc *.o /usr/lib/libm.a -o mathExamples

gcc *.o -lm -o mathExamples

• These .a files are also sometimes referred to as static libraries

• Often you will find for each system .a file a corresponding .so file,
referred to as a shared object (not needed for this course)

• Advantage of shared objects: smaller executable files (library functions
loaded at run time)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 123

Standard Libraries: Example

#include <stdio.h>

/* #include <math.h> */

int main(void)

{

 printf(“Square root of 2 is %f\n”, sqrt(2));

 return(0);

}

• May get various problems/errors when you compile with:
1) gcc example.c -o example

2) gcc example.c -lm -o example

3) gcc example.c -lm -o example # with math.h included

Advanced Library
Functions

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 125

String/Character Handling
• All “str” functions require input strings be terminated with a

null byte

• Some of the most common ones:
strlen , strcpy , strcmp , strcat

• strtok used for extracting "tokens" from strings

• memcpy not just for strings!

• strncmp allows limits to be placed on length of strings, other n
string function

• Some function for testing/converting single characters:
isalpha , isdigit , isspace

toupper , tolower

atoi, atol

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 126

Storage Allocation
• Dynamic memory allocation (very important for many C programs):

malloc , calloc , free , realloc

• An (incomplete) example:
#include <stdio.h>

#include <stdlib.h>

struct xx *sp;

sp = (struct xx *) malloc(5 * sizeof(struct xx));

if(sp == (struct xx *) NULL)

{

 fprintf(stderr, “out of storage\n”);

 exit(-1);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 127

Date and Time Functions
• clock_t, clock(), time_t, time()

• Most UNIX time functions have evolved from various sources,
and are sometimes inconsistent, referring to time as one of:

– the number of seconds since Jan 1, 1970 (or Jan 1, 1900)

– the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
– the broken down structure “struct tm ”

(see /usr/include/time.h)

– the broken down structure “struct timeval ”

(see /usr/include/sys/time.h)

• Some are intended for time/date, whereas others are intended for
measuring elapsed time

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 128

Variable Arguments

• An under-used but very powerful feature
• printf() is an example where the number and types of

arguments can differ from invocation to invocation
• /usr/include/stdarg.h provides definitions of:

– a special type named va_list

– three macros to implement variable arguments:
• va_start

• va_end

• va_arg

• Another useful function is “vfprintf ”, as shown in the next
slide

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 129

Variable Arguments
• A very useful example:

#include <stdarg.h>

void Abort(char *fmt, ...)

{

 va_list args;

 va_start(args, fmt);

 fprintf(stderr, "\n\t");

 vfprintf(stderr, fmt, args);

 fprintf(stderr, "\n\n");

 va_end(args);

 exit(-1);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 130

Environment Interfacing
• Reading environment variables:

getenv(“PATH”);

• Executing a “$SHELL” shell command:

fflush(stdout);

system(“ls -atl”);

• Can also execute a system call and have its output sent to a pipe
instead of stdout: (we’ll talk more about pipes in chapter 12)

FILE *pipe;

pipe = popen(“ls -atl”, “r”);

...

pclose(pipe);

UNIX File System

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 132

Types of Files
• "regular" files (and links)

– text, binary executables, images, etc.
– most files are of this type

• directory files
– a file containing entries for other files: name

(file name, not path) plus a pointer into an i-list
(i-node #)

– an entry in the directory file which specifies an
i-node is a "hard link"

– directory tree may have multiple file systems,
each with its own i-list

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 133

• special files
– I/O devices, such as terminals, printers, tape

drives, disk drives
– two main types:

• character special files
– terminal, printer
– I/O done one character at a time

• block special files
– faster devices transfer more than one byte at a time, hence

the term "block"

• sockets
– used for inter-process communications

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 134

i-nodes

• Contains file-related info, only one per file
– Access permissions, size, type, owner UID,

owner GID, access/modify/change time (latter
changes when permissions change, etc.), # of
(hard) links

– Does not store the file's name!

– Also stores location on disk

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 135

Symbolic (Soft) Links

• Hard links do not span file-systems (since
hard links contain i-node #s, which are only
unique within a file system)

ln -s file linkname

• soft links are small files, which contain the
(path-) name of the linked file
– works across file systems

– has special file type

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 136

stat()

• Returns file-name, i-node #, and i-node contents

• when used on a symbolic link, returns the i-node
for the linked file, not the link itself!
– Use lstat() in this case

• pre-defined macros for st_mode :

– S_ISREG(), S_ISDIR(), S_ISCHR(),
S_ISBLK(), S_ISFIFO(),
S_ISSOCK(), S_ISLNK()

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 137

Files and Directories

• Disk drives divided into partitions
• Each partition contains a filesystem (type df for a listing

of filesystems mounted on any given computer)

• Filesystems are mounted onto existing filenames

• Each filesystem has a boot block, a super block, an ilist
containing inodes (short for index nodes), directory blocks,
and data blocks

• Directories are just lists of inodes (2 files automatically
created with mkdir: “. ” (inode of directory) and “.. ”
(inode of parent directory)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 138

Disk Layout
• "Superblock"

– at start of disk

– length of i-node list

– list of free i-nodes, and its length

– list of free blocks, and its length

• i-list

• blocks

• other details, but beyond this course ...

UNIX Directory Access

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 140

opendir()

• Used to open a directory for reading:
DIR *opendir(const char *filename);

• returns a null pointer (0x0) on failure: non-
existent name, not a directory, malloc()
failure, EACCES

• use int closedir(DIR *pDir)
when done

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 141

Reading Directory Entries

struct dirent *readdir(DIR *pDir)

• reads directory entries, then moves to next
one

• struct dirent contains:
– name of file

– link info (i.e. i-node #)

– other internal info

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 142

Positioning Within a Directory

long telldir(DIR *dirp);

• Where are you currently in directory listing

void seekdir(DIR *dirp, long loc);

• Move to a specific directory entry

void rewinddir(DIR *dirp);

• Start at the beginning

UNIX File Access

Streams vs. File Descriptors

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 144

Streams? File Descriptors?
• UNIX has two main mechanisms for

managing file access
– "streams": high-level, more abstract (and

portable)
• you deal with a pointer to a FILE structure, which

keeps track of info you don't need to know!

– "file descriptors": each file identified by a small
integer, you keep track of integer

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 145

Opening and Closing Files

FILE *fp;

fp = fopen(fileName , “r”);

fclose(fp);

• fp is of type “FILE* ” (defined in stdio.h)

• fopen returns a pointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:

– “r” read

– “w” write (create new, or wipe out existing fileName)

– “a” append (create new, or append to existing fileName)

– “r+” read and write

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 146

Character-by-Character I/O

fgetc(fp) # returns next character from files
referenced by fp

getc(fp) # same as fgetc, but implemented as a macro

getchar() # same as getc(stdin)

• These return the constant “EOF” when the end-of-file is reached

fputc(c, fp) # outputs character c to file referenced by fp

putc(c, fp) # same as fputc, but implemented as a macro

putchar(c) # same as putc(c, stdout)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 147

Line-by-Line Input

fgets(data, size, fp) # read next line from fp (up to size)

gets(data) # read next line from stdin

• fgets() is preferable to gets()

• Returns address of data array (or NULL if EOF or other error occurred)

• Example:
#define MAX_LENGTH 256

char inputData[MAX_LENGTH];

FILE *fp;

fp = fopen(argv[1], “r”);

fgets(inputData, MAX_LENGTH, fp);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 148

Line-by-Line Output

fputs(data, fp) # prints string “data” on stream referenced by fp

puts(data) # same as fputs(data, stdout) except a newline

 is automatically appended

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 149

Formatted Output
printf(fmt, args ...)

fprintf(fp, fmt, args ...)

sprintf(string, fmt, args ...)

• Examples:
fprintf(stderr, “Can’t open %s\n”, argv[1]

);

sprintf(fileName, “%s”, argv[1]);

• sprintf example above better achieved with “strcpy() ”
function

• K&R book or man pages for all the details

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 150

Formatted Input
scanf(fmt, *args ...)

fscanf(fp, fmt, *args ...)

sscanf(string, fmt, *args ...)

• Examples:
fscanf(fp, “%s %s”, firstName, lastname);

sscanf(argv[1], “%d %d”, &int1, &int2);

• Returns number of successful args matched … be careful, scanf
should only be used in limited cases where exact format is know in
advance

• See K&R book or man pages for all the details

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 151

Binary I/O

fread(buf, size, numItems, fp)

fwrite(buf, size, numItems, fp)

• Examples:
fread(readBuf, sizeof(char), 80, stdin);

fwrite(writeBuf, sizeof(struct utmpx), 1, fp);

• Returns number of successful items read or written

• Other functions:
 rewind(fp); fseek(fp, offset, kind); ftell(fp);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 152

ferror()

• Error handling is different with stream-I/O
functions: most don't return -1 on error

• must check ferror() periodically
int ferror(FILE *stream)

– returns non-zero when a read/write error has occurred

int clearerr(FILE *stream)

– clears any error currently set, and also clears EOF indicator

int feof(FILE *stream)

– returns non-zero when the end-of-file has been reached

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 153

File Buffering
• fopen /fread /fwrite /fclose , etc. are implemented in terms of

low-level non-standard i/o functions open /read /write /close , etc.

• There are 3 types of buffering:

– fully buffered (or block buffered):

• actual physical i/o takes place only when buffer filled/emptied

– line buffered:
• actual i/o takes place when a newline (\n) is encountered

– unbuffered:

• output as soon as possible

• All files are normally block buffered, except stdout (line buffered only
if it refers to a terminal), and stderr (always unbuffered)

• Can use fflush() to force a buffer to be cleared

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 154

File Buffering Control

int setbuffer(FILE *fp, char *buf, int size)

– specifies that “buf ” should be used instead of the default system-
allocated buffer, and sets the buffer size to “size ”

– if “buf ” is NULL, i/o will be unbuffered

– used after stream is opened, but before it is read or written
int setlinebuf(FILE *fp)

– used to change stdout or stderr to line buffered

– can be called anytime

• A stream can be changed from unbuffered or line buffered to block
buffered by using freopen() . A stream can be changed from block
buffered or line buffered to unbuffered by using freopen()
followed by setbuf() with a buffer argument of NULL.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 155

File Descriptors

• Use functions open() , close() ,
read() , write() , seek() , tell()

• low-level I/O (e.g. no scanf() type of
functionality, no buffering)

• somewhat implementation dependant (not
as portable)

• More on FDs when we need them (when we
get to pipes ...)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 156

fileno()

int fileno(FILE *fp)

• Used to get the file descriptor associated
with a the file pointed to by fp

• handy, since some functionality (e.g. file
locking) only available via file descriptors

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 157

File Locking

• Can "lock" files to prevent unauthorized
access
– "advisory locking": only stops

processes/threads that 'ask' permission via the
locking functions

• Can use fcntl() function, see example
on web-site.

Signals

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 159

Motivation for Signals
• When a program forks into 2 or more processes, rarely do

they execute independently of each other

• The processes usually require some form of
synchronization, and this is typically handled using signals

• Data usually needs to be passed between processes also,
and this is typically handled using pipes and sockets,
which we’ll discuss in detail in a week or two

• Signals are usually generated by

– machine interrupts

– the program itself, other programs, or the user (e.g.
from the keyboard)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 160

Introduction
• <sys/signal.h> lists the signal types on cdf. signal(5)

gives a list of some signal types and their default actions

• When a C program receives a signal, control is immediately passed
to a function called a signal handler

• The signal handler function can execute some C statements and
exit in three different ways:

– return control to the place in the program which was executing
when the signal occurred

– return control to some other point in the program
– terminate the program by calling the exit (or _exit)

function

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 161

signal()
• A default action is provided for each kind of signal, such as

terminate, stop, or ignore

• For nearly all signal types, the default action can be changed
using the signal() function. The exceptions are SIGKILL
and SIGSTOP

• Usage: signal(int sig, void (*disp)(int))

• For each process, UNIX maintains a table of actions that should
be performed for each kind of signal. The signal() function
changes the table entry for the signal named as the first
argument to the value provided as the second argument

• The second argument can be SIG_IGN (ignore the signal),
SIG_DFL (perform default action), or a pointer to a signal
handler function

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 162

signal() example
#include <stdio.h>

#include <stdlib.h>

#include <sys/signal.h>

int i = 0;

void quit(int code) {

 fprintf(stderr, "\nInterrupt (code=%d, i=%d)\n", code, i);

 exit(123);

}

void main(void) {

 if (signal(SIGINT , quit) == -1) exit(1);

 if (signal(SIGTERM, quit) == -1) exit(2);

 if (signal(SIGQUIT, quit) == -1) exit(3);

 if (signal(SIGKILL, quit) == -1) printf("Can't touch this!\n");

 for(;;)

 if(i++ % 5000000 == 0) putc('.', stderr);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 163

Checking the return value

• The data type that signal() returns is int

• can also use sigset(), returns
void (*oldhandler)(int)

• It is possible for a child process to accept signals that are
being ignored by the parent, which more than likely is
undesirable

• Thus, another method of installing a new signal handler is:
oldhandler = sigset(SIGHUP, SIG_IGN);

if(oldhandler != SIG_IGN)

 sigset(SIGHUP, newhandler);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 164

Signalling between processes
• One process can send a signal to another process using the

misleadingly named function call
 kill(int pid, int sig)

• This call sends the signal “sig ” to the process “pid ”

• Signalling between processes can be used for many purposes:

– kill errant processes

– temporarily suspend execution of a process

– make processes aware of the passage of time

– synchronize the actions of processes

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 165

Timer signals
• Three interval timers are maintained for each process:

– SIGALRM (real-time alarm, like a stopwatch)

– SIGVTALRM (virtual-time alarm, measuring CPU time)

– SIGPROF (used for profilers, which we’ll cover later)

• Useful functions to set and get timer info are:
– setitimer(), getitimer()

– alarm() (simpler version: only sets SIGALRM)

– pause() (suspend until next signal arrives)

– sleep() (caused calling process to suspend)

– usleep() (like sleep() , but with finer granularity)

Note: sleep() and usleep() are interruptible by other signals

Pipes

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 167

Inter-Process Communication (IPC)
• Data exchange techniques between processes:

– message passing: files, pipes, sockets

– shared-memory model (not the default … but we’ll still
cover in this, in a few weeks)

• Limitations of files for inter-process data exchange:

– slow!

• Limitations of pipes:

– two processes must be running on the same machine

– two processes communicating must be “related”

• Sockets overcome these limitations (we’ll cover sockets in the
next lecture)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 168

File Descriptors Revisited

• Used by low-level I/O
– open(), close(), read(), write()

• declared as an integer
int fd ;

• Not the same as a "file stream", FILE *fp

• streams and file descriptors are related (see
following slides)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 169

Pipes and File Descriptors

• A fork’d child inherits file descriptors from its parent

• It’s possible to alter these using fclose() and fopen() :

fclose(stdin);

FILE *fp = fopen(“/tmp/junk”, “r”);

• One could exchange two entries in the fd table by closing and
reopening both streams, but there’s a more efficient way, using
dup() or dup2() (…see next slide)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 170

dup() and dup2()
newFD = dup(oldFD) ;

if(newFD < 0) { perror(“dup”); exit(1); }

 or, to force the newFD to have a specific number:

returnCode = dup2(oldFD, newFD) ;

if(returnCode < 0) { perror(“dup2”); exit(1);}

• In both cases, oldFD and newFD now refer to the same file

• For dup2() , if newFD is open, it is first automatically closed

• Note that dup() and dup2() refer to fd’s and not streams

– A useful system call to convert a stream to a fd is
int fileno(FILE *fp) ;

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 171

pipe()
• The pipe() system call creates an internal system buffer and

two file descriptors: one for reading and one for writing

• With a pipe, typically want the stdout of one process to be
connected to the stdin of another process … this is where
dup2() becomes useful (see next slide for examples)

• Usage:
int fd[2];

pipe(fd); /* fd[0] for reading; fd[1] for writing */

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 172

pipe() /dup2() example
/* equivalent to “sort < file1 | uniq” */

int fd[2];

FILE *fp = fopen(“file1”, “r”);

dup2(fileno(fp), fileno(stdin));

fclose(fp);

pipe(fd);

if(fork() == 0) {

 dup2(fd[1], fileno(stdout));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/sort”, “sort”, (char *) 0); exit(2);

} else {

 dup2(fd[0], fileno(stdin));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/uniq”, “uniq”, (char *) 0); exit(3);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 173

popen() and pclose()
• popen() simplifies the sequence of:

– generating a pipe

– forking a child process

– duplicating file descriptors

– passing command execution via an exec()

• Usage:
FILE *popen(const char *command,

 const char *type);

• Example:
FILE *pipeFP;

pipeFP = popen(“/usr/bin/ls *.c”, “r”);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 174

popen()

pipe

pipe

Us

CommandUs

Command

"r"

"w"

Sockets

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 176

What are sockets?

• Sockets are an extension of pipes, with the advantages that the
processes don’t need to be related, or even on the same machine

• A socket is like the end point of a pipe -- in fact, the UNIX
kernel implements pipes as a pair of sockets

• Two (or more) sockets must be connected before they can be
used to transfer data

• Two main categories of socket types … we’ll talk about both:

– the UNIX domain: both processes on same machine

– the INET domain: processes on different machines
• Three main types of sockets: SOCK_STREAM, SOCK_DGRAM,

and SOCK_RAW … we’ll only talk about SOCK_STREAM

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 177

Connection-Oriented Paradigm

Create a socket
socket()

Assign a name to the socket
bind()

Establish a queue for connections
listen()

Extract a connection from the queue
accept()

SERVER

read()

write()

CLIENT

Create a socket
socket()

Initiate a connection
connect()

write()

read()

established

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 178

Example: server.c
• FILE “ server.c ” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);

serv_adr.sun_family = AF_UNIX;

strcpy(serv_adr.sun_path, NAME);

bind(orig_sock, &serv_adr, size);

listen(orig_sock, 1);

accept(orig_sock, &clnt_adr, &clnt_len);

read(new_sock, buf, sizeof(buf));

close(sd);

unlink(the_file);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 179

Example: client.c

• FILE “ client.c ” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);
serv_adr.sun_family = AF_UNIX;
strcpy(serv_adr.sun_path, NAME);

connect(orig_sock, &serv_adr, size);

write(new_sock, buf, sizeof(buf));

close(sd);

• Note: server.c and client.c need to be linked with the
libsocket.a library (ie: gcc -lsocket)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 180

The INET domain

• The main difference is the bind() command … in the UNIX domain,
the socket name is a filename, but in the INET domain, the socket
name is a machine name and port number:

static struct sockaddr_in serv_adr;

memset(&serv_adr, 0, sizeof(serv_adr));

serv_adr.sin_family = AF_INET;

serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_adr.sin_port = htons(6789);

• Need to open socket with AF_INET instead of AF_UNIX

• Also need to include <netdb.h> and <netinet/in.h>

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 181

The INET domain (cont.)
• The client needs to know the machine name and port of the

server
struct hostent *host;

host = gethostbyname(“eddie.cdf”);

• Note: need to link with libnsl.a to resolve
gethostbyname()

• see Wang for:
– server.c, client.c UNIX domain example

– iserver.c, iclient.c, INET domain example

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 182

SIGPIPE

• When you attempt to write/read a socket
after the connection has closed (broken),
you get SIGPIPE
– Many socket programs just ignore it

Multiplexed I/O

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 184

Motivation

• Consider a process that reads from multiple sources
without knowing in advance which source will provide
some input first

• Three solutions:
– alternate non-blocking reads on input sources (wasteful

of CPU)
– fork a process for each input source, and each child can

block on one specific input source (can be hard to
coordinate/synchronize)

– use the select() system call … (see next slide)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 185

select()

• Usage:
#include <sys/time.h>

#include <sys/types.h>

int select(int nfds,

 fd_set *readfds,

 fd_set *writefds,

 fd_set *exceptfds,

 struct timeval *timeout);

• where the three fd_set variables are file descriptor masks

• fd_set is defined in <sys/select.h> , which is included by
<sys/types.h>

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 186

Details

• The first argument (nfds) represents the number of bits in the masks
that will be processed. Typically, this is 1 + the value of the highest fd

• The three fd_set arguments are bit masks … their manipulation is
discussed on the next slide

• The last argument specifies the amount of time the select call should
wait before completing its action and returning:
– if NULL, select will wait (block) indefinitely until one of the file

descriptors is ready for i/o
– if tv_sec and tv_usec are zero, select will return immediately

– if timeval members are non-zero, the system will wait the specified
time or until a file descriptor is ready for i/o

• select() returns the number or file descriptors ready for i/o

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 187

“FD_” macros

• Useful macros defined in <sys/select.h> to manage
the masks:

void FD_ZERO(fd_set &fdset);

void FD_SET(int fd, fd_set &fdset);

void FD_CLR(int fd, fd_set &fdset);

int FD_ISSET(int fd, fd_set &fdset);

• Note that each macro is passed the address of the file
descriptor mask

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 188

Example
#include <sys/types.h>

fd_set rmask;

int fd; /* a socket or file descriptor */

FD_ZERO(&rmask);

FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

for(;;) {

 select(fd+1, &rmask, NULL, NULL, NULL);

 if(FD_ISSET(fileno(stdin), &rmask)

 /* read from stdin */

 if(FD_ISSET(fd, &rmask))

 /* read from descriptor fd */

 FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

}

Shared Memory

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 190

Motivation
• Shared memory allows two or more processes to share a given

region of memory -- this is the fastest form of IPC because the
data does not need to be copied between the client and server

• The only trick in using shared memory is synchronizing access
to a given region among multiple processes -- if the server is
placing data into a shared memory region, the client shouldn’t
try to access it until the server is done

• Often, semaphores are used to synchronize shared memory
access (… semaphores will be covered a few lectures from
now)

• not covered in Wang, lookup in Stevens (APUE)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 191

shmget()

• shmget() is used to obtain a shared memory identifier:

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmget(key_t key, int size, int flag);

• shmget() returns a shared memory ID if OK, -1 on error

• key is typically the constant “IPC_PRIVATE ”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

• size is the size of the shared memory segment, in bytes

• flag can be “SHM_R”, “ SHM_W”, or “SHM_R|SHM_W”

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 192

shmat()

• Once a shared memory segment has been created, a process attaches it to
its address space by calling shmat() :

 void *shmat(int shmid, void *addr, int flag);

• shmat() returns pointer to shared memory segment if OK, -1 on error

• The recommended technique is to set addr and flag to zero, i.e.:

 char *buf = (char *) shmat(shmid, 0, 0);

• The UNIX commands “ipcs ” and “ipcrm ” are used to list and remove
shared memory segments on the current machine

• The default action is for a shared memory segments to remain in the
system even after the process dies -- a better technique is to use
shmctl() to set up a shared memory segment to remove itself once the
process dies (… see next slide)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 193

shmctl()

• shmctl() performs various shared memory operations:

 int shmctl(int shmid, int cmd,

 struct shmid_ds *buf);

• cmd can be one of IPC_STAT, IPC_SET, or IPC_RMID:

– IPC_STAT fills the buf data structure (see <sys/shm.h>)

– IPC_SET can change the uid, gid, and mode of the shmid

– IPC_RMID sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shmdt(void *addr) , which is similar to
free()

• shmctl() returns 0 if OK, -1 on error

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 194

Shared Memory Example

char *ShareMalloc(int size)

{

 int shmId;

 char *returnPtr;

 if((shmId=shmget(IPC_PRIVATE, size, (SHM_R|SHM_W))) < 0)

 Abort("Failure on shmget {size is %d}\n", size);

 if((returnPtr=(char*) shmat(shmId, 0, 0)) == (void*) -1)

 Abort("Failure on Shared Mem (shmat)");

 shmctl(shmId, IPC_RMID, (struct shmid_ds *) NULL);

 return(returnPtr);

}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 195

mmap()

• An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

• One advantage is that the contents of files are non-volatile

• Usage:
caddr_t mmap(caddr_t addr, size_t len, int

 prot, int flag, int filedes, off_t off);

– addr and off should be set to zero,

– len is the number of bytes to allocate

– prot is the file protection, typically (PROT_READ|PROT_WRITE)

– flag should be set to MAP_SHARED to emulate shared memory

– filedes is a file descriptor that should be opened previously

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 196

Memory Mapped I/O Example
char *ShareMalloc(int size)

{

 int fd;

 char *returnPtr;

 if((fd = open("/tmp/mmap", O_CREAT | O_RDWR, 0666)) < 0)

 Abort("Failure on open");

 if(lseek(fd, size-1, SEEK_SET) == -1)

 Abort("Failure on lseek");

 if(write(fd, "", 1) != 1)

 Abort("Failure on write");

 if((returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0)) == (caddr_t) -1)

 Abort("Failure on mmap");

 return(returnPtr);

}

Semaphores

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 198

Motivation

• Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner. A common
method of protecting critical sections is to use semaphores

• Code that modifies shared data usually has the following parts:

 Entry Section: The code that requests permission to modify

 the shared data.

 Critical Section: The code that modifies the shared variable.

 Exit Section: The code that releases access to the shared data.

Remainder Section: The remaining code.

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 199

The Critical Section Problem
• The critical section problem refers to the problem of executing critical

sections in a fair, symmetric manner. Solutions to the critical section
problem must satisfy each of the following:

 Mutual Exclusion: At most one process is in its critical section at

 any time.

 Progress: If no process is executing its critical section, a

 process that wishes to enter can get in.

 Bounded Waiting: No process is postponed indefinitely.

• An atomic operation is an operation that, once started, completes in a
logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 200

Semaphores

• A semaphore is an integer variable with two atomic operations: wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.

• A process that executes a wait on a semaphore variable S cannot
proceed until the value of S is positive. It then decrements the value of
S. The signal operation increments the value of the semaphore variable.

• Some (flawed) pseudocode:
 void wait(int *s) void signal(int *s)

 { {

 while(*s <= 0) ; (*s)++;

 (*s)--; }

 }

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 201

Semaphores (cont.)
• Three problems with the previous slide’s wait() and signal() :

– busy waiting is inefficient

– doesn’t guarantee bounded waiting
– “++” and “-- ” operations aren’t necessarily atomic!

• Solution: use system calls semget() and semop() (… see next slide)

• The following pseudocode protects a critical section:
 wait(&s);

 /* critical section */

 signal(&s);

 /* remainder section */

• What happens if S is initially 0? What happens if S is initially 8?

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 202

semget()

• Usage:
 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 #include <sys/stat.h>

 int semget(key_t key, int nsems, int semflg);

• Creates a semaphore set and initializes each element to zero

• Example:
 int semID = semget(IPC_PRIVATE, 1,

 S_IRUSR | S_IWUSR);

• Like shared memory, icps and ipcrm can list and remove semaphores

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 203

semop()

• Usage: int semop(int semid, struct sembuf *sops,

 int nsops);

• Increment, decrement, or test semaphores elements for a zero value.
• From <sys/sem.h> :

 sops->sem_num, sops->sem_op, sops->sem_flg;

• If sem_op is positive, semop() adds value to semaphore element and
awakens processes waiting for the element to increase

• if sem_op is negative, semop() adds the value to the semaphore
element and if < 0, semop() sets to 0 and blocks until it increases

• if sem_op is zero and the semaphore element value is not zero,
semop() blocks the calling process until the value becomes zero

• if semop() is interrupted by a signal, it returns -1 with errno = EINTR

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 204

Example
struct sembuf semWait[1] = { 0, -1, 0 },

 semSignal[1] = { 0, 1, 0 };

int semID;

semop(semID, semSignal, 1); /* init to 1 */

while((semop(semID, semWait, 1) == -1) &&

 (errno == EINTR));

{ /* critical section */ }

while((semop(semID, semSignal, 1) == -1) &&

 (errno == EINTR));

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 205

Cleaning Up

• Semaphores, like shared memory, are a
system-wide resource

• you must delete semaphores when done
with them
– semctl() and IPC_RMID (like shared

memory)
– ipcs and ipcrm

Posix Threads

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 207

Thread Concepts
• Threads are "lightweight processes"

– 10 to 100 times faster than fork()

• Threads share:

– process instructions, most data, file descriptors, signal
handlers/dispositions, current working directory, user/group
Ids

• Each thread has its own:

– thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), errno , signal
mask, priority

• Posix threads will (we think) be the new UNIX thread standard

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 208

Creating a PThread
#include <pthread.h>

int pthread_create(pthread_t *tid, pthread_attr_t
*attr,
 void *(*func)(void *), void
*arg)

• tid is unique within a process, returned by function

• attr

– sets priority, initial stack size, daemon status
– can specify as NULL

• func

– function to call to start thread
– accepts one void * argument, returns one void *

• arg is the argument to pass to func

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 209

Creating a Pthread [cont'd]
• pthread_create() returns 0 if successful, a +ve error

code if not
• does not set errno , but returns compatible codes

• can use strerror() to print error messages

Thread Termination
#include <pthread.h>

int pthread_join(pthread_t tid, void **status)

• tid

– the thread ID of the thread to wait for
– cannot wait for any thread (cf. wait())

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 210

Thread Termination [cont'd]

• status , if not NULL , returns the void * returned by the thread when
it terminates

• a thread can terminate by
– returning from func()

– the main() function exiting

– pthread_exit()

#include <pthread.h>

void pthread_exit(void *status);

• a second way to exit, returns status explicitly
• status must not point to an object local to thread, as these disappear

when the thread terminates

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 211

"Detaching" Threads

#include <pthread.h>

int pthread_detach(pthread_t tid);

• threads are either joinable or detachable

• if a thread is detached, its termination cannot be tracked with
pthread_join() - it becomes a daemon thread

#include <pthread.h>

pthread_t pthread_self(void);

• returns the thread ID of the thread which calls it
• often see pthread_detach(pthread_self());

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 212

Passing Arguments to Threads
pthread_t thread_ID;

int fd, result ;

result = pthread_create(&thread_ID,

(pthread_attr_t *)NULL, myThreadFcn, (void *)&fd);

if (result != 0)

 printf("Error: %s\n", strerror(result));

• we can pass any variable (including a structure or array) to
our thread function; assumes thread function knows what
type it is; above example bad if main thread alters fd later
… or if void * not big enough to hold type int

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 213

Improved Argument Passing

• Use malloc() to create memory for the
var to pass

• init var's value

• pass point to new memory via
pthread_create()

• thread fcn releases memory when done

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 214

Argument Passing Example
typedef struct myArg {

 int fd ;

 char name[25];

} MyArg ;

int result ;

pthread_t threadID ;

MyArg *p ;

p = (MyArg *)malloc(sizeof(MyArg));

p->fd = fd ; /* assume fd is defined */

strcpy(p->name,"CSC209");

result = pthread_create(&threadID, NULL, myThreadFcn,

 (void *)p);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 215

void *myThreadFcn(void *p)
{
 MyArg *theArg = (MyArg *)p ;

 write(theArg->fd,theArg->name,
 strlen(theArg->name));
 close(theArg->fd);

 free(theArg);

 return NULL ;
}

Argument Passing Example (2)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 216

Thread-Safe Functions

• Not all functions can be called from threads (e.g. strtok())

– many use global/static variables

– new versions of UNIX have thread-safe replacements, like
strtok_r()

• Safe:
– ctime_r(), gmtime_r(), localtime_r(),

rand_r(), strtok_r()

• Not Safe:
– ctime(), gmtime(), localtime(), rand(),

strtok(), gethostXXX(), inet_toa()

• could use semaphores to protect access

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 217

PThread Mutexes (Semaphores)

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *name,

 const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *name);

int pthread_mutex_lock(pthread_mutex_t *name);

int pthread_mutex_trylock(pthread_mutex_t *name);

int pthread_mutex_unlock(pthread_mutex_t *name);

• pthread semaphores are easier to use than semget() and semop()

• only the thread that locks a mutex can unlock it

• mutexes often declared as globals

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 218

PThread Mutexes [cont'd]
pthread_mutex_t myMutex ;

int status ;

status = pthread_mutex_init(&myMutex, NULL) ;

if (status != 0)

 printf("Error: %s\n", strerror(status));

pthread_mutex_lock(&myMutex);

/* critical section here */

pthread_mutex_unlock(&myMutex);

status = pthread_mutex_destroy(&myMutex);

if (status != 0)

 printf("Error: %s\n", strerror(status));

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 219

Mutex Initialization

• The previous slide demonstrated "dynamic
initialization"; can also use "static
initialization"

pthread_mutex_t myMutex =
PTHREAD_MUTEX_INITIALIZER ;

• you needn't explicitly destroy mutexes which are
statically initialized

• every mutex must be initialized (only once!)
before use ...

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 220

Condition Variables

• Used to signal that shared data has changed

– E.g. in producer/consumer, the producer can
notify the consumer that the buffer is full, or
the consumer can notify the producer it is
empty

– when buffer is full, producer can do no more
until it is empty

• Used in conjunction with a mutex variable

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 221

Declaring Condition Variables
Static Initialization
pthread_cond_t myCond =

PTHREAD_COND_INITIALIZER ;

Dynamic Initialization (non-default attributes)
pthread_cond_t myCond ;

pthread_cond_init(&myCond,
 (pthread_condattr_t *)NULL);

• Use Dymanic Init when:
– using non-default attributes

– malloc()-ing structure

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 222

Destroying Condition Variables

• Must be initialized before use

• Never make a copy! Pointers to original OK …

Destroying

• When done with it, destroy it (dynamic init only)
pthread_cond_destroy(&myCond);

• Make sure no thread attempts to use it after it is
destroyed

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 223

Using Condition Variables

• Must be associated with a mutex variable

• Use the following:
int pthread_cond_wait(pthread_cond_t *cond,

 pthread_mutex_t *mutex);

int pthread_cond_timedwait(

 pthread_cond_t *cond ,

 pthread_mutex_t *mutex ,

 struct timespec *expires);

• don't wait unnecessarily, you may never wake-up!

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 224

• The reason you wait is called a "predicate"

• you make be awoken spuriously, so re-check the
reason you are waiting (very rare!)

• The timed wait returns status ETIMEDOUT if
condition not true in time (absolute time)

int pthread_cond_signal(
 pthread_cond_t *cond);

int pthread_cond_broadcast(
 pthread_cond_t *cond)

• "signal" wakes up a single waiting thread,
"broadcast" wakes up all waiting threads

• E.g. you may have several worker threads waiting
…

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 225

Waiting On A Condition

• Associated mutex must be locked before
call to pthread_cond_wait()

• pthread_cond_wait() will unlock the
mutex when it blocks, and relock it before it
unblocks

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 226

Signalling a Condition

• Associated mutex need not be locked before call
to pthread_cond_signal()

• if in doubt, use "broadcast"

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 227

Example
int status

status = pthread_mutex_lock(&myMutex);

if (status != 0)

 { perror("Mutex Error!"); pthread_exit(NULL); }

if (buffer == EMPTY){ // test predicate

 status = pthread_cond_wait(&myCond, &myMutex);

 if (status == 0)

 if (buffer == EMPTY) // re-test predicate

 { /* fill buffer ... */ }

if (status != 0) { ... }

}

else perror("Error on myCond!");

status = pthread_mutex_unlock(&myMutex);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 228

pthread_once()

• Allows you to init data shared by threads,
guarantees it is done only once

• initializer function returns void, and takes
no parameters
– all initialized data must therefore be globally

accessible

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 229

Example

pthread_once_t key_once =
 PTHREAD_ONCE_INIT ;

void onceRoutine(void)

{ /* do once only init here */ }

status = pthread_once(&key_once,
 onceRoutine);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 230

Thread-Specific Data

• In a non-threaded program, a function can create
private data using "static"

• In a threaded program such data is visible to all
threads that use the function

• How to create truly private data? In this case all
threads share the variable name, but each has its
own value stored in it …

• could use a linked list, where each node stores the
data according to a pthread ID, or ...

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 231

Thread-Specific Data [cont'd]

• … can require the caller of the function to
pass a pointer to private data (if you can
specify whatever function interface you
wish), or …

• … use the built-in private data mechanism
provided by Pthreads! (best solution)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 232

TSD Functions

pthread_key_t key;

int pthread_key_create(
 pthread_key_t *key,
 void (*destructor)(void *));

int pthread_key_delete(pthread_key_t key);

int pthread_setspecific(
 pthread_key_t key, const void *value);

void *pthread_getspecific(
 pthread_key_t key);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 233

TSD Comments
• Call pthread_key_create() once, and once

only!
• It's difficult to use pthread_key_delete()

properly, and no harm is done by not destroying
keys (in almost all cases)

• When a thread terminates, the destructor function
is called, and passed the void * associated with
that thread's specific data: can call free() to
cleanup, etc.

• could use TSD to fix a non-threadsafe library

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 234

Exiting Main Thread

• It is possible to terminate the main thread
without killing the process:
– simply call pthread_exit(void *p)

from main thread

– process continues to run until all other threads
terminate

Concurrency Concepts

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 236

Non-determinism

• A process is deterministic when it always produces the same result
when presented with the same data; otherwise a process is called

 non-deterministic

j = 10

print j

j = 100

exit

• Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

• Race conditions lead to non-determinism, and are generally undesirable

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 237

Deadlocks
• A concurrent program is in deadlock if all processes are

waiting for some event that will never occur

• Typical deadlock pattern:

Process 1 is holding resource X, waiting for Y

Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,

 which Process 1 is holding, waiting for …

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 238

Dining Philosophers

• N philosophers are seated in
a circle, one chopstick
between each adjacent pair

• Each philosopher needs two
chopsticks to eat, a left
chopstick and a right
chopstick

• A typical philosopher
process alternates between
eating and thinking
(see next slide)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 239

Philosopher Process

loop

 <get one chopstick>
 <get other chopstick>

 <eat>

 <release one chopstick>
 <release other chopstick>

 <think>

endloop

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 240

Deadlock Example

• For N=2, call philosophers P1 and P2, and chopsticks C1 and C2

• Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

• Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then they get both or wait until both are available

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 241

Comments on Deadlock
• In practice, deadlocks can arise when waiting for some reusable

resources. For example, an operating system may be handling several
executing jobs, none of which has enough room to finish (and free up
memory for the others)

• Operating systems may detect/avoid deadlocks by:

– checking continuously on requests for resources

– refusing to allocate resources if allocation would lead to a deadlock

– terminating a process that is responsible for deadlock

• One can have a process that sits and watches, and can break a deadlock
if necessary. This process may be invoked:

– on a timed interrupt basis

– when a process wants to queue for a resource

– when deadlock is suspected (i.e.: CPU utilization has dropped to 0)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 242

Indefinite Postponement
• Indefinite postponement occurs when a process is blocked waiting for

an even that can, but will not occur in some future execution sequence

• This may arise because other processes are “ganging up” on a process
to “starve” it

• During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

• Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on a first-come, first-served basis

• UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 243

Dekker's Algorithm

/* other, me are threadID's with values 0, 1 */
int turn ;
int need[2] = { FALSE, FALSE };

void wait()
{
 need(me) = TRUE ; turn = other ;
 while (need[other] && (turn != me));
}

void signal()
{
 need(me) = FALSE ;
}

Self Study Topics

C: Primer and
 Advanced Topics

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 246

Style
• Basics:

– comments

– white space

– modularity

• Naming conventions:
– variableNames ("Hungarian Notation": m_pMyInt,

bDone)

– FunctionNames

– tTypeDefinitions

– CONSTANTS

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 247

Brace Styles

• K&R:

if (total > 0) {
printf(“Pay up!”

);

 total = 0;

} else {

 printf(“Goodbye”
);

}

• non-K&R:

if (total > 0)
{
 printf("Pay up!");
 total = 0 ;
}
else
{
 printf("Goodbye");
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 248

Variables and Storage

• Syntax:

<type> <varName> [= initValue];

• Types (incomplete list):
– char

– short

– int

– long

– float

– double

– all can be: signed (default) or unsigned

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 249

Operators
• Arithmetic Operators:

*, /, +, -, %

• Relational Operators:
<, <=, >, >=, ==, !=

• Assignment Operators:
=, +=, -=, *=, /=, ++, --

– don’t abuse these, ie: o = --o - o--;
• Logic Operators:

&&, ||, !

• Bitwise Operators:
&, |, ~, >>, <<

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 250

Arrays

• Arrays start at ZERO! (a mistake you will make often,
trust me)

• Arrays of int, float, etc. are pretty intuitive
int months[12];

float scores[30];

• Strings are arrays of char (C’s treatment of strings is not so
intuitive)

– see Wang, Appendix 12 for string handling functions

• Multi-dimensional arrays:
int matrix[2][4]; (not matrix[2,4])

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 251

Decision and Control

if(condition)

statement;

else

statement;

while(condition)

statement

for(initial; condition; iteration)

statement;

do

statement;

while(condition)

• break and continue useful inside loops

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 252

Decision and Control (cont)
switch (expression)

case constant1:

statement;

break;

case constant2:

statement;

break;

default:

statement;

break;

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 253

Scope

• Scopes are delimited with curly braces
“{” <scope> “}”

• New scopes can be added in existing scopes

• Child scopes inherit visibility from parent scope

• Parent scope cannot see into child scopes

• Outermost scopes are all functions

• These scope rules are all similar to those of
Turing and other common programming
languages

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 254

Functions

• Definition:
<type> <functionName> ([type
paramName], ...)

• No “procedures” in C … only functions

• Every function should have a prototype

• Example:
float area(float width, float height);

float area(float width, float height)
{
 return(width * height);
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 255

Preprocessor

#include (<file.h> versus “file.h”)

#define (constants as well as macros)

#ifdef (useful for debugging and multi-platform
code)

 statements

#else

 statements

#endif

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 256

Structs

struct [<structureName>]
{
 <fieldType> <fieldName>;
} [<variableName>];

• structureName and variableName are optional, but should
always have at least one, otherwise it’s useless (can’t ever
be referenced)

• Example: struct
 {
 int quantity;
 char name[80];
 } inventoryData;

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 257

Typedefs and Enumerated Types

typedef <typeDeclaration>;
• Example:

typedef int tBoolean;
tBoolean flag;

enum <enumName> { tag1, tag2, ... } <variableName>
• Example:

enum days { SUN, MON, TUE, WED, THU, FRI,
SAT };

enum days today = MON;
or

typedef enum { SUN, MON, TUE } tDay;
tDay today = MON;

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 258

Pointers
• A pointer is a type that points to another type in memory
• Pointers are typed: a pointer to an int is different than a

pointer to a long
• An asterisk before a variable name in its declaration makes

it a pointer
– i.e.: int *currPointer; (pointer to an integer)
– i.e.: char *names[10]; (an array of char pointers)

• An ampersand (&) gives the address of a pointer
– i.e.: currPtr = &value; (makes currPtr point to

value)
• An asterisk can also be used to de-reference a pointer

– i.e.: currValue = *currPtr;

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 259

Pointers (cont)

• Use brackets to avoid confusion:
– ie: *(currPtr++); is very different from

(*currPtr)++;

• Using ++ on a pointer will increment the pointer’s
address by the size of the type pointed to

• You can use pointers as if they were arrays (in
fact, arrays are implemented a pointers)

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 260

Command Line Arguments
int main(int argc, char *argv[])
{
. . .

• argc is the number of arguments on the
command line, including the program name

• The array argv contains the actual arguments
• Example:

if(argc == 3)
 printf(“file1:%s file2:%s\n”,
 argv[1], argv[2]);

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 261

Casting

• You can force one type to be interpreted as
another type through casting, ie:
 someSignedInt = (signed int)

someUnsignedInt;

• Be careful, as C has no type checking, so you can
mess things up if you’re not careful

• NULL pointer should always be cast, ie:

– (char *) NULL , (int *) NULL , etc.

UNIX Utilities

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 263

Miscellaneous

– ln (symbolic links)

– chmod (permissions)

– man -k fork and man 2 fork (ie:
viewing specific pages)

– du (disk space usage)

– quota -v username and pquota -v
username

– noglob

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 264

gzip , compress

• Usage: gzip [filename] : compress specified filename

 gunzip [filename] : uncompress specified filename

• Examples:
gzip file1 creates file1.gz

gunzip <file2.gz | more leaves file2.gz intact

cat file3 | gzip > newFile.gz leaves file3 intact

• compress behaves like gzip , using a different (less efficient)
compression algorithm is used (resulting files have .Z extension).

• Similarly, uncompress behaves like gunzip

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 265

tar

• Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives

• It’s also useful to create archive files on disk.

• Example: creating an archive of a directory structure:
tar fcvp dir1.tar dir1

• Example: uncompressing and extracting a tar file:

gunzip < dir2.tar.gz | tar fxvp -

• Example: copying a directory structure:
tar fcvp - dir1 | (cd newloc; tar fxvp -)

• Advantage over “cp -rp ”: preserves symbolic links

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 266

lint

• lint is a useful utility that checks programs more thoroughly that
gcc or other compilers

• Usage:

lint file1 [file2] ...

% cat main.c

#include <stdio.h>
void main()
{
 int i;
 printf("Hello\n");
}

% lint main.c

variable unused in function:
 (5) i in main

function returns value
which is always ignored:
 printf

Other System Calls

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 268

Named pipes: mknod()
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main() {
 unlink(“namedPipe”);
 mknod(“namedPipe”, S_IFIFO, 0);
 chmod(“namedPipe”, 0600);
 if(fork() == 0) {
 int fd = open(“namedPipe”, O_WRONLY);
 dup2(fd, fileno(stdout)); close(fd);
 execlp("ruptime", "ruptime", (char *) 0);
 } else {
 int fd = open(“namedPipe”, O_RDONLY);
 dup2(fd, fileno(stdin)); close(fd);
 execlp("sort", "sort", "-r", (char *) 0);
 }
}

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 269

vfork()

• The typical fork() /exec() sequence is inefficient because
fork() creates a copy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() is called.

• vfork() is intended to create a new process when the purpose of the
new process is to exec() a new program. vfork() has the same
calling sequence and the same return values as fork() .

• vfork() creates the new process, just like fork() , without fully
copying the address space of the parent into the child, since the child
won’t reference that address space -- the child just calls exec() right
after the vfork() .

• Another difference between vfork() and fork() is that vfork()
guarantees that the child runs first, until the child calls exec() or
exit() .

Fall 1999 CSC209: Software Tools & Systems Programming

Slide 270

system()

• It is sometimes convenient to execute a command string from within a
program.

• For example, to put a time and date stamp into a certain file, one could:
– use time() , and ctime() to get and format the time, then open

a file for writing and write the resulting string.
– use system(“date > file”); (much simpler)

• system() is typically implemented by calling fork() , exec() ,
and waitpid()

