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ABSTRACT
The goal of this paper is unsupervised face clustering in
edited video material – where face tracks arising from differ-
ent people are assigned to separate clusters, with one cluster
for each person. In particular we explore the extent to which
faces can be clustered automatically without making an er-
ror. This is a very challenging problem given the variation
in pose, lighting and expressions that can occur, and the
similarities between different people.

The novelty we bring is three fold: first, we show that a
form of weak supervision is available from the editing struc-
ture of the material – the shots, threads and scenes that
are standard in edited video; second, we show that by first
clustering within scenes the number of face tracks can be
significantly reduced with almost no errors; third, we pro-
pose an extension of the clustering method to entire episodes
using exemplar SVMs based on the negative training data
automatically harvested from the editing structure.

The method is demonstrated on multiple episodes from
two very different TV series, Scrubs and Buffy. For both
series it is shown that we move towards our goal, and also
outperform a number of baselines from previous works.

Keywords
Face track clustering, TV shows, Video-editing structure

1. INTRODUCTION
Television broadcasting has seen a paradigm shift in the

last decade as the internet has become an increasingly im-
portant distribution channel. Delivery platforms, such as
the BBC’s iPlayer, and distributors and portals like Netflix,
Amazon Instant Video, Hulu, and Youtube, have millions of
users every day. These new platforms include search tools
for the video material based on the video title and metadata
– however, for the most part it is not possible to search di-
rectly on the video content, e.g. find clips where a certain
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Tracks and cannot-links within a shot thread pattern 

Tracks within a scene 

Tracks and cannot-links within shots of a scene 

… … 

Figure 1: Overview of the video-editing structure of a

TV series episode. Face tracks are shown for single shots

of a scene (top row), in a threading pattern (middle row)

and in a scene (bottom row). Face tracks with the same

color denote the same person. Must-not links between

tracks are denoted by red edges. (Best viewed in colour)

actor appears. Enabling such search services requires anno-
tating the video content, and this is the goal towards which
we work here.

Our objective is to automatically cluster face tracks
throughout a broadcast according to identity, i.e. to as-
sociate all the face tracks belonging to the same person.
If successful, then annotating the video content for all
actors simply requires attaching a label (either manually or
automatically) for each cluster. There are many previous
works that consider automatic face labelling in broadcast
videos [2, 6, 5, 7, 9, 10, 25, 27, 29] but all of these require
supervision in some form, typically subtitles and transcripts.
Our approach of unsupervised clustering is complementary
to these and the transcript supervision can be applied to
automatically label the clusters. Furthermore, our clus-
tering is also applicable in cases where transcripts are not
available, e.g. for older or archive material. Here, manual
effort can be greatly reduced compared to labelling all face
tracks individually.



The novelty we bring is to take account of the editing
structure of the video (Sect. 3) when considering candidate
face tracks to cluster. These cues have not been used in
previous works (Sect. 2 on related work). In particular we
show that: (i) the thread structure can be used both to de-
termine must-not and do links between face tracks; (ii) clus-
tering first within scenes allows pure clusters to be obtained
whilst significantly reducing the number of unassigned face
tracks; and (iii) these clusters can subsequently form strong
classifiers for between scene clustering.

In addition, we make two technical contributions: (i) we
improve on the standard frontal face detectors used in face
clustering by also including profile detections and upper-
body detections; and (ii) we make use of the recently in-
troduced Fisher Vector based face track representation with
discriminative dimensionality reduction [19] (Sect. 7).

As will be seen (Sect. 6), we are able to substantially re-
duce the number of face tracks that need to be labelled.
Though we do not reach the goal of one cluster per actor,
the proposed method obtains better clustering performance
compared to a number of baselines based on previous ap-
proaches.

2. RELATED WORK
In this section, we review previous work on unsupervised

face track clustering.
One approach is to cast face clustering as a pure data clus-

tering problem and attempt to solve it using general purpose
algorithms. For instance, a hierarchical bottom up agglom-
erative clustering was applied in [3], [14], and [22]. Cinbis et
al . [3] utilise a special distance metric that is learned us-
ing automatically obtained positive and negative face pairs.
Similarly, Khoury et al .[14] learn a metric based on a com-
bination of appearance cues and Gaussian Mixture Models.

A second approach is to construct a graphical model of
the face detections or tracks and formulate the clustering
as an optimization problem on the graph. As in [3], con-
straints between nodes of a graph are obtained by assuming
that all detections in one face track belong to the same actor
and that one person cannot appear twice in the same frame.
Wu et al .[31, 32] use a Hidden Markov Random Field model
to improve face tracking, by first detecting faces, creating
small “tracklets” and then joining them using a constrained
clustering method, with [32] extending [31] by clustering
across shots. However, both [31, 32] require the number
of output clusters K to be specified, and this information is
not available in our case.

A third approach is to explicitly utilise the video struc-
ture in clustering. For instance, Ramanan et al . [21] use a
notion of shots and scenes and first perform agglomerative
clustering in each shot, then in each scene, and finally in
the episode. At each level, they apply a different feature
weighting (on faces, hair and clothing).

We also note that others have used video editing structure,
such as threads, for various tasks [4, 6], e.g. for detecting
continuity errors [20] or generating story graphs [28], but as
far as we know we are the first to use the editing structure
in this manner to provide supervision for unsupervised face
clustering.

3. VIDEO STRUCTURE
Movies and TV broadcasts are generally filmed and edited

using a well defined set of rules [18, 26], for example: the

“ABAB” shot structuring; the “over-the-shoulder” shot for
dialogue exchange between two characters; the 180 degree
rule, etc. In this section, we briefly describe a few typi-
cal structures used in the video editing process – namely
shots, threads and scenes. Figure 1 provides examples of
face tracks seen in shots, threads and scenes of an episode.

3.1 Shots
A shot refers to a group of consecutive frames filmed from

the same camera. In this paper, we segment shots by detect-
ing their boundaries using a normalized version of the Dis-
placed Frame Difference (DFD) [33]. The DFD captures the
difference between consecutive motion compensated frames
and produces peaks at shot boundaries as the optical flow
cannot compensate the sudden change in camera.

In our case, a shot also limits the temporal extent of any
face track. In other words, all detections in any face track
must belong to the same shot. In previous work, e.g. [3,
32], temporal co-occurrence of two face tracks in a shot has
been used to form examples of track pairs that must depict
different characters. We will also use this as one approach
for producing cannot-link constraints and negative training
examples.

3.2 Threads
A thread is a sequence of shots, obtained from the same

camera angle and located in a short temporal window (see
Fig. 2). Typically threads form patterns like “ABAB” where
the story is presented using alternating shots from two dif-
ferent cameras that form threads A and B. Such patterns
work well with the previously mentioned“over-the-shoulder”
shots as they depict dialogues between characters standing
opposing each other. Note that A and B in the “ABAB”
denote threads (cameras) and not two different people. It is
not uncommon to have more than one visible character in
each thread.

A threading pattern can also be more complex and involve
more than two cameras (see Fig. 2). For example, during
a dialogue between two people, two different cameras can
provide close-up face shots of the speakers, while a third one
gives an overview of the setting (a group shot) in which they
are conversing. Such a setup can form threading patterns
such as “ABCACBCA” where A and B are as above and C
is the thread obtained from the third view.

While many shots (and thus tracks) are part of a threading
pattern, there are others which do not form any thread. An
example of a shot which does not belong to a thread is a
long take – a shot that pans across a large part of the set
and follows the actors on screen.

An analysis of our Scrubs and Buffy data sets (cf . Tab. 1
and 2 respectively) shows that about 60-70% of shots belong
to a thread and correspondingly more than 68% of all face
tracks belong to a shot which is in a threading pattern.

We detect shot threads using a method proposed in [28]
that computes SIFT matches between the last frame of a
shot and the first frame of F subsequent shots. The threads
are used to generate both highly confident must-link (pos-
itive) pairs and cannot-link (negative) pairs between face
tracks.

3.3 Scenes
A group of shots that have continuity in location, people

and appearance such as interior/exterior constitute a scene.
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Figure 2: Editing structure in a video: Shots are the atomic entities in editing patterns. Each image displays one

frame from a shot with its representative shot number written in yellow. Threads are interlaced repetition of shots

in a temporal neighbourhood. Shots in threads appear to repeat themselves. For example, shots 49, 51, 56 form one

thread A, while shots 50, 52 form thread B and 53, 55 form thread C. It is also common for some shots to be not part

of any threads (shot 54). Multiple single shots and threads form a scene and an episode is a collection of all scenes.

A scene typically consists of multiple intertwined shot thread
patterns.

To partition an episode into scenes, we employ the
method of [28]. This locates scene boundaries by optimizing
a cost function such that the within-scene content similarity
is maximized while the between-scene similarity is small.
The cost is based on shot appearance cues in the form
of colour histograms, and video editing structure in the
form of shot threads where scene boundaries are placed to
minimize breaking of threads. The method uses dynamic
programming to efficiently determine the optimal scene
boundary localization, and also to automatically determine
the number of scenes. Note that scene boundaries are
restricted to only occur at shot boundaries.

Scene partitioning allows us to simplify the large problem
of clustering about 500 tracks to dealing with only 20-40
tracks at a time. We show that by first clustering within
scenes, we can build pure clusters more effectively than clus-
tering directly across an episode and, in turn, these within
scene clusters are more suitable for between scene clustering
than the original tracks.

4. THE CLUSTERING PROCESS
We follow a three-step procedure to obtain the final face

track clusters: (1) obtain must-not-link face track pairs (neg-
ative pairs) using the shots and threading structure of the
video, (2) group the face tracks within each scene (part 1
clustering), and (3) merge the obtained scene level clusters
at the episode level (part 2 clustering). In this section, we
explain the details related to each stage of the proposed
method. For readability, details of the face tracking and
feature extraction are postponed until Section 7.

4.1 Obtaining negative pairs
The process of obtaining negative pairs is a pre-processing

step crucial for the success of the following clustering steps.
In this work, we consider three different sources for obtaining
the must-not-link face tracks pairs.

1. Temporal co-occurrence: As in previous works [3, 32],
all pairs of temporally co-occurring face tracks are assumed
to depict different characters. This assumption holds in most
cases, but may fail e.g. if there are reflections from a mirror.

An example of this type of must-not-link is shown in the top
row of Figure 1.

2. ABAB threading patterns: A simple alternating
threading pattern such as “ABAB” typically contains differ-
ent characters in the threads A and B. In such patterns, we
form must-not-link constraint between every track in thread
A versus every track in thread B. Shots 49-52 in Figure 2
show an example of this pattern.

3. Complex threading patterns: The simple rule ap-
plied to “ABAB” does not generalize to more complex pat-
terns like “ABCACABCA”. Nevertheless, they can be used
to form must-not-link pairs as follows. First, we construct
all possible pairs where the face tracks originate from differ-
ent threads. Then we compute the face descriptor distance
within each pair and discard pairs where the distance is be-
low a given threshold. The remaining pairs are considered
as must-not-link samples. Shots 53-56 in Figure 2 show ex-
amples of this case.

Negative pairs play an important role in our two stage
clustering approach. For the first part of clustering within a
scene, negative pair face descriptor distances are reset to∞.
In the second stage of clustering across scenes, negative pairs
are used to train discriminative models between clusters.

4.2 Part 1 Clustering: within a scene
For a given episode, consider a scene s. Let T = {ti} be

the set of face tracks in scene s. We represent a face track ti
by its appearance descriptor φi ∈ RD×1. Given the video-
editing structure and the cannot-link constraints described
above, we first set distances of track pairs which belong to
the cannot-link category to ∞.

Next, we exploit the fact that track pairs originating from
the same shot thread should allow for a relaxed distance
threshold, as the number of options to which they can be
matched is restricted. To obtain this threshold, we train a
linear classifier (SVM) which combines the descriptor dis-
tance d(·, ·) with the intersection-over-union measure γ(·, ·)
computed on average face locations, and predict a track pair
as arising from the same person when

− wd · d(ti, tj) + wγ · γ(ti, tj) > θth . (1)

Additionally, we learn a tight scene-level distance threshold
θg to merge track pairs which are very similar in appearance



T48	   T52	  

T25	  T09	   T111	  T104	  
Correct	  Merges	   Could	  Not	  Merge	  

JD	   JD	   Janitor	   Janitor	  

Incorrect	  Merge	  
T204	  T119	  

Dr.	  Cox	  Will	  

Dr.	  Kelso	  Dr.	  Kelso	  

T117	   T119	  

T222	  T208	  

JD	   JD	  

Elliot	  Elliot	  

T181	  T169	  

Carla	   Carla	  

Turk	  Turk	  

T123	   T129	  

Figure 3: Output of Part-1 of our clustering method.

Each image represents a track with given track id and

label. Track ids indicate temporal closeness of each track

in a pair. Left: examples of correct merges. Note tracks

which contain quite different head poses (frontal and

near profile) are able to be merged. Right: examples

of track pairs that could be merged but are not because

of the head pose variation and lower temporal proximity

ruling out the thread based merging. The last pair shows

the first mistake that is made in episode 2 of Scrubs.

but are not part of any thread. Track pairs ti, tj are classified
as belonging to the same class when

d(ti, tj) = ‖φi − φj‖ < θg . (2)

In Section 6, we show that this approach leads to a re-
duction in the number of clusters whilst keeping the cluster
purity very high. After this process, we update the must-not
link constraints using newly formed clusters. This helps us
in the next stage of clustering.

Discussion. Clustering within a scene has been mentioned
as a relatively easy problem [21], where a very simple ap-
proach based on pair-wise track distances and hierarchical
agglomerative clustering (HAC) is used. Whilst this simple
technique works well for near frontal faces used in their case,
the availability of better face detectors capable of detecting
faces in various poses (as is our case), can lead to errors when
such a simple distance threshold based clustering method is
used. For example we observe that (Fig. 3), the distance
between two relatively frontal tracks of two different people
(right column row 4) could well be smaller than the distance
between a frontal and a profile track of the same person (left
column rows 1 and 4). To facilitate merging of such tracks
of the same person with varying poses, we first employ the
video editing structure to provide clues about clustering.
The use of spatial overlap from the thread structure allows
us to lower the threshold for merging tracks of the same
person within a thread (left column rows 1 and 4) before
merging tracks of different people (right column row 4).

4.3 Part 2 Clustering: across scenes
Given the scene-level clusters, we now move towards merg-

ing them at the episode level. Towards this goal, we take
three important steps. First, to achieve a compact and pow-
erful descriptor, we extend the video pooling idea of [19] to

T457	  
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Frontal	  Only	  Distance:	  0.85	  
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Figure 4: Comparison of frontal and profile feature dis-

tances vs. full feature distance. As can be seen, com-

puting pose dependent features avoids making a wrong

merge.

obtain one Fisher vector over all face tracks in a single clus-
ter. Apart from improving the invariance of the features,
this reduces the number of comparisons that are otherwise
needed in typical agglomerative clustering.

Secondly, we partition the detections into two components
based on the head pose. This idea is very similar to the mix-
ture model based approach of Deformable Parts Model [12]
and to more recent work [1, 23] that also considers pose ex-
plicitly in the face representation. In our paper, all frontal
detections form one component and those having yaw angle
(rotation about a vertical axis) larger than 45o form another
component. We compute one high dimensional Fisher vector
for each of these components. Separating detections in this
way makes the task of comparing two clusters much easier
as pose dependent features are compared separately for a
pair of clusters.

Figure 4 shows our motivation behind this. We see that
the complete feature has a smaller distance between two dif-
ferent characters, while splitting the feature into components
prevents this erroneous merge. Splitting a track or a cluster
according to pose not only prohibits false merges, but also
allows merging thresholds to be slightly looser in order to
merge some other clusters which might not have merged.

Note that it is not necessary that each cluster will have
both frontal and profile parts. We observe that perform-
ing this split on clusters after within-scene clustering yields
about 15-20% of clusters which contain only frontal faces
and thus an only frontal feature; about 5% of clusters consist
only of profile faces generating only profile features; while
the remainder 75-80% form the bulk and have both frontal
as well as profile features. We design our merging strategy
to take care of this. We merge two clusters if either of the
distances is within threshold. So even if a cluster is missing
one component, the other component is sufficient to merge
the two clusters.

Finally, rather than the distance metric based comparison
from the previous part, we use exemplar Support Vector
Machine (e-SVM) classifiers as our scoring scheme. This
lets us use the negative information obtained from the video
structure and part-1 clustering. In addition to this, we use
the tracks from YouTube Faces In The Wild dataset [30] as
stock negatives. We train one e-SVM per cluster and test it
on all other clusters. The e-SVM is trained separately for
frontal and profile components.
Calibration. The e-SVM scores are uncalibrated, thus
finding one threshold for merging clusters is impossible. To
overcome this problem, we normalize these scores using a
sigmoid function.

φ(x) =
1

1 + exp(−ax+ b)
. (3)



We wish to learn parameters a and b on a training episode.
However, as the number of training samples to learn these
parameters is small, we use scores from all e-SVMs in the
training episode and adapt them for a particular e-SVM us-
ing the score statistics

ak = α · µ(Sk)/σ(Sk) and bk = β · 1/σ(Sk) (4)

where Sk is the set of e-SVM scores of all other clusters ob-
tained for an e-SVM model k and µ(·) and σ(·) compute the
mean and standard deviation respectively. We optimize for
parameters α{f,p} and β{f,p} (respectively for frontal and
profile models) such that we maximize the number of cor-
rectly identified positive pairs and at the same time keep the
erroneous merges at zero.

Please note that while we use e-SVMs and supervised
training, there is no manual effort in gathering the labels as
the negative data is mined automatically. Thus the method
is fully automatic and unsupervised.

5. EVALUATION PROTOCOL

5.1 Dataset information
We evaluate our techniques on two varied TV series

datasets consisting of a sitcom Scrubs and a fantasy
drama Buffy the Vampire Slayer.

Scrubs: In this sitcom, the story of the protagonist takes
place primarily at a hospital (and his apartment) providing
many challenging scenarios such as: large number of back-
ground characters, characters moving through corridors, etc.
For the evaluation, we pick season 1, episodes 1–5 (SCR-1,
. . ., SCR-5). We chose episode 23 (SCR-23) towards the end
of the season to train our parameters. For completeness, we
also show clustering results for this episode.

Buffy the Vampire Slayer: The series, categorized as
a supernatural drama, presents multiple challenges from il-
lumination, magic (character duplication), fast action, etc.
While another dataset on Buffy tracks [3] has been used
for face clustering before, we cannot use it since the data
is obtained from multiple episodes and essentially treats
face tracks as independent data points. The face tracks in
our scheme have strong ties to the video-editing structure
and benefit most when the entire episode is analyzed. We
pick season 5, episodes 1–6 (BF-1, . . ., BF-6) and select one
episode (BF-4) for learning the parameters and thresholds.

Face tracks are obtained automatically and then labelled
manually to obtain ground truth. We label all primary char-
acters and assign all background characters a single label.
These background characters are not considered for evalua-
tion in our case. More details on how we obtain tracks and
compute features are discussed in Section 7.

Table 1 and 2 present statistics on the Scrubs and Buffy
data sets respectively. We show the number of video-editing
elements (shots, threads and scenes), and the number of
tracks in the episode. We also display the number of shots
and tracks which are part of a shot thread. The final section
of the tables presents the number of mined negative pairs.

5.2 Evaluation criteria
We use two measures to evaluate the quality of clustering:

Weighted Clustering Purity (WCP) The weighted
clustering purity (WCP) is our primary measure as we want

Table 1: Statistics for the Scrubs face track data set

along with video-editing structure cues.

SCR-1 SCR-2 SCR-3 SCR-4 SCR-5 SCR-23

shots 450 370 379 319 360 315
threads 91 70 79 53 73 69
scenes 27 21 24 25 23 21

named char. 17 12 15 17 16 19
tracks for named 495 413 376 365 404 419

shots in thread 295 242 260 223 264 242
tracks in thread 340 271 254 230 279 309

negs in-shot 232 192 116 212 222 310
negs abab thread 136 104 114 88 174 316
negs complex thread 1146 432 370 552 1078 596

Table 2: Statistics for the Buffy face track data set along

with video-editing structure cues.

BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

shots 678 616 820 714 675 745
threads 121 114 165 120 105 151
scenes 37 35 37 48 39 37

named char. 11 15 13 15 18 18
tracks for named 630 779 973 668 646 842

shots in thread 419 383 550 413 363 494
tracks in thread 449 552 668 425 408 592

negs in-shot 282 620 752 216 192 582
negs abab thread 176 240 172 58 170 164
negs complex thread 1742 1672 1916 212 712 4114

to perform clustering with no errors. For a given clustering C

WCP =
1

N

∑
c∈C

nc · purityc (5)

where each cluster c contains nc elements and its purity is
measured as a fraction of the largest number of tracks which
belong to the same character to the number of tracks in the
cluster nc. N denotes total number of tracks in the video.

Operator Clicks Index (OCI-k) [13] Along with WCP,
we also report the clustering quality in terms of the num-
ber of clicks required to label all the face tracks for a given
clustering. The lower and upper bounds for this metric are
determined by the number of characters and face tracks, re-
spectively.

An advantage of this measure is that it simultaneously
incorporates the number of clusters and cluster quality in
one number. However, the advantage is also a drawback,
since we can argue that correcting an error in clustering is
not equivalent to labelling a pure cluster. A single click
corresponds to the effort needed to correctly label an in-
dividual face track in a wrong cluster, or all tracks in one
cluster. For example, if we have 19 pure clusters (i.e. con-
taining only tracks of the same character) and one cluster
of 15 more data samples of which 5 are wrongly clustered
samples, OCI-k needs a total of 25 (20 clusters + 5 errors)
clicks to label all face tracks correctly.

6. EXPERIMENTS
We now evaluate the performance of our method and com-

pare it against different baseline approaches.

6.1 Negative Pairs
In the first stage of our clustering, we form negative links

between different tracks. Here we compare our strategy de-



scribed in Section 4.1 to previous methods of finding nega-
tives only by temporal co-occurrence. Tables 1 and 2 show
that our method obtains significantly more negatives than
just the pairs of temporally co-occurring tracks as negatives.

For example, on the first episode of Scrubs (SCR-1), our
method finds 1146 negative pairs in complex threads and 136
pairs in simple threads in addition to only 232 pairs found
by temporal co-occurrence in a shot.

6.2 Clustering within a scene
Our goal for the clustering is to minimize the number of

clusters while maintaining a very high cluster purity. Our
parameter selection using the training episode is tuned to-
wards this goal.

As discussed in Section 4.2, within-scene clustering is per-
formed using both a tight global distance threshold, and also
a relaxed threshold learned for tracks within threads which
incorporates both appearance and spatial overlap measure-
ments.

We compare to a strong baseline algorithm that merges
tracks using agglomerative clustering assisted by negative
information. The threshold for the baseline is also learnt
on the training episode. This baseline is similar to that of
previous works, e.g. [21].

As can be seen from Table 3 row 3 and 4 for the Scrubs
dataset, our strategy significantly reduces the number of
clusters. For example, in the second episode of the Scrubs
dataset (SCR-2), we manage to halve the number of clusters
from 413 (i.e. the original number of tracks) to 202. Similar
dramatic reductions can also be found in SCR-4 (365 to 181)
and SCR-5 (404 to 217).

On the Buffy dataset, Table 4, we are able to reduce the
number of clusters by more than 100 while maintaining clus-
ter purity. This suggests that our proposed usage of video-
editing structure is widely applicable to other TV series.

We outperform the baseline on both datasets (rows 3 vs.
4), reducing the number of clusters but without sacrificing
cluster quality or increasing the number of clicks required to
label these clusters.

Tracks can be fragmented due to face detection drop-out
or temporary occlusion. This often presents quite an easy
clustering situation as the face descriptors can be quite sim-
ilar for the track portions. Also, clustering within a thread
can be relatively easy. The baseline often copes with these
cases, and the proposed method goes beyond the baseline.

Figure 5 shows examples of the within-scene clustering
on two scenes. We plot the hierarchical agglomerative clus-
tering (HAC) purity obtained at every cluster number and
overlay our baseline performance at the best possible thresh-
old. We also show that our proposed method outperforms
the baseline.

Note, within-scene comparison figures for all scenes of one
episode are included in the supplementary material.

6.3 Clustering across scenes
In this section we look at effects of the clustering strategies

discussed in Section 4.3.
As can be seen from Table 3 for the Scrubs dataset, our

method significantly reduces the number of clusters while
keeping the cluster purity very close to 1 (rows 5 and 7).
We evaluate our scheme of comparing pose dependent fea-
tures for clusters to that of using a single feature for the
entire cluster (Tab. 3 rows 6 and 7). Our proposed pose-
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Figure 5: Within-scene clustering results showing the

number of clusters vs. WCP for episode 2 scene 8; and

episode 3 scene 7. nFT is the number of face tracks in the

scene. Similar results for the other scenes are available

in the supplementary material.

dependent features reduce the number of clusters without
compromising on the cluster purity.

A baseline for this part is to run hierarchical agglomerative
clustering (HAC) on the entire episode. As in the previous
section, this resembles the approach followed in [21]. Ad-
ditionally [3] also followed a similar approach for clustering
faces. As can be seen, the OCI-k click index is much lower
than the baseline. E.g . on episode 4 we reduce 365 original
clusters to 147 while the number of clusters obtained by the
baseline method (182) is in fact more than that obtained by
the first stage of our proposed method. Both these trends
can also be observed on episode 2 where we reduce from 413
to 185 while the baseline is in fact worst than our part 1 208
and 202 respectively.

We see a similar effect on the Buffy dataset as well where
a significant reduction in the number of clusters is obtained
without any loss of purity (Tab. 4 rows 5 and 6).

We show the results of clustering on the full episode in
Figure 6. Similar to Figure 5, we plot the HAC curve and
mark the point at which the baseline stops. Our proposed
two-stage method achieves higher reduction in the number
of clusters whilst maintaining the purity of the clusters. We
include the figure for the Buffy data set in the supplementary
material.

7. IMPLEMENTATION DETAILS
We now discuss a few implementation details such as

face detection, tracking and representation which are a
pre-cursor for our task of face track clustering.

Face detection. This is the most important step of the
pipeline. Compared to frontal detections, detecting faces in
extreme poses (profile, even the back of the head) remains
very challenging. However, the inability to detect these faces
can cause fragmentation of tracks, making the clustering
task difficult. Furthermore, false positive face detections –
frequently occurring with non-frontal detectors – are another
problem affecting the tracking output.

To overcome these limitations we propose two solutions.
First, we run the upper-body detector [8] on every frame and
restrict the face detections to the upper-body region address-
ing false positives. Second, to achieve high recall, in addi-
tion to the OpenCV Viola-Jones face detectors (frontal and
profile), we use the head detector of [17] designed to detect
a human head in frontal as well as extreme poses (frontal-
left/right, profile-left/right and even the back of head). This
detector is based on the Deformable Parts Model of [11].

Face tracking. Face tracks are formed by performing the
data association technique described in [10]. Specifically, we



Table 3: Clustering results on Scrubs. Episode SCR-23 is used for learning parameters.

Episodes SCR-1 SCR-2 SCR-3 SCR-4 SCR-5 SCR-23

1 #tracks 495 413 376 365 404 419
2 #ideal 17 12 15 17 16 19

Measures NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k

Within scene clustering

3 Baseline 319 0.996 321 233 1.000 233 222 0.997 223 200 1.000 200 251 1.000 251 232 1.000 232
4 Proposed part-1 293 1.000 293 202 0.994 205 205 0.998 206 181 1.000 181 217 1.000 217 212 1.000 212

Full episode clustering

5 Baseline 287 1.000 287 208 0.998 209 196 0.995 198 182 1.000 182 246 1.000 246 208 1.000 208
6 SVM full feature 293 1.000 293 202 0.994 205 205 0.998 206 181 1.000 181 217 1.000 217 210 1.000 210
7 Proposed part-2 244 0.992 248 185 0.992 188 179 0.992 182 147 0.998 148 198 0.998 199 173 1.000 173
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Figure 6: The number of clusters versus the cluster purity for each episode in the Scrubs dataset. It can be observed

that our approach consistently results in a smaller number of clusters with similar purity than the baseline. The

HAC curve illustrates the clustering results obtained with standard agglomerative clustering with different thresholds.

Note that one cannot directly select an operating point from this curve, since the corresponding threshold is not

known (threshold needs to be learned using holdout data). Similar curves for the Buffy dataset are available in the

supplementary material.

use the Kanade-Lucas-Tomasi (KLT) [24] tracker to obtain
feature tracks intersecting with face detections. To achieve
robust performance, feature tracking is carried out in both
forward and backward directions. After linking detections
in a track, misses between two detections are obtained by
interpolation based on two neighbouring detections and the
spread of KLT feature tracks in that frame. To remove false
positive face tracks, we follow an approach similar to [15].
We form a track level feature vector using different track
statistics: track features track length, ratio of track length
to number of detected faces in a track, mean and standard
deviation of head detection scores. This feature vector is
then used to classify the track using a linear-SVM classi-
fier trained on ground truth false positive and true positive
tracks obtained from data distinct from that used in this
work.

Face representation. Fisher vector based representation
of face tracks was recently introduced in [19]. The descrip-
tor is computed by first extracting dense SIFT [16] features
for every detection in a track and then pooling them to-
gether to form a single Fisher vector feature for the whole
track. The resulting descriptor is a high dimensional vec-

tor (67584) which is reduced to a very low dimension (128)
using discriminative dimensionality reduction. To make the
descriptor more robust, dense SIFT features are computed
on horizontal flips of every detection and pooled into the
same Fisher vector. We use the projection matrix learned
on “YouTube Faces Dataset” as described in [19] to perform
the dimensionality reduction.

8. CONCLUSIONS AND EXTENSIONS
In this paper we have presented a method for unsuper-

vised face track clustering. Unlike many previous methods,
we explicitly utilise video structure in clustering. In partic-
ular, we take advantage of shot threads, which allow us to
form several must-not-link constraints and to use optimized
similarity thresholds within the threading patterns. In the
experiments, we showed that our approach can greatly re-
duce the number of face tracks without making almost any
mistakes in the process. Such an output is a much bet-
ter starting point for many supervised methods as well as
manual track labelling. In addition, we illustrate a clear im-
provement over the baseline that also utilises video structure
in the form of shots and scenes.



Table 4: Clustering results on Buffy. Episode BF-4 is used for learning parameters.

Episodes BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

1 #tracks 630 779 974 668 646 843
2 #ideal 11 15 13 15 18 18

Measures NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k NC WCP OCI-k

Within scene clustering

3 Baseline 537 1.000 537 697 1.000 697 852 1.000 852 567 1.000 567 584 0.999 585 761 1.000 761
4 Proposed part-1 501 1.000 501 655 1.000 655 814 1.000 814 524 1.000 524 550 0.999 551 717 1.000 717

Full episode clustering

5 Baseline 534 1.000 534 688 1.000 688 852 1.000 852 566 1.000 566 575 0.999 576 751 1.000 751
6 Proposed part-2 466 1.000 466 598 1.000 598 730 1.000 730 494 1.000 494 507 0.998 508 643 1.000 643

We have concentrated in this paper on clustering using
faces alone. However, since a scene forms a short and coher-
ent story segment, it is justified to assume that the appear-
ance (e.g. of hair, clothing, etc.) of the characters do not
change much within one scene. This can be used to assist
the clustering, e.g. by relaxing distance thresholds or using
appropriate weighting for different cues [21].
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