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Abstract

We use contextual constraints for person retrieval in
camera networks. We start by formulating a set of gen-
eral positive and negative constraints on the identities of
person tracks in camera networks, such as a person cannot
appear twice in the same frame. We then show how these
constraints can be used to improve person retrieval. First,
we use the constraints to obtain training data in an unsu-
pervised way to learn a general metric that is better suited
to discriminate between different people than the Euclidean
distance. Second, starting from an initial query track, we
enhance the query-set using the constraints to obtain addi-
tional positive and negative samples for the query. Third,
we formulate the person retrieval task as an energy mini-
mization problem, integrate track scores and constraints in
a common framework and jointly optimize the retrieval over
all interconnected tracks. We evaluate our approach on the
CAVIAR dataset and achieve 22% relative performance im-
provement in terms of mean average precision over stan-
dard retrieval where each track is treated independently.

1. Introduction

Person retrieval and re-identification in camera networks
is generally approached by treating each person track inde-
pendently (e.g., [2, 3, 5]). However, in reality, tracks are
not fully independent of one another. In fact, a track car-
ries much more information than just its appearance, and in
this paper we leverage this additional information in order
to improve person retrieval performance.

In order to keep operation of a camera network scalable,
it is advantageous to perform person tracking and low-level
feature extraction for each camera in the network indepen-
dently, even in presence of overlapping cameras. We there-
fore do not assume that the person tracks are available in
world coordinates.

Our main contributions are three-fold. (i) We formal-
ize a set of contextual constraints in camera networks that
can be leveraged to reduce the set of candidates during per-
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Figure 1: (a) Camera views and sample frames from the CAVIAR
sequence OneShopOneWait2 and (b) the automatically determined
links between tracks for the same sequence.

son retrieval. (ii)) We use the constraints to learn a dis-
criminative metric with a Euclidean prior. (iii) We formu-
late the retrieval task as an energy minimization problem
which jointly optimizes the ranking over all tracks taking
both track scores and constraints into account.

The following subsection gives a brief overview of re-
lated work. Sections 2 and 3 describe the proposed retrieval
approach and use of contextual constraints while Sec. 4 out-
lines the person tracking approach and the features used for
retrieval. We validate our approach on the CAVIAR dataset.
Results on the retrieval performance are presented and dis-
cussed in Sec. 5.

1.1. Related Work

Person (re-)identification and retrieval are common and
challenging problems in camera networks as well as mul-
timedia data and personal image collections. Accordingly,
they have received a fairly large amount of research inter-



est. Many different aspects of a person’s appearance are
used for identification. This includes for example facial
features [7, 11], clothing appearance [0, 2] or semantic at-
tributes [18]. A detailed survey on the topic can be found
in [5]. However, only a small number of works make use of
contextual cues for person identification.

Anguelov et al. [1] use contextual constraints for iden-
tity recognition in photo albums. They integrate clothing
and facial cues in a Markov Random Field model and add
a uniqueness constraint that prevents different people in a
photo from receiving the same identity. Similarly, Song and
Leung [17] include this constraint in their approach to per-
son recognition in single images by clustering. O’Hare et
al. [15] and Naaman et al. [14] use soft constraints in the
form of occurrence frequency and co-occurrence to obtain
identity priors for person identification in photo albums.
Gallagher and Chen [6] employ a uniqueness constraint to
prevent labeling two people in the same image with the
same identity.

Constraints are more frequently — though mostly implic-
itly — used for person tracking. The uniqueness constraint
for a single camera is often used when performing track-
ing and identification at the same time to prevent two co-
occurring tracks to carry the same identity (e.g., [16]). Con-
straints based on the homography between multiple cam-
eras can be used to improve tracking accuracy and ro-
bustness to occlusions (e.g., [10]). Uniqueness and tem-
poral constraints are also the basis for learning associ-
ation functions in tracklet-association-based tracking ap-
proaches (e.g., [9, 12, 19]).

Closest to our work is the work of Yu et al. [20] in which
positive and negative constraints for person tracks are ob-
tained from a set of cameras calibrated to a common world
coordinate system. These constraints are then used to im-
prove online identity tracking via spectral clustering. Our
work generalizes the set of constraints to camera networks
without the need for calibration to a common world coor-
dinate system and makes use of the constraints on different
levels for person retrieval.

2. Contextual Constraints on Person Tracks

In this work, we consider a person track ¢; to be a set
of consecutive location estimates, such as bounding boxes,
of a person for an image sequence. We begin by postulat-
ing four properties of person tracks and their corresponding
identities in camera networks (see Fig. 2 for a graphical de-
piction).

P1: Two temporally co-occurring tracks in spatially non-
overlapping camera views cannot originate from the same
person.

P2: Two temporally co-occurring tracks in the same cam-
era cannot originate from the same person.
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Figure 2: Graphical depiction of four properties of person tracks
and their corresponding identities in camera networks.
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P3: Two temporally co-occurring tracks in spatially over-
lapping camera views (with homography H), originate from
the same person, if the position of the track ¢ 4 in camera A
maps to the position of the track ¢ in the camera B (P3a).
Vice-versa, if t4 does not map to the position of ¢, they
cannot originate from the same person (P3b).

P4: Two non-overlapping tracks within a specified duration
of time have a likelihood of originating from the same per-
son, if they are similar in appearance and the extrapolated
trajectory of the previous track is close to the starting point
of the next track.

Properties P1 to P3 are derivations from the obvious
fact that a person can only be at one point in space at a
given time. Nevertheless, they provide useful information,
e.g. link tracks between different overlapping cameras or
prohibit the assignment of a similar identity to co-occurring
tracks.

P1 to P3 directly induce positive and negative constraints
on the track identities, while P4 will mainly be used in the
global retrieval optimization in Sec. 3.3. The set of positive
constraints is

Ct = {(ti,t;) € Psa} )
and states that two related tracks share the same identity,
ie. (ti,tj) eCt= ld(tz) = ld(tj)

Similarly, P;, P> and Ps lead to a set of negative track
pairs

C = {(t,‘,tj) cPLUPU P3b} 2)

where two tracks do not share the same identity,
ie. (ﬁi,tj) eC” > id(ti) 7é ld(tj)

3. Using Constraints for Person Retrieval

The above constraints can be utilized on several levels.
We first give a brief overview of the different ways in which
we use the constraints and then discuss each of them in de-
tail in the following sections.
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Figure 3: Learned metric parameters M,; for different regulariza-
tion parameters \.

(L1) Metric learning (Sec. 3.1): We first learn a distance
metric M optimized towards discriminating positive and
negative feature pairs.

(L2) Query-set enhancement (Sec. 3.2): Starting from a
specific query track, we automatically collect additional
matching (positive) and non-matching (negative) tracks
based on constraints to the query track. On the one hand
this enhances the model of the query track for the retrieval,
i.e. we obtain more features for a more accurate description.
On the other hand, these tracks can be reported directly as
positive and negative results.

(L3) Global retrieval optimization (Sec. 3.3): All above
stages concern only the query track and its constraints. We
can now take the constraints for all tracks into account dur-
ing the actual retrieval. Instead of treating each track in-
dependently, groups of tracks that are interlinked by con-
straints are collectively scored by minimization of an ap-
propriate energy function.

3.1. Metric Learning

We adapt Logistic Discriminant Metric Learning
(LDML) [7] to learn a constrained distance between the fea-
tures with a prior. Let x; and x; € R? be feature vectors
describing a single frame from person track ¢; and t; re-
spectively. The Mahalanobis distance between x; and x; is
defined as

A (xi,%5) = (x; — %) T M(x; — x;) 3)

where M is a positive semi-definite matrix. Following [7],
we can now model the probability that the two feature vec-
tors describe the same person (id(¢;) = id(¢;)) as

p(id(ti) = id(tj)‘Xi7Xj;M,b) = U(b — dM(Xi,Xj)) (4)

where o(z) = (1+exp(—z)) ! is the sigmoid function. As
Guillaumin et al. [7] point out, this is the standard logistic
regression model and parameters b and M can be learned
from training data via gradient descent.

We modify LDML in two ways: (i) We constrain all non-
diagonal entries of M to be 0 (i.e. M;; = 0 Vi # j) and all

diagonal entries to be non-negative (i.e. M;; > 0) which
reduces the number of parameters from d2 to d and thus
is less prone to over-fitting. This essentially makes da a
normalized Euclidean distance. (ii) We impose a normal
prior on the parameters of M (i.e. M;; ~ N(u;,04)) in
order to leverage a previously learned model and adapt it to
new training data.

In order to obtain the parameters of the model we min-
imize the negative log-posterior, taking the prior into ac-
count. Let the tuple (y*), d*) = ng) - xgk)) denote a
training sample, where y*) € {0,1} denotes whether d(*)
stems from a negative or positive pair, respectively. The
model predicts hg\’ft) =o(b-— d/\,l(x(lk)7 xgk))). The nega-
tive log-posterior and its gradient with respect to the values
of M can then be written as

J=>"—y® () - (1 - y™) (1 - )
k

A _
+ 52”2‘ 2(Mis — pi)? ®)

- 2o =Y+ 20 Ma =) (©
The parameter X controls the influence of the prior. Fig. 3
shows the learned metric parameters M; for different regu-
larization parameters A. Note that the metric parameters
for unimportant dimensions (for discriminating features)
are pushed towards zero, while important dimensions re-
ceive higher weights. For higher )\ the learned metric con-

verges towards the prior, in this case the Euclidean with
M;; =1Vi.

Implementation details: We enforce the non-negativity
of M; by introducing a helper parameter 6, where M;; =
6?. The optimization of J over  is performed with L-
BFGS [13]. Ais set to 5 in our experiments. We employ
a Euclidean prior (i.e. y; = 1) with o; = 1.

3.2. Query-set Enhancement

Let Q = Q" U Q™ denote the query-set, which consists
of positive examples QT of a searched person, and negative
examples Q~ of other people. We assume that a retrieval
task is started by a user who selects an example person track
tq+ from among previously recorded tracks. In that case, the
initial query-set becomes Q = {t;'} and @~ = {}. The
constraints very easily allow us to enlarge this initial query-
set by additional tracks: Positive constraints (C1) result in
additional query tracks for the searched person

QF ={tfyu{ti(t;,t)eCT} 7

while negative constraints enhance the query-set with tracks
of persons that are not targets of the retrieval

Q™ ={t[(t;.t) eCT}. (®)



This has two advantages: On the one hand, the additional
tracks from the enhanced query-set can be directly reported
as positive and negative results. On the other hand, @ and
Q™ allow to obtain positive and negative training samples
for the current query in an unsupervised way. These can be
used for training a discriminative classifier for the current
query (e.g., as done for faces in [3]). Another viable op-
tion would be to learn a query-specific metric M with the
method presented in Sec. 3.1. In order to avoid avoid over-
fitting while learning Mo, e.g. if the query-set is small, the
previously learned metric M can be used as prior. This es-
sentially adapts the more general metric M to the current
query, leveraging the information about the specific query
while not completely disregarding the the general informa-
tion about the data set. We will explore this further in future
work.

3.3. Retrieval as Energy Optimization

In this section we globally optimize the retrieval rank-
ing. To this end we formulate the retrieval as an energy
optimization problem. This effectively combines the indi-
vidual scores for the tracks and the constraints.

Let N be the number of tracks, and s; € [0,1] a simi-
larity measure between track ¢; and the query track(s) ob-
tained by matching appearance (see Sec. 4.3 for details).
Let v; € [0, 1] be a variable that denotes the retrieval im-
portance of track ¢ (i.e., the higher v; is, the higher it will
be ranked in the retrieval). v; can also be interpreted as a
(pseudo-)probability that the identity of track ¢; is the same
as of the query track(s). In order to globally optimize the
retrieval ranking we propose an energy function over v;

E(v) = ZUi + VIZVJ + 722‘/;; + ’73222']'

1<i<N {i,jyec+ {i,jyec— {i,d}eT

)

whose individual terms are described in the following.
The unary term U; captures the conformance of v; with
the corresponding score s;:

Us =v;In(s;) + (1 —vi) In(1 — s5) + vyalvs — 0.5)2

The intuition is that v; should be close to 1 if s; is high
and vice versa (remember s; € [0,1]). At the same time
(v; —0.5)? acts as a prior that — in the absence of additional
information — enforces a neutral ranking, i.e. v; should be
close to 0.5. The prior is weighted by parameter 4.

A negative link between tracks ¢; and ¢; imposes a
penalty if both v; and v; are high. This prevents two tracks
which are connected by a negative link from both being
ranked high:

Vg =(er 7 #1617 v v (10)
where |C;| is the cardinality of the set of negative con-

straints that contain track t;, and (|C; |~! + IC; |71) acts
as a normalization factor. Note, that there is no penalty if

v; and v; are both low. It essentially means that both tracks
are not similar to the guery track which can also be the case
if there is a negative link between the both tracks (i.e. they
stem from different people, but not the query person).

A positive link imposes a penalty if the difference be-
tween v; and v; is high:

ViE=(cH T HIcHTY (v —vy)? D)

This encourages that two tracks linked by a positive link
appear near each other in the final ranking.

All track pairs which lie within a specified duration (e.g.,
5 seconds) from one another, form the set of temporal con-
straints 7. We encourage two tracks (¢;,t;) € T to have
a similar ranking if both the appearance distance d;;” be-
tween the two tracks and the distance dff between the ex-
trapolated trajectory of the former to the latter is small:

Zij = exp(=dij” [o"") - exp(=d;] [o°P) - (v — v))?

After minimization of Eq. 9 over v, we obtain the final
retrieval ranking by sorting the weighted combination v; - s;
in descending order.

Implementation details: We minimize E over v on the
continuous domain [0, 1] via gradient descent [13]. In order
to enforce v; to remain in the range [0, 1] we introduce a
helper variable &;. We set v; = o(&;) = (1 + exp(=&;)) 1
and optimize over £ instead.

4. Tracking and Features

In this section we give a brief overview about the track-
ing procedure and features that we use in our experiments.

4.1. Person Tracking

We perform person tracking based on a HOG detec-
tor [4]. A particle filter is used to connect detections in
successive frames and bridge gaps over missing detections.
In order to speed up the detection process and make the
tracking more robust, we estimate ground-plane models in
an unsupervised way for each camera in the network from
the strongest detections within the respective views. A sim-
ple color histogram-based appearance model is employed to
deal with occlusions and avoid track switches.

4.2. Features

For each person track, we extract color and texture fea-
tures from a feature region within the track’s bounding box
with [z,y,w, h] = [0.33,0.2,0.33,0.3] in coordinates rel-
ative to the track bounding box. Before feature extraction,
we resize the feature region to a fixed size of 64 x 128 pixels.

Color Structure Descriptor (CSD) As color feature we
compute the CSD with 40 bins. This feature has been shown
to work quite well in a person recognition setting [8].



Sobel Filter Response (SFR) The filter response com-
puted on the gray-scale image of the feature region to both
vertical and horizontal Sobel filters forms our texture de-
scriptor. The response is binned into 37 bins, to obtain a 74
dimension feature vector (vertical and horizontal).

Discrete Cosine Transform (DCT) The DCT is applied
on the gray-scale image of the feature region. The top 120
coefficients, scanned in zig-zag order (inclusive of the mean
(0, 0)), form the feature vector.

4.3. Computing Track Distances

For each track, we extract one feature vector for each
frame, i.e. we describe the appearance of track ¢; with a set
of features f; with 1 < k < length(¢;). In order to compare
the appearance of two tracks ¢; and ¢; we compute the min-
min-distance between the features of the tracks:

d(ti; ;) = minmind; (£ £) (12)

where we use the Euclidean distance d s (£}, f/) := 1/ f,inlj
as a baseline. To use the learned metric M we set dy (-, ) :=
1—0(b—dm(-,")) (cf.-Eq. 3).

During retrieval, the appearance distance of each track ¢;
is computed against the positive query-set Q. If QT con-
tains more than one track, we compute the minimum dis-
tance over all tracks in Q. This is equivalent to combining
all features of tracks in Q1 to a common feature pool f +,
owing to the dual min-operator in the distance function.

We obtain a similarity score s; for track ¢; to the query-
set QT as s; = 1 — d(t;, Q). For baseline retrieval —
treating each track independently — the ranking is obtained
by sorting tracks according to s; in descending order.

For retrieval based on energy optimization (Sec. 3.3), the
similarity scores s; are incorporated in the unary term U;.
U; requires s; to be in the range [0, 1]. Note that when we
use the learned metric M, the obtained similarity score is
already in the range [0, 1] due to the sigmoid function. For
other distances (e.g. Euclidean), a mapping of the distance
output d € R, to the range [0, 1] can be realized by mod-
eling s; = o(a + bd) and using distances between tracks
within C* and C~ as training data for learning parameters
a and b.

5. Experimental Validation
5.1. Dataset and Setup

We evaluate our approach on the CAVIARDATA?2 data
set'. The data set consists of 26 sequences with two cam-
era views each recorded within a shopping mall. The se-
quences’ frame size is 384 x 288 pixels. The two camera

Ihttp://homepages.inf.ed.ac.uk/rbf/fCAVIAR

views are roughly perpendicular to each other and partly
overlapping. The homography between the ground-planes
in the two cameras is estimated based on 4 points in the
overlapping area. Our tracker generated a total of 248 tracks
of 65 different people. For further comparisons, we made
the generated tracks, the computed features and our annota-
tions publicly available®.

5.2. Results and Discussion

We use the mean average precision (MAP) as perfor-
mance measure. Let N be the number of tracks in the
database, then the average precision (AP) of a ranked list
of tracks for each query is defined as

N i )
AP = o3 (277«2) (13)

i=17T1 =1

where r; is 1 if the track at rank ¢ is of the searched person
and O otherwise. The MAP is computed as the mean of APs
over all possible queries, starting with each track from our
database as initial query track. Note that the AP is quite a
strict measure. To illustrate, lets assume we have two cor-
rect result tracks in our database for a given query. If they
are retrieved at ranks 2 and 3, the AP is 0.58. However, if
they are retrieved at ranks 9 and 10, the AP drops to 0.16,
although, for a system with a human in the loop, this would
be considered a good result if the person had to look only at
10 possible tracks instead of hundreds.

We present results in multiple steps of improvement. An
overview of the results can be found in Table 1 and Fig. 5.

Features: We compare the performance obtained with
different features as described in Sec. 4.2. The Color Struc-
ture Descriptor (CSD) outperforms both the Sobel Fea-
ture Response and Discrete Cosine Transform descriptors
with a MAP of 0.286 over 0.247 and 0.203, respectively.
CSD+SFR+DCT denotes a concatenation of the individual
features which outperforms each individual features with a
MAP of 0.325. This serves as our baseline.

Feedback: For each experiment we simulate multiple
rounds of user relevance feedback by marking the top 5
results as either positive or negative and use it to enlarge
Q1 and Q~ respectively. As expected, feedback increases
overall performance significantly to a MAP of 0.569 after 5
rounds of feedback for the CSD+SFR+DCT feature combi-
nation.

Leveraging constraints: For the evaluation of the differ-
ent levels using the constraints we use the feature concate-
nation CSD+SFR+DCT. Without feedback, query-set en-
hancement (L2) alone is able to boost performance to a
MAP of 0.368. Combined with a custom metric (L1+L2)

Zhttp://cvhci.anthropomatik kit.edu/projects/pri



using constraints with feedback (iteration)

Feature LI L2 L3 Inital 1 2 3 4 5 [
SFR 02025 02737 03310 03587 03944  0.4309
DCT 02474 02977 03366 03744 04093  0.4290
CSD 02863 03873 04505 05076 05396 0.5717 r
CSD+SFR+DCT 03254 04131 04726 05129 05428  0.5694 |
CSD+SFR+DCT v 03683 04787 05315 05709 0.6039 0.6343
CSD+SFR+DCT v v 03846 04842 05558 05949 0.6252  0.6749
CSD+SFR4DCT v v v 03786 0.4900 05669 0.6077 0.6406 0.6937

Table 1: We present results in several steps of improvement. The combination of features
CSD+SFR+DCT outperforms each of the features alone. Using the constraints on several
levels (L1: Metric Learning, L2: Query-set enhancement, L3: Global retrieval optimization)

provides each an incremental performance improvement.

we achieve a MAP of 0.384, which is a relative improve-
ment of 18% over the baseline. Adding the global ranking
optimization (L1+L2+L3), the MAP drops slightly to 0.378,
which is however still better than L2 alone. The global rank-
ing optimization plays to its strength when user feedback
is incorporated. Already after one iteration of user feed-
back, the full combination of L1+L2+L3 achieves a MAP
of 0.490, consistently outperforming all other methods. Af-
ter 5 rounds of feedback, L1+L2+L3 achieves a MAP of
0.694 which is an 9% relative improvement over L2, and a
22% relative improvement over the baseline. See Fig. 5 for
Cumulative Matching Curves that further show the advan-
tage of L1+L2+L3 over the baseline given user feedback.

The results clearly show that leveraging the formulated
properties and their induced constraints is beneficial on
multiple levels. Fig. 4 shows retrieval results for the same
query track with and without using constraints. Observe
that tracks from other cameras, with large variation in ap-
pearance, can be retrieved correctly due to the constraints.
Fig. 6 shows retrieval results for a few additional sample
queries (no feedback).

We also present some difficult examples and failure cases
(Fig. 6, last row). One of the reasons for the problems with
these queries is that our features are only computed from
a relatively small region within the person’s upper body
(c.f. Sec. 4.2), and thus the resulting appearance description
does not suffice for a correct retrieval. Since our proposed
approach is independent of the employed features, a better
appearance representation can easily be integrated.

6. Conclusion

We have formulated a set of properties of person tracks
in camera networks. These properties induce constraints on
the associated identities of the person tracks and we have
shown how these constraints can be used on multiple lev-
els for improving person retrieval in camera networks. We
proposed to use the constraints for learning a discriminative
metric, and formulated the retrieval task as an energy min-
imization problem. The experiments validate the benefit of

Figure 4: Example retrieval results for
the same query track: (top) Without us-
ing constraints and (bottom) using con-
straints at levels L14+L.2+L3.

our proposed methods, achieving a relative improvement of
22% over the baseline method. In future work, we would
like to explore the adaption of the learned metric to specific
queries, and the incorporation of both clothing and facial
features in a common framework. This promises to allow
retrieval over the course of multiple days which is not pos-
sible with full-body appearance-based features only.
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