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Abstract

We describe a probabilistic method for identifying char-
acters in TV series or movies. We aim at labeling every
character appearance, and not only those where a face can
be detected. Consequently, our basic unit of appearance is a
person track (as opposed to a face track). We model each TV
series episode as a Markov Random Field, integrating face
recognition, clothing appearance, speaker recognition and
contextual constraints in a probabilistic manner. The iden-
tification task is then formulated as an energy minimization
problem. In order to identify tracks without faces, we learn
clothing models by adapting available face recognition re-
sults. Within a scene, as indicated by prior analysis of the
temporal structure of the TV series, clothing features are
combined by agglomerative clustering. We evaluate our ap-
proach on the first 6 episodes of The Big Bang Theory and
achieve an absolute improvement of 20% for person identi-
fication and 12% for face recognition.

1. Introduction
This paper addresses the problem of automatic labeling

of all characters in a TV series. Person identification has di-
rect applications in the generation of meta-data for use in in-
dexing and fine-grained retrieval of specific scenes (“Show
me shots with Sheldon”). More importantly, person identifi-
cation forms the basis for other types of multimedia analysis
that benefit from person-specific models.

Albeit the number of main characters in a TV series is
typically low (usually below 15), the recognition problem
is challenging due to high variability in view points, facial
expressions, general appearance and lighting conditions, as
well as occlusions, rapid shot changes and moving cameras.
State-of-the art approaches [7, 14] tackle the problem by
mainly relying on face tracks. However, we think it is desir-
able to identify the characters also when their face is not vis-
ible. Our goal in this paper is to develop a method to iden-
tify all character appearances in a TV series or movie, spe-
cially where the face cannot be detected or tracked. Accord-
ingly, we aim to assign identity labels to all person tracks,

Figure 1: A sample image from The Big Bang Theory. Note how
our approach is able to correctly identify all three characters by
relying on clothing when the face is unseen.

instead of face tracks. This introduces an additional chal-
lenge that we now need to infer an identity even when the
face is not observable. Furthermore, we wish to integrate
different features in a principled way, and restrict not only
to facial and clothing appearance, but also use constraints,
such as “the same person cannot appear twice in the same
frame”. Towards this goal we model the character appear-
ances as a Markov Random Field (MRF) and integrate cues
from face, speech and clothing in a common framework. In
addition, we leverage structural elements that are common
to TV series: (i) the division of the plot in scenes which we
use as hints to re-learn clothing models and (ii) the concept
of alternating shots, where the sequence alternates between
two shots, e.g. in a conversation, which effectively allows
us to use additional evidence for the identity decision.

We demonstrate our approach on episodes 1-6 of season
1 of the sitcom The Big Bang Theory. Each episode is about
20 minutes in length. Figure 1 shows a sample image.

1.1. Related work

Previous work on identifying characters in movies and
TV series can be roughly divided into two categories:
(i) person retrieval, where the goal is to find all occurrences
of a character from a given example image or sequence and
(ii) full labeling of every character appearance with a unique
identity. Our work falls into the latter, therefore we focus on
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a discussion of relevant work in this area.
Closest to our work are the works of Everingham et

al. [7], Sivic et al. [14] and Ramanan et al. [12] which have
the goal of labeling every character appearance in videos.
Everingham et al. [7] propose a method for unsupervised
labeling of frontal face tracks. They build exemplar sets
for all characters using subtitles in conjunction with aligned
transcripts. All remaining face tracks are matched against
these exemplar sets in a nearest neighbor fashion. Clothing
features are computed from a box beneath the face, to sup-
port labeling decisions when the face descriptors are inde-
cisive, e.g. due to differences in lighting and pose. Sivic et
al. [14] extend [7] to half- and full-profile faces, thus in-
creasing the coverage of the labeled persons. Köstinger et
al. [10] take advantage of semi-supervised multiple instance
learning to incorporate weakly labeled faces during training
and show improved performance on the same data set. In
contrast to [7], Cour et al. [4] propose a method for label-
ing characters without transcripts and use in-video dialog
cues to capture references to identities. Ramanan et al. [12]
cluster faces in a hierarchical procedure using clothing and
hairstyles as additional cues. Some of the obtained face
clusters are labeled manually, and are used to identify all
face tracks using a nearest neighbor fashion similar to [7].

However, [7, 10, 12, 14] all have one common drawback.
They are limited to character occurrences for which a face
is detectable. Further, since the identification is performed
for individual tracks, constraints such as “the same person
cannot appear twice in one frame” cannot be integrated.

MRFs have been successfully applied to person identifi-
cation in photo albums. Anguelov et al. [1] perform recog-
nition primarily based on faces, and incorporate clothing
features from a region below the face. Photo albums are di-
vided into events, during which people are expected to have
similar clothing. They also model the constraint that two
people appearing in the same photo cannot be assigned the
same identity. However, this approach is also limited to oc-
currences where a face can be detected.

1.2. Overview of our approach

In our approach, we build on ideas from the discussed
related work and extend them to labeling of full persons in
videos in a probabilistic framework.

Our approach can be divided into three steps. We first
start with basic video analysis, where we split the video into
scenes and shots, and detect alternating shots (Sec. 2). In the
second step (Sec. 3), different cues give us strong and weak
hints on the character identities: We first track both faces
and full persons in each shot. We then perform face recogni-
tion on the face tracks, match clothing for the person tracks
and also perform speaker identification. Finally, the outputs
of the individual components and additional constraints are
integrated in an MRF, and the labels for person tracks are

obtained by energy minimization (Sec. 4). We present ex-
perimental results in Sec. 5 and conclude with a discussion
of the approach and possible future work in Sec. 6.

The main contributions of our work are: (i) We achieve
full coverage by labeling person tracks instead of face tracks
only. To deal with the problem of labeling tracks without
faces, we propose a method for unsupervised learning of
clothing models. (ii) We detect and leverage structural ele-
ments that are commonly found in TV series, namely scenes
and alternating shots, for learning the clothing models and
incorporating additional constraints, respectively. (iii) The
speech modality is included in our model without the need
for subtitles or fan transcriptions. The ambiguity of assign-
ing a track to a recognized speaker is handled by the intro-
duction of a latent presence variable.

2. Structural video analysis
We simplify the problem of labeling the full video by

first splitting it into scenes and shots, which can, to some ex-
tent, be treated independently. Additionally, we obtain im-
portant information about the structure of the video which
is leveraged for learning clothing models and adding sup-
plementary constraints to our model.

2.1. Shot boundaries

A normalized version of the Displaced Frame Differ-
ence (DFD) [16], the difference between consecutive mo-
tion compensated frames is used to detect the shot bound-
aries. DFD(t) = ‖F (r, t) − F (r + D(r), t − 1)‖, where
D(r) is the optical flow between frames F (r, t − 1) and
F (r, t). We achieve 1981 correct detections, 2 misses and
only 8 false positives over the 6 episodes. The high pre-
cision of the shot boundary detector helps our face tracker
initiate and terminate tracks. Further, it is also the first step
towards reliable detection of alternating shots (Sec. 2.3) and
creation of the model (Sec. 4).

2.2. Special sequences

Special transition effects (see Figure 2) or special audio
jingles are commonly added to TV series (Seinfeld, Friends,
etc.) to indicate a larger change in time and/or location of
the plot. We call the set of shots between two such indica-
tors a scene. We observe that the clothing of the characters
usually remains unchanged within scenes, but may change
from one scene to another. Thus a scene change is a good
juncture for re-learning clothing models.

In The Big Bang Theory the background of the special se-
quence is a colour gradient, which is hard to represent using
a few colours. Thus, we are able to detect these sequences
reliably by thresholding the difference between each frame
and its eight dominant colour representation [11] (19 de-
tections, 0 false positives, 0 misses). For other TV series,
depending on whether a special sequence or a special jingle
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Figure 2: Typical special sequence denoting a scene change.

denotes a scene change, simple video and/or audio template
matching should provide sufficient recognition rates.

2.3. Alternating shots

We observe another interesting feature in the temporal
structure of the TV series. During conversations, it is seen
that shots flip back and forth between actors. Usually the
actors seen across these alternating shots remain the same
and do not move. This can be included in our model as a
constraint on the possible identities within a shot or used to
accumulate scores for person tracks across shots.

Alternating shots are detected by applying a threshold
on the normalized DFD between the first frame of each shot
and its corresponding second-consecutive shot. With this
technique, we achieve an equal error rate of 4.5%.

3. Face, clothing and speaker identification
We obtain face and person tracks in each shot. From each

track we extract features which are used for the recognition.
Speaker identification is also performed for each shot.

3.1. Face detection and tracking

We employ a detector-based multi-pose face tracker [2],
incorporated in a particle-filter framework. The tracking
is performed in an online fashion, i.e. the tracker does not
know the detections of the entire shot in advance, but only
uses the state of the previous frame to infer the location and
head pose of the faces in the current frame. We initialize
tracks by scanning the whole image every fifth frame, using
frontal, half-profile and profile face detectors [8]. This al-
lows us to detect and subsequently track faces independent
of their initial pose. To score a particular particle of a track,
we employ a total of 11 face detectors, one for each of the
yaw-angles −90,−60,−45, . . . , 0(frontal), . . . , 45, 60, 90.
The face detectors already achieve a low false positive
rate, which is further reduced by subsequent tracking. The
tracker runs close to real-time (∼10fps) and on average pro-
duces 650 tracks in a typical 20-minute episode.

3.2. Face recognition

We extract features for face recognition from each track
(see Figure 3), building on a local appearance-based ap-
proach [6]. We first locate the eyes within the tracked face
region using an eye detector based on the same features as
our face detector. While this is certainly not as accurate as

Figure 3: Face tracks, eye detections and aligned and cropped
faces for each frame (left). DCT feature computation grid of 6×8
blocks on aligned images (right).

the facial features localization in [7], the detected eye posi-
tions suffice to normalize the face to a canonical pose and a
standard size of 48×64 pixels. The normalized face is split
into 6× 8 blocks of 64 pixels each, and the Discrete Cosine
Transform (DCT) is computed over each of these blocks.
We store the first five coefficients (ignoring the DC value)
of each block and obtain x(i)t , a 6×8×5 = 240 dimensional
feature vector for frame t in track i. For recognition, sec-
ond order polynomial kernel SVMs are trained in a 1-vs-all
fashion for all primary characters j. Normalized classifica-
tion scores are accumulated over all the frames t ∈ Ti for
each classifier Cj

f
(i)
j =

1

|Ti|
∑
t∈Ti

Φj(x(i)
t ); Φj(x(i)

t ) =
1

1 + e−θ1j−θ2jCj(x
(i)
t )

.

(1)
where parameters θ are learned while training the classi-
fiers. The face id score f (i)j ranges from 0 to 1 and can
be interpreted as a pseudo-probability. A score towards the
Unknown identity is obtained from each frame as the small-
est remaining uncertainty considering all known identities:

f
(i)
U =

1

|Ti|
∑
t∈Ti

min
j

(1− Φj(x(i)
t )) . (2)

We do not make a hard decision at this point, but keep all
scores and include them as evidence in our model. Thus,
even if a face score is not the highest for a given track, it
still influences the final identity decision during fusion.

3.3. Person detection and tracking

Person detection is a much harder task than face detec-
tion due to the non-rigid nature of the human body and the
wide range of general person appearance. In a TV series,
both full-body and upper-body shots are common. To en-
sure both types are detected, we adapt the part-based pose-
lets [3], and use them to track full persons in a detector-
based tracker similar to the face tracking approach de-
scribed in Sec. 3.1. Owing to the difficulty of the prob-
lem, our tracker is able to obtain about 47% recall, with a
precision around 77%. In order to assess our approach inde-
pendent of the quality of the person tracker, the undetected
person tracks are manually annotated.
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Figure 4: Sample poselet-based person detections (1-5), manual
annotations (6-7). The green box is the clothing feature area, the
white denotes the region where we search for a face detection.

3.4. Clothing clustering and identification

Clothing can be an important cue to disambiguate differ-
ent people and has been used successfully to support face
recognition (see, e.g., [1, 7, 14]).

We propose a novel method to learn character-specific
clothing models in an unsupervised fashion using the out-
put of the face identification from Sec. 3.2. Our features
are RGB histograms computed from a rectangular region
located within the person bounding box (therefore being in-
dependent of face detection). We show that this simple seg-
mentation and feature work well. Of course it is possible
to segment the person more accurately (as in [9]) and/or use
more sophisticated features instead, and our method will di-
rectly benefit from it. Figure 4 shows person detections and
the corresponding clothing boxes (in green) and search ar-
eas for face detections (in white).

We need to tackle some problems when learning clothing
models: (i) Characters change clothing within an episode,
so we need to detect when to re-learn clothing models.
(ii) Clothing features are unreliable, i.e. the inter-person
difference can be smaller than intra-person variance due to
similar clothing of different characters, illumination or pose
changes. (iii) Face id decisions are unreliable, i.e. we can
only expect that around 70-80% of the face identities are
correct, and (iv) not every person detection/track has asso-
ciated face information.

We solve the first problem by learning clothing mod-
els for each scene as demarcated by the special sequences
from Sec. 2.2. While in some cases we re-learn the clothing
model unnecessarily, it is not harmful either. In practice, ev-
ery character to be recognized appears in the scene at least
once with their face visible. This allows us to learn a new
character-specific clothing model for each scene. The learn-
ing algorithm (see Figure 5) consists of three steps:

1. Clustering: We cluster all clothing features within one
scene agglomeratively using ward-linkage [15] over the Eu-
clidean distance. By choosing a low cut-off threshold θc
(e.g. at 6% of the maximum distance), the clustering yields
many more clusters than the number of characters in the
scene. In this way the clusters remain relatively homoge-
neous, and it is unlikely that features from two different
characters mix (thus dealing with issue (ii)). Note that we
still do not know to whom the clusters belong.

Clustering  Assignment 

Leonard 

 

Face 
Match 

Assigned Cluster 

Sheldon Sheldon 

Unassigned Cluster 
 

Clothing 
Match 

Cluster Types Tracking 

1 1  2 2 

3 3 

Figure 5: Overview of clothing model learning and recognition.

2. Transfer face results: For some of these clustered per-
son detections we have faces found by our face tracker (ly-
ing within the white box in Figure 4). If a face is found, we
associate the person’s identity provided by the face recog-
nizer with the feature within the cluster. We then categorize
clusters into two types. The clusters which have person de-
tections with sufficient number of faces, of which at least
θid (60%) are recognized as the same character are called
assigned clusters. This addresses problem (iii) that not all
faces are correctly classified. An assigned cluster is tagged
with the identity of the most common face result, and each
character is assigned scores according to the distribution of
face results within the cluster.

3. Clothing classification: Finally we tackle problem (iv)
– the case of person detections without faces – by scor-
ing features in unassigned clusters individually. Each such
clothing feature is matched to the nearest means of the as-
signed clusters. Consider an assigned cluster k, with iden-
tity γ(k), having Nk features. Its mean feature is hk =
1
Nk

∑
j hjk, where hjk is the histogram of detection j. Then

for feature l in an unassigned cluster m, the identity assign-
ment is done according to

γl(m) = γ(k∗), k∗ = arg min
k
‖hlm − hk‖ . (3)

Thus, for features in the assigned clusters, a score vector
is the distribution of face results within the cluster, while for
features in unassigned clusters, the distances to each of the
assigned clusters in that scene are used to generate a score.
Finally, the scores of individual features in one person track
are accumulated to generate a score for the person track as
a whole. Owing to the soft assignment of scores, we still re-
tain the possibility to overturn the decision when integrating
the clothing result in the global model.

3.5. Speaker identification

Our speaker identification system is based on [13]. We
build a Gaussian Mixture Model (GMM) for each pri-
mary character, and one to encompass all other non-primary
speakers. The audio is first down-sampled and split into
overlapping frames of 20ms. For each frame, Mel Fre-
quency Cepstral Coefficients [5] are computed and are used
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to train the GMMs using Expectation Maximization. For
identification, we use maximum a-posteriori probability

Ŝ(j) = arg max
1≤i≤N

p(λi|X(j)) . (4)

where X(j) is the feature for frame j, λi is the model for
the ith speaker, and Ŝ(j) the estimated speaker. Spurious
errors are removed by mode-filtering. Finally, we say that
a character is speaking within a shot if his largest speech
segment is longer than 25% of the shot duration.

It is not easy to associate the speaker with one of the
appearing characters in the shot. [7] and [14] try to deter-
mine the current speaking character from lip movements.
We observe that the speaker usually appears in the shot and
therefore impose the constraint that one of the appearing
characters should match each identified speaker.

4. Global model
We model our problem of automatic labeling of charac-

ters in video as a Markov Random Field. This effectively
combines the individual face, clothing and speaker modali-
ties and also allows to easily include contextual constraints.

Let S = {S1, . . . , Sm} denote the set of shots within a
scene. For shot Si, we have a set Mi = {µi1, . . . , µin}
of identity variables, one for each of the n person tracks in
the shot. P(i) denotes a latent variable for the presence of
characters in shot Si. We associate the clothing results cij
and face results fij (only if present) with identity variables
µij and the speaker recognition results si with the presence
variable P(i). For our choice of TV series, fij , cij , si and
µij are 6-dimensional vectors comprising the recognition
scores for five main characters and the Unknown category.

For alternating shots, we first associate tracks across
shots by checking for large overlap in tracked area. Typ-
ically, since motion between alternating shots is minimal,
we can assume that the characters stay in their same place.
The clothing recognition scores for tracks which match are
accumulated and normalized. If {. . . , i−2, i, i+2, . . .} is a
sequence alternating shots, then the new clothing score for
track j is cij = . . .+ ci−2,j + ci,j + ci+2,j + . . ..

The MRF defines a joint probability over the identity and
presence variables. For the task of identity labeling, we
are interested in the maximum a-posteriori assignment of
the identity variables given the face, clothing and speaker
results. To describe the relationships between the random
variables, MRFs can be approached from two perspectives
– a probability maximization problem or an energy mini-
mization problem. The latter is chosen in this paper.

4.1. Energy functions

From intuition, we want the energy of the system to re-
duce when the computed identity of the person matches that
of the face and clothing. We would like to increase the en-
ergy if the identified speakers are not among the labeled

identities. Furthermore, when two simultaneously appear-
ing tracks are assigned the same identity, it should also in-
crease the energy of the system. This gives us 4 energy-
terms: a clothing energy EC , a face energy EF , a speaker
energy ES and a uniqueness energy EU . Figure 6 depicts
the graphical model along with the energy terms.

We define the clothing energy between the identity vari-
able µij and its associated clothing result cij as

EC(i, j) = −〈µij , cij〉 . (5)

The inner product matches our initial intuition that the en-
ergy decreases when the identity assignment agrees with the
clothing result. Similarly, we compute the face energy as

EF (i, j) = −〈µij , fij〉 . (6)

Further, for each person track, we introduce a regularization
energy denoted by

ER(i, j) = 〈µij , µij〉 . (7)

which prevents the µij from growing too large. We weight
the three energies by wC , wF and wR respectively. This
modality energy for shot Si over all person tracks j is

EFCR(i) =
∑
j

wFEF (i, j)+wCEC(i, j)+wRER(i, j) . (8)

From the identity variables, we deduce the presence of char-
acters appearing in one shot P(i) = φ(

∑
j µij), where

φ(x) = 1
1+e−x is the sigmoid function. The sigmoid en-

sures that the presence term is not biased towards one char-
acter when there are multiple tracks of the same actor in the
same shot (e.g. due to occlusions or failures in the tracker).
Given the presence term P(i) for a shot Si, we capture the
speaker penalty as

ES(i) = 〈(1− P(i)), si〉 . (9)

which says that if the speaker is not among the people
present in the shot, then induce a penalty.

Finally, we add the uniqueness penalty as a pairwise en-
ergy between combinations of identity variables in one shot.
Let Ti be the set of person track pairs which share at least
one common frame in shot Si. Note that two or more Un-
known characters may appear together, and should not be
penalized. Hence we consider µ′ij = µij,1:D, where D is
the number of main characters for the uniqueness penalty.
The uniqueness energy for shot Si is therefore defined as

EU (i) =
∑

(j,k)∈Ti

〈µ′ij , µ′ik〉 . (10)

Combining the modality and constraint energies, we obtain

E(i) = EFCR(i) + wSES(i) + wUEU (i) . (11)

and the optimal identity labels are computed by minimizing
E(i) jointly over all identity variables inMi.

µ∗ = arg min
µ

(E(i)) . (12)
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Figure 6: Graphical representation of the MRF illustrating the di-
vision into scenes and shots, and interaction between identity vari-
ables µij with face and clothing modalities. The speaker infor-
mation is included via the presence node P(i), and uniqueness is
enforced by potentials (red links) between the identity variables.

For our experiments, we use equal weights for the face,
clothing and regularization energy wC = wF = wR = 1,
while speaker penalty and uniqueness are enforced more
stringently with wS = wU = 2.

5. Experimental results
We evaluate our approach on the first six episodes of the

first season of the popular American sitcom The Big Bang
Theory1. Table 1 provides some statistics about the data set.
Note that of all person tracks (#Tracks), about 30% do not
contain faces (#with Faces) and are missed if face detection
is used as the sole person detection scheme. We also show
the number of tracks which belong to the main characters
(#Main), which are the focus of our identification scheme.
All other tracks are categorized as Unknown. The amount
of speech (in seconds) is also presented.

5.1. Person labeling

We present the results of our experiments in multiple
stages of improvement (see Table 2). The face and speaker
models are trained on episodes 4, 5 and 6. From these
episodes, we count which actor appears most frequently.
In the worst-case scenario of absence of any recognition
scheme, labeling all tracks as the most likely prior is the
best option (here: Sheldon, with 29.7%). This is referred
to as the MaxPrior baseline, and it captures the difficulty of
the data set.

As a second baseline, we use the face id results when a
person track can be associated with a face track. When the
face is unseen, the track is assigned the label of the most
likely character, Sheldon. On average, this allows us to cor-
rectly label 63.1% of the tracks.

1Video events, tracks and identity labels for the data set available at
http://cvhci.anthropomatik.kit.edu/projects/mma

Episode E1 E2 E3 E4 E5 E6 Total

#Tracks 662 616 619 632 573 802 3904
#with Faces 499 408 438 444 384 534 2707
#Main 636 614 520 455 448 670 3343
#Unknowns 26 2 99 177 125 132 561
Speech (s) 766 650 699 652 570 621 3958

Table 1: Statistics for episodes 1–6 of The Big Bang Theory

Episode E1 E2 E3 E4 E5 E6 Avg

MaxPrior 32.1 26.4 17.2 44.0 23.2 22.1 27.5
Face 70.1 64.9 59.6 65.7 57.1 61.3 63.1
Clothing 89.7 76.1 78.7 73.1 62.7 77.2 76.2
F+C 90.6 79.5 80.5 79.6 68.6 80.3 79.8
F+C+S 90.6 80.5 80.5 80.1 68.6 80.3 80.1
FullModel 92.5 83.1 80.8 83.4 69.7 85.8 82.6

Table 2: Person identification accuracy from baseline to fusion

Episode E1 E2 E3 E4 E5 E6 Avg

Face 81.9 74.4 72.5 76.4 74.3 71.1 75.1
Clothing 93.5 81.6 91.1 78.0 76.1 79.8 83.4
FullModel 98.3 89.9 94.8 89.1 85.3 88.5 91.0

Table 3: Person identification acc. with groundtruth face labels

Using clothing instead of faces increases the recognition
accuracy to around 76%. This is mainly due to the fact
that using clothing it is possible to also identify tracks with
an unseen face. Note however that the clothing models are
learned using intermediate face results (for assigning clus-
ter labels), so this result depends on the accuracy of the face
recognition. Combining face and clothing provides a 3%
increase. This shows that joint recognition is fruitful even
when clothing models are learned from face results.

Speaker identification is unable to provide a significant
improvement (0.3%). One possible reason might be that the
speaker constraint is limited to preventing a track from be-
ing labeled as a non-present person. It is not capable how-
ever to reduce confusion between two persons present in the
same shot. By associating the current speaker with one of
the person tracks, e.g. using speaker detection as in [7, 14],
we expect a more significant impact in the future.

Finally, the full model including the uniqueness con-
straint and alternating shots achieves an average recogni-
tion accuracy of 82.6% over all episodes, a further 2.5%
improvement over face, clothing and speech combined. The
results for all episodes individually and on average are dis-
played in Table 2.

An interesting aspect is to analyze the influence of the
face recognition performance on the subsequent stages. In
Table 3 we present results for face, clothing and full model
usage on all person tracks when using groundtruth for the
face labels. Note that the face results are not 100% (but
75.1%) because not all person tracks have associated face
tracks (in this case the max-prior Sheldon is used). We
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Episode E1 E2 E3 E4 E5 E6 Avg

Face only results, Person tracks
FAR 69.2 100 85.8 57.6 90.4 74.2 79.5
FRR 7.7 3.2 2.1 1.6 0.4 1.4 2.7
FCR 21.1 32.5 25.1 17.0 22.9 25.4 24.0

Full model results, Person tracks
FAR 38.5 50.0 60.6 24.3 68.0 15.2 42.7
FRR 5.2 6.6 6.5 9.9 15.1 5.9 8.2
FCR 1.3 10.6 5.1 4.4 8.4 3.8 5.6

Table 4: False Acceptance, Rejection and Classification rates for
each episode before and after usage of the model

Episode E1 E2 E3 E4 E5 E6 Avg

Face 77.5 74.5 68.8 76.9 63.1 69.8 71.8
F+C 89.3 84.7 76.4 82.1 67.4 78.8 79.8
FullModel 89.3 84.9 80.8 86.7 73.3 84.1 83.2

Table 5: Face recognition (Sec 5.2) acc. from baseline to fusion

observe that using clothing clustering increases the perfor-
mance to 83.4%, and the full model further to 91.0%. This
shows that better face recognition will consistently improve
all stages. However, clothing-based recognition and the full
model are essential for labeling all non-face person tracks.

In Table 4 we report the False Acceptance Rate (FAR),
False Rejection Rate (FRR) and False Classification Rate
(FCR) on the six episodes. Note the large reduction in FCR
from 24% to 5.6% by using our proposed scheme. Reduc-
tion in FCR is crucial for using the person identification for
higher-level semantic tasks. The poor classification of Un-
known characters can be attributed to lack of explicitly mod-
eling all Unknown characters individually. However, Un-
known characters account for only 14% of all person tracks.

Figure 7 presents precision-recall curves for our test
episodes 1, 2 and 3 on person tracks. Finally, in Figure 8
we see sample images from our database where correct per-
son identification is achieved either due to fusion of face,
clothing and speech modalities. We also see the uniqueness
constraint help resolve confusion.

5.2. Face labeling

In another experiment, we evaluate our approach for the
task of the face recognition, i.e. we now use the model for
labeling face tracks. Table 5 shows that the addition of
clothing information improves performance by 8% and fi-
nally fusing speaker information and the uniqueness penalty
provides another 4% increase, improving the overall recog-
nition rate from 71.8% to 83.2%.

6. Conclusion
In this paper, we propose to shift the focus in automatic

labeling of characters from face recognition to full person
recognition. Person tracks are used as the basic unit to la-
bel all character occurrences in a TV series. We model

the problem as a Markov Random Field, fusing different
modalities, face, clothing and speech, efficiently in a prob-
abilistic framework. We analyze the scene structure of the
TV series in order to learn appropriate clothing models for
reliably identifying person tracks without faces. The MRF
also facilitates the use of contextual cues, and can be fur-
ther extended with other cues, such as gender or hair color,
if available. In the future, we also plan to incorporate tran-
scripts and subtitles similar to [7, 14, 10] to allow for fully
unsupervised labeling. Although this is out of the scope of
the current work, a better person tracker would be desirable.
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uniqueness constraint (row 4, columns 2-3). The labels adjoining the detection boxes are as follows: first row denotes the ground truth
(yellow background), the second row is the direct face or clothing result and third row our model fusion result. The results have red
background when face/clothing/model results are incorrect and green background when correct (best viewed in color).

[12] D. Ramanan, S. Baker, and S. Kakade. Leveraging archival
video for building face datasets. In ICCV, 2007.

[13] D. Reynolds and R. Rose. Robust Text-independent Speaker
Identification using Gaussian Mixture Speaker Models.
Speech and Audio Processing, 3(1):72–83, 1995.

[14] J. Sivic, M. Everingham, and A. Zisserman. “Who are you?”
– Learning person specific classifiers from video. In CVPR,
2009.

[15] J. Ward. Hierarchical Grouping to Optimize an Objec-
tive Function. Journal of American Statistical Association,
58(301):236–244, 1963.

[16] Y. Yusoff, W. Christmas, and J. Kittler. A Study on Auto-
matic Shot Change Detection. Multimedia Applications and
Services, 1998.

8


