StoryGraphs: Visualizing Character Interactions as a Timeline
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Figure 1: StoryGraph from The Big Bang Theory for season 01 episode 03 (BBT-3). This figure is best viewed in color.

Abstract

We present a novel way to automatically summarize and
represent the storyline of a TV episode by visualizing char-
acter interactions as a chart. We also propose a scene
detection method that lends itself well to generate over-
segmented scenes which is used to partition the video. The
positioning of character lines in the chart is formulated as
an optimization problem which trades between the aesthet-
ics and functionality of the chart. Using automatic person
identification, we present StoryGraphs for 3 diverse TV se-
ries encompassing a total of 22 episodes. We define quan-
titative criteria to evaluate StoryGraphs and also compare
them against episode summaries to evaluate their ability to
provide an overview of the episode.

1. Introduction

Inspired by http://xkcd.com/657, we present a
technique to automatically visualize the interactions be-
tween characters within a TV episode. All stories are essen-
tially based on interactions between the characters [&, 16,

], and therefore key parts of the storyline can be conveyed
by graphically visualizing people-people interactions.

We call these charts StoryGraphs and an example is
shown in Fig. 1. Vertical gray lines represent scene bound-
aries and each horizontal line represents a unique character
from the story. A solid line indicates that the character is on-
screen during that scene, while a dotted line means he/she is

off-screen. The start (») and end of the line (o) indicate the
first and last appearance of the character in that episode. Fi-
nally, the vertical spacing between the lines indicates which
characters appear together, providing an overview of char-
acter interactions, and flow among them.

For example, we see in Fig. 1 that the first 2 minutes of
the episode essentially involve all 5 primary characters from
episode 3 of The Big Bang Theory. This is followed by a
short scene between Doug, Penny and Leonard. At minute
5-7, we see an interaction between Leonard and Leslie
which is the only appearance of Leslie in this episode.
Minute 12 and 17-20 are scenes involving Leonard and
Penny, while minute 13—16 involve Leonard and Sheldon.

Since StoryGraphs are based on the on-screen presence
of characters, they are a direct application of the work in the
vision community related to person identification in TV se-
ries [2, 5, 9]. StoryGraphs can be used in applications such
as smart browsing and video retrieval. For example, the
video player’s seek-bar can be augmented by the chart, thus
providing a sneak-preview of the video (while not revealing
major spoilers) along with fast access to scenes involving
interactions between the viewers favorite characters.

StoryGraphs also facilitate the search for specific situ-
ations in the story. For example, answering a query such
as “Leonard meets Leslie at the lab” is easily achieved by
manually looking at Fig. | and jumping to minutes 5-7 of
the video. Harder queries such as “Leonard asks Penny out
on a date” are localized to minute 12 or 17-20 of the video
thus massively reducing search time.
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Apart from the above applications in the context of mul-
timedia data, the StoryGraphs themselves are an approach
to visualize a set of people-people interactions. In partic-
ular, they can be used to generate similar charts for meet-
ing room recordings to analyze the nature of the discussion
(lecture / group discussion / etc.), list the primary speakers
and collaborations; or to obtain a quick overview for crisis
control room analysis.

Contributions The contributions of this paper are:

e We present an automatic approach to visualize charac-
ter interactions within videos as timeline charts.

e In order to segment the video based on the content we
propose a scene detection algorithm. Our method has
the property to easily produce oversegmented scenes
which are used in the StoryGraphs.

e We formulate the positioning of character-lines in the
StoryGraph as an optimization problem trading off dif-
ferent aspects of the generated chart.

We evaluate the StoryGraphs on three TV series — The
Big Bang Theory, Buffy the Vampire Slayer and Game of
Thrones — and show promising results.

The rest of the paper is organized as follows. As a pre-
cursor to the automatic generation of StoryGraphs, we first
need to track and identify the people (Sec. 3.1) and group
them within blocks of time. We design these blocks to lie
at scene boundaries obtained by an over-segmented scene-
detection algorithm discussed in Sec. 2. We formulate the
StoryGraph layout as an optimization problem in Sec. 3 and
finally evaluate scenes and StoryGraphs in Sec. 4.

1.1. Related Work

We will discuss some work related to video representa-
tion and scene detection. Note that the focus of this paper is
StoryGraphs, for which scene detection is only a precursor.

Scene Detection Scene change detection in movies and
TV series is a well studied area of research. Rasheed and
Shah [15] use color and motion-based shot similarity cues
and obtain scenes by recursively applying normalized cuts
on the affinity graph. Chasanis et al. [3] first create groups
of shots using spectral clustering followed by a sequence
alignment method. They detect a scene change when there
is a substantial difference between overlapping windows of
shots. Liang et al. [12] rely on external information such
as scripts to perform scene detection by using an HMM to
map the scene structure of the script onto the movie.

The most related work is by Han and Wu [10]. They
model the problem as finding scene boundaries and evalu-
ate the similarity of shots within a scene using normalized
cut scores. They use dynamic programming (DP) to op-
timize boundary placement and consider three boundaries
(two scenes) at a time. Our contribution to this domain is the

explicit incorporation of shot threading via SIFT matches
and the DP method to find optimal sets of shots. In contrast
to [10] we do not need to look at two scenes at a time.

Video Representation While there has been a lot of work
in the area of video summarization, representation, and ab-
straction, most of it is based on low-level summarization
methods and usually creates still-image summaries [6, 18]
or moving-image summaries [14]. The work by Smith and
Kanade [17] is among the first attempts to use image under-
standing with language to produce video skims.

More recently, there have been some methods which use
person identities to generate summaries rather than repre-
sent the video by its appearance. Tsoneva et al. [20] use
character names from scripts and propose an importance
function to rate content. Sang and Xu [16] first segment the
video into scenes using the script followed by sub-story dis-
covery and character interaction analysis to obtain a movie
attraction score — a measure they use to generate summaries.

The work by Ercolessi et al. [ 7] is probably most related.
They use plot de-interlacing to develop a web-based visual-
ization framework which provides an overview of the TV
episode. In a timeline chart, they show a few frames of
each scene and place scenes which belong to the same sub-
story together on the same row. They automatically mine
sub-stories [8] within an episode using cues from color his-
tograms, speaker diarization and automatic speech recogni-
tion. Note that unlike our method, they neither depict which
characters appear when, nor show their interactions.

To the best of our knowledge, we present for the first
time an automatic approach to visualize character interac-
tions within videos as a timeline.

2. Video Analysis and Scene Detection

We first briefly discuss some pre-processing steps in or-
der to prepare the video data for generating StoryGraphs.

Shot Boundaries Similar to [19] we detect shot bound-
aries using a normalized version of the Displaced Frame
Difference (DFD) [21] that captures the difference between
consecutive motion compensated frames. We will assume
that all scene boundaries only occur at shot boundaries.

Shot Threading We perform shot threading [3, 4],
i.e. link shots which appear similar (such as alternating
shots in dialogs) to each other using SIFT matching [13].
Shot threads constitute an important cue of our scene de-
tection as they typically involve the same set of characters
at the same location, and thus should belong to the same
scene. We compute similarity between the last frame of ev-
ery shot and the first frame of R = 25 subsequent shots
and set a threshold on the number of SIFT matches to de-
cide whether two shots are part of a thread. Fig. 2 shows an
example of such a matching scheme.
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Figure 2: Top 40 SIFT matches on the last frame of shot 55 (frame
005474) and first frame of shot 57 (frame 005519) for BBT-1.

Shot Representation Each shot s is represented by the
mean RGB color histogram, denoted as H, and computed
over all its frames and stored in 6 x 6 x 6 bins. We define
the distance between a shot s and a set of shots P

|7>| > IH, = Hy? (1)

peEP

C(s,P)

and normalize it using a sigmoid to yield a color-based shot
similarity score ¢(C) € [0, 1].

2.1. Scene Detection

A scene in video data typically refers to a group of shots
that stays coherent in location, people and general appear-
ance. In this section, we propose a method that can com-
pute the optimal scene change locations for a given number
of scenes or automatically determine the total number of
scenes. Unlike other methods [15] which split the scenes
hierarchically to reach the desired number of scenes or un-
til a stopping criteria is met, we use dynamic programming
(DP) to obtain an efficient and optimal solution which max-
imizes the overall objective.

As discussed in [10], the problem of finding scene
change boundaries involves (i) measuring the coherence of
a scene, i.e., similarity of shots within that scene and (ii)
searching for the appropriate boundary positions.

Let N be the number of scenes. We formulate the prob-
lem as optimally grouping all the shots into sets of scenes
S;. Note that all scenes together | J; S; correspond to the
set of all shots, and a shot is only assigned to one scene,
i.e. S;NS; = {}. To obtain this optimal grouping, we solve

= argmaxz Z (IP)(o

Si

i=1 s€S;

(s,P))+Tsp) (2)

where ¢(C(s,P)) is the color-based shot similarity score
between shot s € S; and the shots that precede it P € 5.
T, p captures whether there is a thread between s and any
shot from P and a(n) = 1 — 0.5 (n/N;)” is a decay factor
which prevents the scene from growing too large.

We essentially perform an exhaustive search (Eq. 2)
through all combinations of sets of shots which can be ef-
ficiently implemented as finding the optimal path through a
cube of size N,. X N, X N; —number of scenes, shots and
layers respectively. N, represents the maximum number of
shots that can be assigned to one scene. By forcing that

scenes should start at layer one, the third dimension of the
cube allows us to easily determine the set of previous shots
that are assigned to the same scene P and to incorporate the
decay. One extreme case is when all shots form their own
scene, i.e. Ng. = N,,. However, in TV series data, this
is highly impractical and to improve speed we restrict the
number of scenes Ny, < N /5.

Dynamic Programming In the forward computation pass
of the DP, we add a shot to the same scene by
Dijr = Dij-1k-1+ak)(@(C(P)+Tir) 3)
V(i,j, k‘) S [1..Nsc, 1..Ngp, 2..Nl]

where P = [j—k+1,...,k—1] denotes the set of previous
shots assigned to the same scene. T » = 1 when j forms a
thread with any shot from P.

We start a new scene at layer one (k = 1), and are likely
to create a scene boundary when the shot appears different
from the set of previous shots, and is not part of a thread.

Dija =max | Dij1 + B(k) (1 — ¢(C(k, P)) + Trp)

“4)
where T, » = 1 when the shot k does not form a shot thread
with any from P. (k) = 1 — a(k) plays the opposite role
and prevents scenes from being too short. Note that we can
move from any layer k£ to & = 1 which incorporates the
potential to start a new scene at every shot.

After we compute the cube D, the optimal scene change
locations are obtained via backtracking. If we are given the
number of scenes N7, we start backtracking from the point
maxy Dns N,k i-e. the last column of row N, in the
cube (after takmg max across all layers). When the num-
ber of scenes needs to be determined, we use the scores
Vi,maxy D; N, i.e. the last column (one for each row /
scene) and detect the elbow point on the curve.

Although we perform an exhaustive search, the time it
takes to compute the cube including color similarity scores
is approximately only 1/8 of the episode duration.

3. StoryGraphs
3.1. Person identification

Prior to determine the positions of the character lines in
the StoryGraphs, we need to know which characters appear
in every scene. We detect and track faces using a particle
filter approach as discussed in [2] and extract Discrete Co-
sine Transform (DCT) coefficients on aligned faces for each
track. Due to unavailability of transcripts (for a part of our
data set), we are unable to perform fully automatic person
identification using methods such as [2, 9]. Nevertheless,
we train multinomial logistic regression classifiers by set-
ting aside 20% of the tracks for each character — a close
approximation of the number of tracks that are labeled via
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Figure 3: Visualization of loss functions used in our formulation.
Note that the zero-inverse loss Z(z, 1) is defined only on = > 0.

transcripts (c.f. speaker-assignment recall [2, 9]). Our mod-
els are trained on all named characters, including minor cast
to which the viewers can associate a name.

3.2. Loss functions

Generation of the StoryGraphs deals with the trade off
between aesthetics and their functionality that characters
which interact should occur nearby. We capture this prop-
erty in an objective function consisting of four terms. The
first loss function component (i) proximity, ensures that the
lines of characters that interact, or co-occur within the same
scene are drawn close to each other. Simultaneously, char-
acters which do not occur in the scene are pushed apart. We
capture the aesthetics of the graph in three loss functions
where (ii) straight lines are preferred; (iii) lines should not
overlap; and (iv) the number of crossings should be small.

Let 7 denote the coordinate at which the line for char-
acter ¢ will be placed during the scene (time period) ¢. The
total number of characters is denoted by N¢ and the num-
ber of time periods (scenes) is N7 = Ng.. For brevity, let
us also denote the number of pair-wise combinations of the
characters by Np, where Np = N¢ - (N¢ — 1)/2.

(i) Proximity The proximity loss function Lél)

1 e ¢
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is responsible for pulling lines of characters that co-occur

close together. On the other hand the loss function L;,Q)

1
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pushes away lines of characters that do not appear. p, ., : €
[0,1] is the normalized co-occurrence score between any
two characters c; and c; at time ¢.

The combined proximity loss L,, = Lél) - Léz) and it’s
minimization forces the lines for character c; and c; to come
closer / move apart depending on whether they both appear.
While ideally we would like to minimize |z§* — ;7 |, we use
the squared loss (Fig. 3-blue) to keep the function differen-
tiable with respect to 5.

8L£1) 1 ,
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(ii) Straight lines The straight line loss function L; tries
to keep the lines straight, and is represented for each char-
acter ¢ by the squared difference between one coordinate
g Witl:l respect tf) Przs = ﬁ Zq# xg, the mean of all
other time coordinates

1
L == ¢ — .C 2 8
= NoNa ;(xt ies) ®)

and has a gradient with respect to x§ given by

0L, 1
— 2 ¢ — cl.
81.2, NCNT (xt /’[’\:L’t ) (9)

(iii) Minimum separation While the proximity loss L;,l)
pulls lines closer, the minimum separation loss L, ensures
that the lines do not collapse or overlap. This is necessary
to ensure readability of the StoryGraphs and is enforced
strictly by using a smooth differentiable modification of 1/x
going to 0, Vo > pu (Fig. 3-black)

L(V1i+(x—p2-1) O<z<p
ﬂ%m={8 v
(10)
The loss is then given by
1 [} Cji\2
L= gy 22 2@ =) ) (D

where pis is the desired minimum separation between all
lines on the chart. The gradient can be computed as
oL, 1
or;  NpNrp

S22 (- ), o) (a2 ). (12)

(iv) Crossings Finally, we wish to minimize the number
of crossing between lines of different characters. A line
crossing occurs iff the product of coordinates between a pair
of characters across consecutive time periods is less than 0,
(w5 — a) (%, — 2)y) <O,

While the number of crossings can be counted using a
0-1 loss (Fig. 3-red) this is neither differentiable, nor con-
vex. Thus, we replace it by a differentiable version of the
hinge loss, namely the pseudo-Huber loss [ 1] (Fig. 3-cyan)
defined on all x

I+ (z—pP-1
0 T > [

T <

H(x,p) = { 13)

The crossings loss is then formulated as

Z H((x?—xfj)(xfh—%‘fil),uc) (14)

Ci,Cj,t



where we choose 1. = 0, and the gradient is
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Combined Loss The final objective is expressed as the
weighted combination of the above four losses

L(x) = wpLy(x) +wLi(x) +wsLs(x) +weLe(x) (16)
and the optimal positioning of all lines is obtained via
x* = argmin £(x). (17)

The final drawing consists of three parts. We (i) sketch
scene boundaries; (ii) draw character lines in the central
portion of the scene using the coordinates; and (iii) generate
smooth transitions across scenes using the sigmoid.

3.3. Implementation Details

The optimization is performed using Matlab’s fmincon
and xy is constrained as 1 < zf < N¢.

Co-occurrence computation For each scene (time pe-
riod) we first count the number of frames for which each
character appears. We threshold this value to reduce the in-
fluence of person-id errors on the StoryGraph generation.
The character-pair co-occurrence score pe, ;¢ is then given
by the geometric mean of the frame counts and is finally
normalized using hysteresis thresholding.

Initialization The objective for the optimization L is not
convex. Therefore, a good initial guess about the coordinate
positions for characters is preferred. We use the negated
co-occurrence scores as distance and perform agglomera-
tive clustering on the characters and use the optimal leaf
order [ 1] as our initial set of coordinates.

Presence During optimization, we consider the loss func-
tions for a single character (straight line loss) or a character
pair (the other 3 losses) only from the first (») to the last (o)
appearance of the character in the episode.

4. Evaluation and Results

We present results on scene detection, person identifica-
tion, and StoryGraphs generation on 3 diverse TV series':

(i) The Big Bang Theory: (BBT, S01, E01-E06, 20min)
is a traditional sitcom with a short character list in which
most characters appear simultaneously. The cast in the six
episodes consists of 11 named people (5 major, 6 minor).

lovhei.anthropomatik.kit.edu/projects/mma

BBT-1 BBT-2 BF-1 BF-2 GOT-1 GOT-2

9 DP | 1846 795 1341 1200 1261 1705
g [15] | 2138 1615 1952 1634 21.63  29.52
R DP | 7500 9091 8485 9667 8857  87.10

30 1151 | 6250  81.82 7273 86.67 80.00  77.42

Table 1: Scene detection performance with over-segmentation
(OS). Note the higher recall which is important for StoryGraphs.

BBT-1 BBT-2 BF-1 BF-2 GOT-1 GOT-2

©) DP 2491 27.79 15.04 16.34 1855 33.36
g [15] | 25.85 3925  25.62 2223 4284 50.74
R. DP 62.50 63.64 8182 90.00 74.29 77.42

30 1151 | 56.25 5455 63.64 7667 57.14 64.52

Table 2: Scene detection performance when the number of pre-
dicted scenes is exactly the same as number of annotated scenes.

(i1) Buffy the Vampire Slayer: (BUFFY, S05, E0O1-E06,
~40min) is a TV series with a serialized format, i.e. each
episode is a self-contained story which also contributes to a
larger storyline of a season. The cast in the first six episodes
consists of 27 named people (10 major, 17 minor).

(iii) Game of Thrones: (GOT, S01, EO1-E10, ~55min)
is a fantasy-drama TV series with an inclination towards
high-quality production which resembles movies. The cast
for season 1 (excluding extras) consists of 66 people.

4.1. Scene Detection Performance

In this section, we compare our method (Sec. 2.1 DP)
to [15] on 2 episodes from each TV series. We measure the
quality of scene detection using two criteria. (i) o(s): the
mean absolute deviation in seconds from annotated scene-
boundary locations for the set of computed scenes (lower
is better) (ii) R3p: recall at 30 seconds [15], the percentage
of annotated scene boundaries which lie within 30s of the
predicted boundary (higher is better).

Table 1 shows results for the case of over-segmented
scene (OS) detection (one scene per minute) used in the
StoryGraph generation and Table 2 shows results when the
number of automatically detected scenes is set to be the
same as the number of scenes annotated using ground-truth.
Note that OS scenes have a higher recall due to larger
chance of finding one of the scene boundaries at the ground
truth location. For StoryGraphs, we use OS since it ensures
that we find more scene changes, while only slightly (1.2x)
increasing computational load. Fig. 4 shows an example of
detected scene changes on one episode of Buftfy.

4.2. PersonlD Performance and Impact

We encounter large variations in the number of tracks,
from 5-10 for minor characters all the way up to a thousand
for major ones. This adversely impacts identification accu-
racy (number of correctly identified tracks / total number
of tracks) even after appropriately weighting classes with
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Figure 5: StoryGraph generated on BBT-3 using automatic person identities. Compare against Fig. 1 which uses ground truth person
identities. See Sec. 4.2 for a short description. This figure is best viewed in color.
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Figure 4: Example of scene change detection from BF-1. Each
row indicates a different scene. We show the mid-frame (number
on the image) from 4 shots for each scene.

| BBT (6) BUFFY (6) GOT (10)
#Characters 11 27 66
Mean Accuracy 92.36% 78.12% 75.25%
SG Presence Error Count 33 260 680
SG Presence Error Fraction 4.85% 8.08% 4.24%

Table 3: Face track identification accuracy and impact on Story-
Graph line drawing presence averaged across all episodes. The
number of episodes is indicated in brackets.

less number of samples during training. Table 3 (top-half)
presents the average identification accuracy for our data.

The impact of person identification on StoryGraphs can
be quantified by counting the number of times a character
is classified as present in a scene while he is not, and vice
versa. The absolute count of errors and the fraction (with
respect to the complete chart size is No X N.) is presented
in Table 3 (bottom-half). Note that person-id errors do not
imply a commensurate SG presence error and therefore do
not drastically affect the StoryGraphs visualization.

We also qualitatively compare StoryGraphs for BBT-3
generated using groundtruth (Fig. 1) vs. automatic (Fig. 5)
person identification. The main difference is Penny being
classified as not-present during minute 1-3, and thus her line
starts a little later along with Doug. We also see that Shel-
don and Raj are misclassified during the short scene with
Doug. The rest of the StoryGraph stays unchanged.

For other charts (see supplementary material for compar-
ative charts on all episodes), we observe that most differ-
ences can be attributed to erroneous classification of minor
characters, or incorrect presence classification.

4.3. StoryGraph Quality

We define five measures to quantify the nature of a Sto-
ryGraph: (i) normalized maximum coordinate movement
over time for each line, averaged across characters

1
Move = Nic 2 (mtaxxf — mtinxf) . (18)

(i1) worst case separation between any two characters who
are present during the scene averaged across all scenes

MaxSep = Z max {C?};nl lzé — )] . (19
(iii) number of times MaxSep is more than twice the mini-
mum separation ps; = 0.3, denoted by “Sep > 2p,”.

(iv) number of times MaxSep is smaller than half the mini-
mum separation, denoted by “Sep < 0.5u,”.
(v) and finally, the number of crossings

#Cross = Z 1{(zg

Ci,Cj,t

w ) (zf ) — ) <0} (20)

Results for StoryGraphs from all episodes are presented
in Table 4 . We observe that lines tend to be straighter (small
Move score) for GOT in comparison to BBT and BUFFY
due to the higher weight w; and different groups of charac-
ters chosen from a smaller pool. A lower MaxSep is desir-
able as it indicates that the proximity pull loss works well.
Due to the larger cast size for BUFFY and GOT, we observe
that few lines stay separated by more than twice the mini-
mum separation (Sep > 2us). We also see that lines are
separated by at least 0.5, a result of minimum separation
with very few occasional violations. Finally with a few ex-
ceptions GOT-1 the number of crossings in relation to the
graph size is typically small.



The Big Bang Theory (BBT)

Buffty the Vampire Slayer (BUFFY)

Game of Thrones (GOT)

EO6 | EO1 EO02 EO03 EO04 EO5 EO06 EO07 E08 E09 EI0

EO1 EO02 EO03 EO04 EO5 EO6 | EOl E02 EO03 E04 EO5
Move 032 0.34 0.19 031 022 030|046 0.29 0.21
MaxSep 045 0.67 1.06 1.72 0.87 0.90|0.30 0.34 0.43 090 0.51 0.34]0.34 043 0.81

Sep>2us | 4 12 11 11 10 9]0 2 7
Sep<O05us| 1 1 1 1 1 1|1 o0 1
#Cross 0 1 0 0 0 0|8 43 19

0.28 0.15 0.39]0.30 0.21 0.21

13
1
8

0.18 0.17 0.12 020 0.19 0.18 0.19
0.61 0.72 0.68 036 1.01 042 0.54
1 1 6 31 11 25 14 1 34 6 8
0 1 3 2 3 4 3 3 2 4 2

128 | 212 66 134 44 44 26 116 60 44 26

Table 4: StoryGraph quality over all episodes from our data set. The StoryGraphs are generated using automatic person identification.

4.4. StoryGraph in relation to the Story

As a way to evaluate the video representation ability
of StoryGraphs, we compare them to the crowd-sourced
episode summaries commonly found on Wikipedia or fan-
websites. To facilitate easy comparison, we provide the plot
synopsis (or links) for all episodes of BBT, BUFFY and
GOT in the supplementary material. In Fig. 6, we see the
StoryGraph for BUFFY-2 along with a short comparison to
the actual storyline of the episode. Fig. 7 shows a Story-
Graph from Game of Thrones episode 6. We refer to the
sub-stories in the caption as a reference for the reader.

5. Conclusion

We present an automatic method to generate representa-
tions for character interactions in TV episodes. Characters
are indicated by lines, solid (or dashed) when the actor is
visible on-screen (or not). The placement of the lines is
posed as an optimization problem which trades off between
aesthetics and representative power of the StoryGraphs. A
scene detection method is first used to oversegment the
video into coherent parts. We evaluate the StoryGraphs on a
data set consisting of 22 episodes from 3 diverse TV series
and show good objective performance and ability to present
an overview of the episode.
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