
A Time Pooled Track Kernel for Person Identification

Martin Bäuml Makarand Tapaswi Rainer Stiefelhagen
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
{baeuml, makarand.tapaswi, rainer.stiefelhagen}@kit.edu

Abstract

We present a novel method for comparing tracks by
means of a time pooled track kernel. In contrast to spa-
tial or feature-space pooling, the track kernel pools base
kernel results within tracks over time. It includes as spe-
cial cases frame-wise classification on the one hand and
the normalized sum kernel on the other hand. We also in-
vestigate non-Mercer instantiations of the track kernel and
obtain good results despite its Gram matrices not being pos-
itive semidefinite. Second, the track kernel matrices in gen-
eral require less memory than single frame kernels, allow-
ing to process larger datasets without resorting to subsam-
pling. Finally, the track kernel formulation allows for very
fast testing compared to frame-wise classification which is
important in settings where user feedback is obtained and
quick iterations of re-training and re-testing are required.
We apply our approach to the task of video-based person
identification in large scale settings and obtain state-of-the
art results.

1. Introduction
Interest in automatic analysis of multimedia content has

risen in recent years due to vastly increasing amounts of
available data and the desire for automatic meta data gener-
ation, indexing and search to find relevant content.

An important aspect to consider is scale. Video data in
the multimedia domain alone amounts to millions of hours
of data, with hundreds of hours added per day. Efficiency,
both in terms of computational and memory requirements,
should therefore be taken into account. Recently, advances
have been made for applying convex optimization methods
for large scale problems [12]. For some classes of non-
linear kernels, mapping to approximate feature maps Ψ̂(x)
has been proposed in order to benefit from the speed-ups
for linear SVMs [8, 15]. However, these techniques usually
rely on an explicit feature map expansion which is impracti-
cal for very large or even infinite dimensional feature maps.

One important aspect of multimedia analysis is person
identification [1, 3, 4, 13, 14] since it is not only relevant
by itself, but also the basis for many higher level analysis

tasks (e.g., [10]). Person identification in video data is natu-
rally performed on tracks, not individual frames, in order to
average out noise and errors under the assumption that all
frames of a track belong to the same individual.

The prevalent way is to regard a track as sequence of
single frames. Thus, identification is usually performed
by first classifying each frame separately and then reduc-
ing the individual results to a joint track classification es-
timate [4, 13, 14, 1]. Different classifiers for frame-level
classification such as Nearest Neighbour [4], Multiple Ker-
nel Learning [13] or Support Vector Machines [14] can
be found in the literature. Similarly, different reduction
schemes such as averaging [14, 1] or min-min[13] have
been employed.

However, tracks can also be regarded as image sets. For
image sets in general, specific set distances have been de-
vised. We can differentiate between how approaches repre-
sent an image set, e.g. via its covariance matrix [17] or its
convex hull [5], and the way image sets are compared, such
as smallest distance between subspaces [5, 2] or correlation-
based measures [18]. Kernels on sets are more prevalent in
the context of local features, where an image or object is
represented by a set of local features (e.g., [16]). Robust-
ness can for example be improved by non-uniform weight-
ing [7]. The pooled NBNN kernel [9] pools base kernel
comparisons on local features over sub-classes or visual-
word-like clusters. This is closely related to our approach,
however, it requires clustering in feature space which can
be computationally expensive, whereas we do not.

Regarding tracks as image sets can be advantageous for
multiple reasons: Image sets can be represented more com-
pactly than the set of individual frames (e.g., [5]). Espe-
cially for distance or Gram matrices, memory requirements
reduce to the order of O(M2), where M is the number of
sets, compared to O(N2) with N denoting the number of
features across all sets combined (usually M � N). This
is especially important in the context of large scale learning,
where it might be unfeasible to keep all individual features
(let alone a kernel’s Gram matrix with memory requirement
O(N2)) in memory. Therefore, given a finite amount of
memory, track representations can have more discriminative

power than (a subset of) individual frames. Furthermore, at
test time, image set comparisons and decisions can be more
efficient to compute, possibly at the expense of a one-time
pre-computational step. This is desirable when quick iter-
ations of training and testing are required, e.g. when user
feedback is obtained and training cycles are performed with
a human in the loop (see Sec. 3.2).

Our contributions are the following:
(1) We present a generalized time-based pooling ker-

nel, which incorporates as special cases both the normalized
sum kernel and frame-wise base kernels (Sec. 2). The ker-
nel pools local kernel evaluations over time, leveraging the
structure of tracks. This is very efficient in practice and can
be implemented in a few lines of code.

(2) With the proposed time pooling kernel we are
able to significantly speed up training-testing iterations
(Sec. 3.2). Due to the structure of the kernel, classifica-
tion/identification of all tracks can be performed simultane-
ously and efficiently by means of a single matrix multiplica-
tion. In particular, quick turn-around times allows efficient
incorporation of feedback into the learning process.

(3) We present a large scale dataset for multimedia per-
son identification, consisting of more than 21000 face tracks
(1.2 million faces) (Sec. 3.1).

2. Time Pooled Kernels
We are interested in applying convex optimization meth-

ods to classification of time-based object sets (e.g., face or
person tracks). Many optimization methods refer to the
data only within dot-products 〈x,y〉. A common way to
augment features is to replace 〈x,y〉 by a kernel function
k(x,y), which corresponds to computing the dot product
in a different (usually higher dimensional) feature space:
k(x,y) = 〈Ψ(x),Ψ(y)〉. Two examples of such kernel-
ized classification schemes are the (two-class) Support Vec-
tor Machine with its convex objective

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

max{0, 1− yik(w,xi)} (1)

and (multi-class) Multinomial Logistic Regression (MLR),
which has the following convex objective:

min
w

λ

2
‖w‖2− 1

N

N∑
i=1

M∑
c=1

1[yi=c] ln

(
ek(wc,xi)∑
z e

k(wz,xi)

)
(2)

where xi and yi denote features and corresponding class
labels,N the number of training samples andM the number
of classes.

Kernels are commonly defined on vectors since the rela-
tion to the dot product is evident. However, kernels can also
be defined on other structures, e.g. strings or vector sets,
thus making such structures available as input for above
convex optimization schemes. We propose and evaluate a
family of set kernels for tracks.

2.1. Pooling over time
Let k(x,y) = 〈Ψ(x),Ψ(y)〉 denote a base or local ker-

nel, corresponding to a dot-product of individual frames
x ∈ X and y ∈ Y in a (possibly infinite-dimensional)
mapped feature space by the feature mapping Ψ.

Instead of using individual local kernel evaluations, we
pool them over time. Let X and Y be time-consecutive sets
of features, e.g. features extracted from tracks. We define a
track kernel function as

K(X,Y) = K(X,Y ; k(·, ·),Φ(·)) (3)

which is built from two base functions, the local kernel for
individual frames and a pooling function Φ(·). This track
kernel is a Mercer kernel (i.e., positive semi-definite, p.s.d.)
when the local kernel k(·, ·) is a Mercer kernel itself, and
the pooling operation is from a set of operations (e.g., sum)
that preserve positive semi-definiteness [6].

For example, a local RBF kernel kRBF (x,y) =

exp(−‖x−y‖
2

2σ2) and
∑∑

as pooling operation results in

K(X,Y) =
1

|X||Y |
∑
x∈X

∑
y∈Y

exp

(
−‖x− y‖2

2σ2

)
, (4)

which is the normalized sum kernel [7] with a RBF kernel as
base kernel. Since kRBF (x,y) is a Mercer kernel, and

∑
is a valid construction operation, Eq. 4 is a Mercer kernel.

In contrast to [7, 9], the construction of feature sets by
time does not require any a-priori clustering or nearest-
neighbour search in feature space and thus is very efficient.
This is based on the assumption that a) all features of one
track belong to the same class/person, and b) the variation
within a track is small.

The second assumption is obviously not always true,
since for example in the case of faces, a person can turn
his head within a track which usually amounts to changes
in the extracted features. This is a drawback of the nor-
malized sum kernel, as it possibly averages out few posi-
tive correspondences between the features of two tracks by
many other negative correspondences.

We approach this problem from two perspectives. First,
we employ non-averaging pooling operations Φ(·) (c.f .
Eq. 3), e.g. max. Second, we reduce these variations by
applying the kernel not on full tracks, but on sub-tracks and
thus improve the coherence of the features. Our goal is sim-
ilar to [9], however, the pooling is performed over time. The
shorter the pooling period is, the more coherent the sets are.
In the extreme case this can go down to single frames, which
we will discuss in Sec. 2.2.

Fixed-time splitting A first way of defining the pool-
ing length is by splitting tracks into equal-length time-
continuous sets of features. Let X be the original set of
features for one track, then Xfixed(l)

i are the new subtracks

original

fixed

fraction

𝑙 = 69

𝑙 = 30

𝑙 = 20

𝑓 = 0.5

𝑓 = 0.25

20 40 60 69

Figure 1: Different examples for splitting a track into fixed-time
and fraction-time subtracks.

of equal length l (the last subtrack can be shorter when the
original track length len(X) is not a multiple of l). In most
cases fixed-time splitting avoids a bias by track length.

Fraction-time splitting One possible issue with the
fixed-time splitting is that long tracks get over-represented
in the new subtrack sets. Instead of splitting into fixed-
length sets, we can split each track into equal-size frac-
tions f ∈ (0, 1], i.e. construct 1/f subtracks Xfrac(f)

i from
one track, each with len(X

frac(f)
i) = f · len(X). With

fraction-time splitting, the relative number of tracks of each
class is preserved. A visualization of the two different track
splitting variants can be found in Fig. 1.

2.2. Special cases and relation to other methods
Normalized Sum Kernel and extensions As already dis-
cussed above, the normalized sum kernel is included as a
special case (c.f . Eq. 4) with pooling operation

∑∑
and

no further splitting of tracks (f = 1). With the power-kernel
k(·, ·)p we obtain the soft-max Mercer kernel of [7].

Single-frame classification On the other extreme, by
splitting all tracks into individual frames (i.e., l = 1),
we obtain the frame-wise classification as used, e.g., in
[1, 13, 14]. When employing

∑∑
as pooling operation,

track kernel and frame-wise classification are still similar,
even for l > 1. In the frame-wise case (e.g., [1]), classifi-
cation results are averaged over the frames of the test-track
(at test-time):

c∗ = arg max
c

1

|T |

|T |∑
i

W∑
m

w(c)
m k(xi,xm) (5)

where |T | is the track length, W the number of kernel bases
(individual features) from the training data, and w

(c)
m the

model parameters learned by minimization of Eq. 2. We
neglect here for clarity, that in [1] the training features are
subsampled and a sigmoid normalization step is performed
before averaging over time.

For the track kernel-based classification (with
∑∑

pooling) we compute for track T at test time

c∗ = arg max
c

W∑
m

w(c)
m K(T, Tm) . (6)

Expanding K(·, ·) to the summation over local kernels
k(·, ·), we obtain

c∗ = arg max
c

W∑
m

w(c)
m

1

|T ||Tm|

|T |∑
i

|Tm|∑
j

k(xi,x
m
j) . (7)

By reordering the sums,

c∗ = arg max
c

1

|T |

|T |∑
i

W∑
m

w
(c)
m

|Tm|

|Tm|∑
j

k(xi,x
m
j) (8)

we can see, that due to the averaging over time, our formu-
lation is the same for l = 1 (each pooling Tm set only con-
tains a single frame, i.e. |Tm| = 1 and

⋃
Tm corresponds to

the individual frame kernel bases in Eq. 5). For l > 1, the
difference is that all frames in a pooling set Tm share the
parameter w(c)

m , whereas in Eq. 5 we have one w(c)
m for each

frame of the kernel basis.

Training/testing speed-up There is another subtle differ-
ence to single-frame classification. Since pooling over time
is performed within the kernel, we can pre-compute signif-
icant parts of Eq. 8 required for both training (c.f . Eq. 2)
and testing: Reordering the summation of Eq. 8 further and
grouping all terms independent of w(c)

m , we obtain

c∗ =

W∑
m

w(c)
m

1

|T ||Tm|

|T |∑
i

|Tm|∑
j

k(xi,x
m
j) . (9)

The summation term over T and Tm can be pre-computed
and stored once for all track combinations (this is the ker-
nel’s Gram matrix). We therefore avoid recomputing sum-
mations over individual frames at test time (compared to
the single frame case, see Eq. 5). This results in a signifi-
cant speed-up (by a factor of 5-10 in our experiments). A
similar pre-computation could also be done for the single-
frame case, but the much larger number of instances (frames
instead of tracks) prohibits this for all practical instances.

2.3. Time and Space Complexity
Training The computation of the kernel’s Gram matrix
requires of O(N2) local kernel evaluations, where N is the
number of features. Therefore, the computation of the full
track kernel Gram matrix is in O(N2 · k(d)), with k(d) be-
ing the complexity of the local kernel evaluation depending
on feature dimensionality d. The memory requirements for
the full Gram matrix depend on the pooling factors f or l,
reducing the required memory compared to the frame-wise
kernel by l2, resulting in O(N

2

l2). This allows, as argued be-
fore, to pre-compute and store the Gram’s matrix for multi-
ple rounds of training (c.f . Sec. 3.2).

Testing At test time, we benefit from the fact that pool-
ing over each (sub-)track was already performed at training

20 40 60 80 100
65

70

75

80

fixed−time pooling l

m
e
a
n
 a

c
c
u
ra

c
y

single frame

averagemax5

maxmax

average

(a)

0.2 0.4 0.6 0.8 1
65

70

75

80

fraction−time pooling f
m

e
a
n
 a

c
c
u
ra

c
y

single frame

averagemax5

maxmax

average

(b)

Figure 2: Influence of the pooling parameters. Comparison of
mean accuracy on BBT 1-6 with different pooling functions for
(a) fixed-time pooling and (b) fraction-time pooling. The black
line denotes the single-frame recognition performance of [1].

time. For the case of MLR, this reduces classification to a
single matrix multiplication Kw and obtaining the maxi-
mum over rows:

c∗i = arg max
c

e[K]iw
(c)∑

z e
[K]iw(z)

= arg max
c

[Kw]i , (10)

where K ∈ RN/l × RN/l is the Gram matrix of the track
kernel, [K]i the ith row of K, |C| the number of classes,
and w ∈ RN/l × R|C| the parameter vector obtained by
minimizing the MLR loss function (Eq. 2). Thus, testing is
dominated by the matrix multiplication Kw and results in
time complexity of O(N

2|C|
l2).

3. Evaluation
We evaluate the proposed kernels on the task of person

identification in TV series. In order to compare results with
previous methods, we use the KIT TV data set from [1],
which consists of 6 episodes each of “The Big Bang The-
ory” (BBT) and “Buffy the Vampire Slayer” (BUFFY). The
task is to assign identities to all face tracks. We employ the
provided facial features and automatic speaker assignments,
which are used as (noisy) labels for training the classifiers.
23.1% (BBT) and 20.3% (BUFFY) of all tracks are as-
signed a speaker identity (recall), with precision of 88% and
86.8%. There are 986 (BBT) and 1290 (BUFFY) labeled
tracks, and 92495 and 105674 labeled frames. A full kernel
matrix on all labeled frames has a memory requirement of
O(N2) and thus would require 510GB and 665GB for
BBT and BUFFY, respectively (for just 6 episodes of a sin-
gle season). Results on the KIT TV data set can be found in
Tbl. 1 and will be discussed in the following.

Baseline We compare against the SVM and MLR-based
approaches from [1, 14] as reported in [1] on this data
set. In [1], additional information such as unlabeled train-
ing data, constraints and/or information on clothing have
been taken into account. Although such additional infor-
mation could be considered for track-kernel-based classi-

fication as well, we would like to keep the evaluation as
simple as possible and reduce the influence of unrelated
components. We further compare against Covariance Dis-
criminative Learning (CDL) [17], which is an example of
track-based modeling and recognition. For CDL, tracks
are represented by their covariance matrix. We follow [17]
and add a small positive diagonal to the covariance matrix
to ensure it is positive definite: C∗X = cov(X) + 10−3I.
The kernel between two tracks is defined as k(X,Y) =
‖log(C∗X) · log(C∗Y)‖F . Using this kernel, we learn a MLR
classifier (Eq. 2). CDL performs notably worse than the
frame-based approaches with 68.2% on BBT and 59% on
BUFFY vs. 77.4% and 65.8%, respectively.

Our approach We run our approach in different configu-
rations. For a fair comparison, we use the same base ker-
nel as in the baseline, a polynomial kernel of degree 2:
k(x,y) = (1 + xTy)2 (c.f . [1, 14]). We evaluate pool-
ing over the full tracks (i.e., f = 1), fixed-time pooling
with l = 30 (split each track into equal-length sub-tracks
of size 30, which corresponds to roughly one half of the
average track length) and fraction-pooling with f = 0.5
(split each track into exactly 2 sub-tracks). We also com-
pare different basic pooling strategies, namely normalized
sum (1

MN

∑∑
k(·, ·)), single maximum (max max k(·, ·)),

and average N-max, an average of the maximum N base
kernel values (1

N

∑
max1..N k(·, ·)). We set N = 5 in our

experiments. For an overview of the results see Tbl. 1.

Influence of splitting/time pooling For all variants of the
track kernel, splitting tracks into sub-sets increases perfor-
mance. A fixed-time splitting with l = 30 yields higher
performance than fraction-time splitting with f = 0.5. One
reason for this could be that with f = 0.5 even short tracks
are split, whereas with l = 30 a track with less than 30
frames is not split. Interestingly, the non-Mercer kernel
variants (due to the max operation) perform much better
than the normalized sum-based kernel. One explanation
might be that feature pairs with high local kernel scores are
outnumbered by low-scoring pairs, for example due to pose
mismatches or alignment problems.

Fig. 2 displays the influence of the two pooling param-
eters f and l for different pooling operations. We can see,
that for both fixed-time and fraction-time splitting, a smaller
subset size leads to higher recognition performance. This
is not surprising since smaller subsets are more coherent,
and thus learning can select from more representative sub-
sets. Both max-based pooling operations perform similarly.
The normalized sum kernel (denoted as average in the plot
legend) on the other hand has a significant negative offset,
possibly owing to the imbalance of good and bad matching
feature pairs for a given track pair.

BBT BUFFY
1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.

single-frame SVM [14] 87.46 84.96 74.06 74.87 70.25 66.46 76.34 69.90 59.71 66.23 66.47 68.07 61.44 65.30
single-frame MLR [1] 88.59 87.61 76.18 74.01 72.76 65.24 77.40 68.85 61.37 65.96 67.19 69.85 61.72 65.82
track-repr CDL [17] 79.42 75.58 68.35 65.58 63.98 56.34 68.21 64.79 54.93 57.63 59.52 63.49 53.78 59.02

pool split Mercer
1

MN

∑∑
f = 1 X 82.15 77.88 70.47 67.99 65.59 58.90 70.50 62.04 55.45 56.15 62.75 63.49 56.18 59.34

1
MN

∑∑
f = 0.5 X 84.57 80.53 72.43 69.88 67.74 60.00 72.52 63.74 57.84 59.48 63.59 64.12 57.56 61.06

1
MN

∑∑
l = 30 X 86.66 84.42 74.06 74.01 71.86 62.93 75.66 68.32 58.46 62.53 66.11 69.21 59.32 63.99

max max f = 1 87.78 83.19 73.74 73.49 66.67 64.15 74.83 71.60 61.06 64.29 71.50 71.37 61.16 66.83
max max f = 0.5 89.07 84.07 73.74 74.18 67.74 64.02 75.47 71.20 62.82 66.42 70.78 69.72 61.35 67.05
max max l = 30 89.87 86.55 76.18 76.42 72.94 66.10 78.01 72.77 61.27 67.53 71.86 72.52 63.56 68.25
1
N

∑
max1..N f = 1 88.59 83.36 74.23 74.01 67.03 64.02 75.21 71.20 61.06 64.20 72.10 71.76 60.98 66.88

1
N

∑
max1..N f = 0.5 89.71 83.89 73.57 74.53 68.28 64.02 75.67 71.07 62.62 66.05 71.02 70.36 61.62 67.12

1
N

∑
max1..N l = 30 90.35 86.37 76.35 77.11 73.12 66.34 78.27 72.77 60.44 67.62 70.78 72.52 63.10 67.87

Table 1: Results on the KIT TV data set [1]. Baseline results with single-frame methods are reported in the first two rows. CDL [17] (third
row) is an example of a track-based representation method. The bottom section shows the performance of different instantiations of the
time pooled track kernel. The maxmax and average-N-max (with N = 5) variants with a fixed-time splitting of l = 30 perform best on
average, despite not being Mercer kernels. The normalized sum variants (rows 1-3 bottom section) perform worst among the different track
kernel variants, however, better than CDL. For all variants, splitting tracks into sub-sets increases performance, where a fixed-time splitting
with l = 30 consistently outperforms fraction-time splitting with f = 0.5. We highlight best and second-best average performance.

EP max-pr SVM [14] MLR [1] avg-max
f = 0.5

1 30.26 72.69 69.36 74.10
2 19.68 63.89 61.97 63.29
3 19.13 66.06 64.07 66.93
4 25.49 65.37 67.09 67.20
5 34.86 66.22 63.21 71.05
6 15.59 65.19 61.83 63.46
7 20.31 53.01 50.30 53.01
8 21.89 70.27 68.78 71.52
9 19.15 60.40 56.87 59.58
10 29.49 68.97 65.77 69.36
11 14.51 59.97 59.09 58.92
12 20.13 52.93 52.38 52.22
13 19.19 70.25 66.50 69.44
14 27.91 54.77 52.79 59.53
15 20.96 57.83 58.59 58.50
16 19.97 65.52 62.85 64.50
17 14.17 68.77 67.72 67.85
18 18.33 59.36 57.13 61.59
19 17.20 67.74 68.49 68.17
20 19.07 56.77 55.10 56.59
21 12.20 59.96 56.91 60.47
22 19.84 60.23 58.27 59.20

Avg 20.88 63.01 61.14 63.48

Table 2: Accuracies for season 5 of BUFFY. The max-prior char-
acter is “Buffy” (first col.). With the average max1..N track kernel
and fraction-time pooling we outperform single-frame methods.

3.1. Large scale person identification
In order to test the scaling capabilities of the pooling ker-

nel, we extended the KIT TV data set for BUFFY to span
the full season1. Following [1], we performed face tracking,
face alignment and block-based DCT feature extraction.
Using fan transcripts, we perform automatic speaker assign-
ment, and are able to assign speaker identities to 20.42% of
the tracks of BUFFY with a precision of 77.47%.

Again, we compare single-frame approaches (MLR
and SVM) against the time pooled track kernel (average

1http://cvhci.anthropomatik.kit.edu/projects/mma

max1..N withN = 5 and f = 0.5). Results can be found in
Table 2. We outperform both SVM and MLR with 63.48%
compared to the next best 63% (SVM). Also, training and
inference are very fast once the track kernel’s Gram matrix
has been computed. With our unoptimized MATLAB im-
plementation, it takes only about 60s for both training and
inference for the full season of BUFFY (∼21000 tracks).

3.2. Learning with Feedback
An aspect that usually only plays a secondary role (in

research) is the question of how to obtain 100% accurate la-
bels from a given set of partly incorrect recognition results.
The naı̈ve solution would be to let a human manually correct
all wrongly identified tracks. However, corrected results
can be seen as new training data which allows us to train
a better classifier. Re-training the classifier and re-testing
all tracks after a few corrected samples can be beneficial.
Due to the new training data, more originally wrongly clas-
sified tracks can now be identified correctly, which reduces
the total amount of data that needs to be manually corrected.
Note that this is different to the problem of active learning,
which deals with the problem of which samples to select
from a set of unlabeled samples [11].

We are interested in minimizing the time ttotal to reach
100% accuracy. Important here is the relationship between
training/inference time and the number of samples to correct
each round. Our simple model of required labeling time is
as follows. Let tpre be a fixed amount of time needed to set
up a classifier and pre-compute for example a kernel matrix.
Let tinit be the time it takes to label one training sample
before any learning has been performed, tfb the feedback
time on one wrongly classified sample, and ttrain and ttest
the time it takes to re-train the classifier and re-test all test
samples, respectively. Further, letN be a number of labeled

http://cvhci.anthropomatik.kit.edu/projects/mma

0 100 200 300 400 500
0.7

0.75

0.8

0.85

0.9

0.95

1

#labeled samples ∝ time required

m
e
a
n
 a

c
c
u
ra

c
y

manual corrections + retraining

only manual corrections

Figure 3: Training with feedback on BBT 1-6. We retrain/test
every 10 corrected samples. After correcting roughly 500 samples,
100% accuracy is reached. Without re-training/testing, over 1000
samples would need to be manually corrected.

samples in each round. The total labeling time can then be
computed as follows

ttotal = tpre +Ninit · tinit
+ k ·max{ttrain + ttest, N · tfb} (11)

To minimize the number of unnecessarily manually cor-
rected tracks, we should label N̂ tracks in each round, such
that N̂ · tfb ≈ ttrain + ttest, i.e. we use exactly the time for
manual labeling while one train-test round is running. As
discussed in Sec. 2.2, we can achieve fast training and in-
ference with the track kernel, since we move the most time
consuming step of kernel computation to tpre. Therefore, N̂
can be very small which reduces the amount of unnecessary
labels.

In Fig. 3, we compare the time required on KIT TV BBT
1-6 to achieve 100% accuracy through feedback with and
without repeatedly retraining the classifier after N labeled
samples. Retraining and inference takes between 5 and 10
seconds on all 3759 tracks (compared to minutes for the
single-frame classifier). In our experience, it is possible
to correct on average 1 wrongly classified track per sec-
ond with an appropriate user interface (i.e., displaying many
tracks at once). We therefore set N = 10. There were
1026 incorrectly classified tracks after the initial classifier
run. We can see in Fig. 3 that re-training and inferring ev-
ery 10 corrected samples, we reduce the amount of samples
to correct to about 500, saving about half the time otherwise
required to fully correct the initial recognition result.

4. Conclusion
We present a family of kernels to learn kernel-based clas-

sifiers on tracks and two strategies to efficiently pool base
kernel results over time. We also investigate non-Mercer
variants of the track kernel. The track kernel allows for fast
training and inference compared to frame-wise classifica-
tion, allowing for efficient integration of user feedback. We
apply our approach to the task of large scale video-based
person identification and obtain state-of-the art results.

Acknowledgments This work was supported by the Ger-
man Federal Ministry of Education and Research (BMBF)
under grant no. 13N12063.

References
[1] M. Bäuml, M. Tapaswi, and R. Stiefelhagen. Semi-

supervised Learning with Constraints for Person Identifica-
tion in Multimedia Data. In CVPR, 2013.

[2] H. Cevikalp and B. Triggs. Face recognition based on image
sets. In CVPR, 2010.

[3] T. Cour, B. Sapp, and B. Taskar. Learning from Partial La-
bels. JMLR, 12(5):1225–1261, 2011.

[4] M. Everingham, J. Sivic, and A. Zisserman. “Hello! My
name is... Buffy” Automatic naming of characters in TV
video. In BMVC, 2006.

[5] Y. Hu, A. S. Mian, and R. Owens. Sparse approximated
nearest points for image set classification. In CVPR, 2011.

[6] S. Lyu. Mercer Kernels for Object Recognition with Local
Features. Technical report, 2004.

[7] S. Lyu. Mercer Kernels for Object Recognition with Local
Features. In CVPR, 2005.

[8] S. Maji, A. Berg, and J. Malik. Classification using intersec-
tion kernel support vector machines is efficient. In CVPR,
2008.

[9] K. Rematas, M. Fritz, and T. Tuytelaars. The pooled NBNN
kernel: beyond image-to-class and image-to-image. In
ACCV, 2012.

[10] J. Sang and C. Xu. Character-based movie summarization.
In ACM Multimedia, 2010.

[11] B. Settles. Active learning literature survey. Technical report,
2010.

[12] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-gradient sOLver for SVM. In ICML,
2007.

[13] J. Sivic, M. Everingham, and A. Zisserman. “Who are you?”
– Learning person specific classifiers from video. In CVPR,
2009.

[14] M. Tapaswi, M. Bäuml, and R. Stiefelhagen. “Knock!
Knock! Who is it?” Probabilistic Person Identification in
TV-Series. In CVPR, 2012.

[15] A. Vedaldi and A. Zisserman. Sparse kernel approximations
for efficient classification and detection. In CVPR, 2012.

[16] C. Wallraven, B. Caputo, and A. Graf. Recognition with
local features: the kernel recipe. In ICCV. IEEE, 2003.

[17] R. Wang, H. Guo, L. Davis, and Q. Dai. Covariance discrim-
inative learning: A natural and efficient approach to image
set classification. In CVPR, 2012.

[18] R. Wang, S. Shan, X. Chen, and W. Gao. Manifold-Manifold
Distance with application to face recognition based on image
set. CVPR, June 2008.

