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Classification of Anatomical Structures in MR Brain
Images Using Fuzzy Parameters

Maria-Elena Algorri* and Fernando Flores-Mangas

Abstract—We present an algorithm that automatically segments
and classifies the brain structures in a set of magnetic resonance
(MR) brain images using expert information contained in a small
subset of the image set. The algorithm is intended to do the segmen-
tation and classification tasks mimicking the way a human expert
would reason. The algorithm uses a knowledge base taken from
a small subset of semiautomatically classified images that is com-
bined with a set of fuzzy indexes that capture the experience and ex-
pectation a human expert uses during recognition tasks. The fuzzy
indexes are tissue specific and spatial specific, in order to consider
the biological variations in the tissues and the acquisition inho-
mogeneities through the image set. The brain structures are seg-
mented and classified one at a time. For each brain structure the
algorithm needs one semiautomatically classified image and makes
one pass through the image set. The algorithm uses low-level image
processing techniques on a pixel basis for the segmentations, then
validates or corrects the segmentations, and makes the final clas-
sification decision using higher level criteria measured by the set
of fuzzy indexes. We use single-echo MR images because of their
high volumetric resolution; but even though we are working with
only one image per brain slice, we have multiple sources of infor-
mation on each pixel: absolute and relative positions in the image,
gray level value, statistics of the pixel and its three-dimensional
neighborhood and relation to its counterpart pixels in adjacent im-
ages. We have validated our algorithm for ease of use and precision
both with clinical experts and with measurable error indexes over
a Brainweb simulated MR set.

Index Terms—Biomedical image processing, image classifica-
tion, image segmentation, magnetic resonance imaging.

1. INTRODUCTION

N order to be able to use the information contained in

magnetic resonance (MR) images for quantitative appli-
cations, the anatomy in the images must be segmented and
classified [1]-[3]. The quantitative information produced
through segmentation and classification has many applications
in the clinical environment in such areas as surgical planning,
radiation therapy planning, anatomical modeling, and design of
medical instrumentation [4]. But there are problems associated
with MR images that have to be addressed to achieve a correct
segmentation of the images. The main problem of MR images,
besides the presence of noise, is that the signal intensity (gray
level) that represents each tissue in the image is not unique
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and the boundaries between tissues do not appear as a clear
change of intensity [5]. These structural variations of the
imaging objects are due to thermal/electronic noise, magnetic
field inhomogeneities, biological tissue variations, and par-
tial volume effects [6]. Although these factors impose great
obstacles for the automatic or semiautomatic segmentation of
MR images, they do not represent a significant problem for
the clinical expert. Humans do not limit their decision taking
elements to low-level vision mechanisms, but use high-level
pattern recognition schemes, knowledge, experience, and
intuition. For these reasons, there has been a trend in recent
literature to replace or complement hard mathematical models
that define mechanistic systems for soft algorithms that can
capture some of the basics of human reasoning and decision
taking capabilities [18], [19]. Soft algorithms have been greatly
privileged when dealing with imprecise and complex biological
systems [23]-[29]. Zadeh [7], [8] proposes a fuzzy framework
for recognition technology that has been successfully applied
to medical systems. His work on fuzzy sets in medicine centers
on exploiting the tolerance for imprecision, uncertainty, and
partial truth to achieve robustness of the algorithms. Pham et
al. [9] segment two—dimensional (2-D) and three—dimensional
(3-D) multispectral brain MR images using an adaptive fuzzy
C-means algorithm. Their algorithm allows them to classify
segmented voxels into multiple classes with varying degrees
of membership, accounting for the noise and partial volume
averaging present in single voxels. Xu et al. [10] mention that
fuzzy segmentations retain more information from the original
image than hard segmentations. An example of a high-level
recognition and interpretation task that can be captured in fuzzy
segmentations is the tracking of the relative spatial arrangement
of objects embedded in a complex environment proposed by
Bloch [11]. Chang et al. [12] combine a rule-based system
with a clustering method to segment brain MR images. Their
rule-based system permits expert knowledge to be explicitly
represented in the form of fuzzy sets and if—then rules.

Effective as they have proven to be, soft segmentation
methods can still benefit from complementing themselves with
low-level vision techniques and basic image measurements.
This low-level visual information is also the basis on which
the human expert applies his rich decision techniques. An
interesting approach is to combine fuzzy logic with statistical
segmentation methods like the Bayesian approach taken by
Rajapakse er al. [13].

We propose a new algorithm that is intended to work as an
expert segmenter and classifier combining low-level image pro-
cessing and high-level fuzzy recognition. The algorithm uses
basic image measurements, expert human input, and knowledge
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about the nature of brain MR studies. We model the different
sources of information as a set of fuzzy indexes. The algorithm
works on single-echo brain MR images since these images can
provide smaller voxels and more precise and accurate quantita-
tive measurements than multi-echo studies [6]. We compensate
for the lack of multi-echo information by considering multiple
sources of information present in an MR brain image set: gray
level value of the pixels, relative position of brain tissues in an
image and in the image set, image statistics, 3-D neighborhood
information, and object size. When making a classification deci-
sion, we not only consider the information present in the image
under consideration, but also, as a human expert would do, the
contextual information of the image in the MR set. This volu-
metric approach allows continuity of the 3-D boundaries in seg-
mented objects [6]. To account for the biological variations and
intensity variations in the tissues along the image set, we use
tissue specific and spatial specific statistics.

Our algorithm works on a pixel basis and, therefore, can better
represent complex objects than algorithms based on splines or
neural networks [14], [15], which are limited by the number of
nodes or control points in the models. Usually, contour models
such as splines, snakes, or neural networks have been privileged
over pixel-based models because they will not diverge from the
solution (the object boundary) as easily as pixel-based models
that are not constrained by any mathematical model. Also, in a
bad scenario, contour models will at least give a solution as good
as the initialization (which is usually close to the final object
boundary). However, the price to pay is a simplification of the
biological boundaries of an object. In our algorithm, the fuzzy
indexes act as a robust error controller and prevent important
divergences from the real object boundaries.

The algorithm we present is aimed at producing precise quan-
tification results of brain structures, and scientific literature has
not yet proven that this can be achieved using fully automatic
classifiers. Although fully automatic segmentation algorithms
using different techniques have been proposed [16], [17], these
are usually aimed at segmenting only particular brain structures
such as the white matter or the skull or produce a segmentation
of the brain images into only a limited number of tissue classes.
In general, some sort of algorithm supervision or image prepro-
cessing is a part of all algorithms that seek precise classification
of the various brain structures. The input of information into the
algorithm by a human expert and/or some sort of supervision
is usually not an additional burden, since the human expert is
expected to at least speedily inspect the results of an acquired
MR study. If during this quick inspection, the human expert can
use a friendly interface to click over some images containing
the structures he wants to segment, then the algorithm is off to
a more robust recognition process. Although segmentation al-
gorithms are aimed at freeing the human expert from a difficult
and time-consuming task, nonbatch applications can afford to
involve some degree of human input. We capitalize on human
input by using the information contained in a few semiautomat-
ically classified images to guide the automatic algorithm. For
most images in the study though, there is no preprocessing or
human interaction involved.

An additional benefit of allowing some user interaction is that
the brain MR images can be classified into multiple objects, un-
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like automatic classifiers which usually end up with only three
tissue classes: white matter, gray matter, and cerebrospinal fluid
[20].

An important application of segmented brain MR data is the
reconstruction of brain structures [10]. As a last stage of the
algorithm we input the segmentation/classification results to our
3-D reconstruction tool [21], [22] to produce 3-D models of the
anatomical brain structures.

II. CLASSIFICATION ALGORITHM

We use sets of MR T1 brain images. Typically, such studies
contain over 100256 X256 x 8 images. The main idea behind our
algorithm is that the user can interactively classify a reduced set
of images in the set and, from these semiautomatically classified
images plus knowledge about the brain MR images contained
in a set of fuzzy indexes, the algorithm will automatically clas-
sify the rest of the images. The algorithm can classify multiple
brain structures. For each structure the algorithm takes as input
one semiautomatically classified image of the structure and will
make one pass through the image set to classify it. The output
of the process is a set of images where the anatomical structures
of interest have been segmented (uniformly labeled with partic-
ular values) and classified (identified as belonging to a particular
structure). The classification algorithm is divided in two major
tasks: 1) semi-automatic classification of a selection of key im-
ages and 2) automatic classification of the MR image set using
fuzzy logic. We describe each task in the following subsections.

A. Semiautomatic Classification of a Selection of Key Images

1) Selection of the Key Images: We must first select the
“key” images in the MR image set that will later guide the
automatic classification process. We need to select one image
for each of the brain structures that will be classified. The only
requisite for the selection of the images is that every structure
of interest be represented in the key images. If one key image
contains more than one structure of interest, it can be used as
the reference image for more than one structure. From these
key images we will extract the information to create the fuzzy
indexes that will be part of the automatic classification.

The key images are filtered using a 3 x 3 low-pass kernel
that eliminates high-frequency noise such as isolated pixels and
makes the regions in the images more uniform. We classify the
key images interactively one at a time using the semiautomatic
algorithm described next.

2) Semiautomatic Classification Algorithm: For the interac-
tive classification of the key images, we developed the window
interface shown in Fig. 1. In this interface the user can quickly
browse through the image set and select the key images. For
every key image the user will click on the brain structure that
will be segmented from it. In Fig. 1, the user has clicked over
the white matter. The algorithm will then perform a segmenta-
tion of the structure using a region growing algorithm that is
guided by the structure’s statistics (mean and standard devia-
tion). The region growing algorithm will grow over all the pixels
whose statistics satisfy the conditions defined in Section II-A3.
Using a mouse interface, the user can adjust the statistical condi-
tions that control the evolution of the region growing algorithm
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Fig. 1. User interface for the interactive classification of key images.

to avoid over- or undersegmentation of the structure. The user
can visually validate his interactive segmentation using a trans-
parency mask that allows him to superimpose the segmentation
over the original image.

Once human validation of the segmentation is provided the
segmented area is classified as the desired anatomical structure.
We now describe in detail the segmentation procedure.

Let P be the set of all the pixels in the image. Let p be
one pixel in P. For each p, there is an associated location in
the image (4, j) and an associated gray level G, (in the range
[0,255]) so that

p(i,j) = Gp. ey

Let A be the set of pixels that form the area of interest or
the anatomical structure that we want to segment in the image
(where A C P).

We account for the volumetric intensity variations within
each structure by allowing small variations of gray level (to
within some standard deviation; see Section II-A3) in its
constituent pixels, but we also consider that the gray level
statistics of each structure are different (to within some level of
signification; see Section II-A3) from the gray level statistics
of neighboring structures. The segmentation algorithm is a
simple region growing algorithm that uses a linked dynamic
list to keep track of the pixels in a region and the pixels that are
neighbors to the region. The algorithm starts the segmentation
of a structure using as seed s the pixel that was interactively
clicked on by the user when selecting the structure. Starting in
pixel s the algorithm automatically finds a region A such that

s € A ()

The algorithm will grow over a region until all the pixels in
A are found according to a set of compliance criteria defined
on A (see Section II-A3). The recursive algorithm proceeds as
follows: Starting at s it will evaluate the compliance criteria de-
fined by (3) and (7) on the four-neighborhood of s as shown in
Fig. 2(a). The pixels that are identified as belonging to A are
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Fig. 2. (a) Seed pixel s in white and its four neighboring pixels in dark gray.
(b) Second level of the recursive algorithm. Original seed pixel is labeled as
belonging to A and colored in light gray. Four neighboring pixels are being
analyzed and their neighbors are shown in dark gray. (c) Advanced stage of
the recursive algorithm with pixels belonging to A shown in light gray, pixels
under analysis shown in white, pixels that are still candidates for analysis shown
in dark gray, and border pixels (containing no neighbors in A) in black.

flagged and are no longer candidates for analysis. After a pixel
is labeled as belonging to A, the pixels in its four-neighborhood
that are still candidates for analysis are examined [see Fig. 2(b)],
and so on, until the compliance criteria fail to be met by every
analyzed pixel and the algorithm stops. Fig. 2(c) shows an ad-
vanced stage of the recursive algorithm with pixels belonging
to A shown in light gray, pixels under analysis shown in white,
pixels that are still candidates for analysis shown in dark gray,
and border pixels in A) in black.

The compliance criteria that a pixel must meet to be part of
A are described next.

3) Compliance Criteria for the Segmentation Algorithm:

a) Analysis of the average standard deviation in an
image: We assume that all pixels in A contain gray level
values similar to the gray level value of the seed s manually
chosen by the user as belonging to the structure under classifi-
cation at the beginning of the algorithm. We call the seed gray
level value G¢ and define the gray level value limits for pixels
in A as

L. 0, Gs—v<0
LowerLimit = { G.— v, else (3a)
and
o 255, Gs+v > 255
UpperLimit = { G+, else (3b)
where
v=FkM “4)

is k times the average standard deviation of the image histogram
peaks (means) M and k is a constant experimentally initialized
between 2 and 3, that reflects how well the histogram peaks are
separated from each other. The initial value k = 2 provides only
an initial stopping criterion for the segmentation algorithm. As
described in Section II-A2, the user interactively adjusts this pa-
rameter to the specific structure statistics when visually vali-
dating the segmentation process. We define M as

1
M=- g StdDev (HistogramPeak(3)) . 5)
i
1
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Fig. 3. Binarization of an MR image after labeling connected pixels as
belonging or not to a range of gray level values.

The result of this gray level value analysis is a binarization of
the image, where the connected pixels within the allowed gray
level range are labeled as different from the rest of the image.
Such a result for a seed pixel s inside the white matter is shown
in Fig. 3.

The gray level statistics of the structure of interest are not
the only stopping criterion for the region growing algorithm,
we next describe an additional criterion based on the gray value
statistics of the structure’s neighboring pixels.

b) Gray level value differences among neighboring
pixels: Let p1,pa,...ps be the eight-neighborhood pixels of
s. Using (1), we define an error level E

8
E:Z|Gp,,-,—G,,,|. (6)
i=1

The error E is just an accumulator of the differences in gray
level between the seed pixel s and its eight surrounding neigh-
bors. E can be interpreted as a measure of how equal or different
the gray level of a pixel is from the gray level of its eight-neigh-
borhood. We define that the accumulator E' should not exceed
the threshold value M (average standard deviation in the image)
defined in (5). This means that the average tolerable difference
between neighboring pixels to still be considered as belonging
to the same anatomical structure is M/8.

A seed pixel s inside an anatomical structure A is, except for
the case where it lies at the border of the structure, surrounded
by other pixels that also belong to A. Inside A, the gray level
of the pixels neighboring s is close to the gray level of s, Gs.
Fig. 4 shows a sample case where s and its eight-neighborhood
belong to A, the figure also shows the gray level G; for each
of the pixels.

If we calculate the coefficient E for s as shown in Fig. 4,
we obtain Ey = 40. Now, let us assume the situation depicted
in Fig. 5 where the seed s is a boundary pixel. In this case,
it is noticeable that pixels {ps, p7,ps} & A, although we can
appreciate some partial volume effects.

If we calculate E for s in Fig. 5, we get E5 = 200 which
is larger than E; = 40 and is typically also larger than the
coefficient M defined in (5); therefore, s is flagged as a border
pixel. After analyzing a pixel s, if

E, <M (N
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Fig. 4. Case where the seed pixel s, and its associated eight-neighborhood
belong to A.

P1=60|P2=70|P3=60

P4=65] s=70 |P5=70

P6=10|P7=15|P8~=10

Fig. 5. Case where the seed pixel s lies on the boundary of structure A.

then s € A and s is flagged as successful (belonging to A).
The procedure continues by examining all pixels in the eight-
neighborhood of s that have not been flagged and flags them
as part of A or as boundary pixels. The procedure terminates
when all the pixels in A are flagged. When a boundary pixel
is examined, its eight-neighborhood is no longer considered;
instead, the algorithm proceeds to analyze the neighborhood of
pixels that are marked as belonging to A.

The two compliance criteria taken together ensure that even
if the differences between neighboring pixels remain low, pixels
whose gray level values are significantly different from the orig-
inal seed pixel s are no longer considered as belonging to A.
This is the case of images that have different gray level values
for different anatomical structures, but where the contrast be-
tween the structures is very little or the borders are blurred.

During the interactive classification of the key images,
once the user has selected a starting seed pixel s for the region
growing algorithm, he can interactively fine tune the parameters
M and k for each anatomical structure of interest. The user
can change the parameter values by moving the mouse in a
designated window inside the user interface, thus creating the
vectors M = [My,Ms, ..., My], and k = [ky,ko, ..., kx]
where N is the total number of brain structures to segment.
The tuning of parameters relaxes our initial assumption that
the image histogram is periodic, that is, that it is composed
of equally spaced Gaussian distributions. By interactively
changing M and k, the value of the standard deviation and
the separation of the Gaussian distributions that belong to the
anatomical structures of interest, the user is able to best reflect



ALGORRI AND FLORES-MANGAS: CLASSIFICATION OF ANATOMICAL STRUCTURES IN MR BRAIN IMAGES

M
>
4
3
2
1
K
0 1 2 3 4

Fig. 6. Real-time segmentation results as the user interactively changes the
values of the parameters M and k. Representation of the white matter is more
accurate in the case of the circled image (3, 2).

the real statistics of each brain structure. As the user changes
the parameter values, the results of the segmentation vary in real
time, so that the user can best adjust the parameters to improve
the quality of the segmentation. Fig. 6 shows the results of a
segmentation of white matter as the user interactively changes
the value of M (y axis) and the value of k (x axis). The best
segmentation results are shown in (3, 2) (circled).

The interactive stage is over when the user has entered seed
pixels for all anatomical structures of interest. After the user
enters each seed pixel by giving a click of the mouse over an
anatomical structure, the recursive algorithm executes itself and
segments a region A. The classification of A into a partic-
ular anatomical structure is done automatically, since the user
is forced by the interactive algorithm to specify an anatomical
structure for each seed that is manually entered. The interactive
stage also produces the vectors M and k containing the statistics
of the structures of interest. The information in these parameter
vectors will later be used by the automatic classification algo-
rithm.

B. Automatic Classification of a Complete MR Study

After the user has interactively classified the key images, the
algorithm can automatically classify the rest of the images. It
will do so by propagating the information of the key images
to neighboring images and by evaluating three fuzzy indexes
that control the evolution of the classification and provide addi-
tional information about the likelihood of a pixel belonging to
an anatomical structure.

The automatic classification algorithm proceeds by classi-
fying one brain structure over the entire image set at a time.
However, as will be seen later on when the stages of the algo-
rithm are described in detail, at each pass the algorithm only
evaluates the region of interest (ROI) where the structure ap-
pears in the images. The ROI for each structure is initialized
from the key image segmentation and progressively adjusted
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Fig.7. Diagram of the tasks involved in the automatic classification algorithm.

as the classification proceeds through all the images. There-
fore, there is no redundancy in the tasks of the algorithm, and
its overall execution time is the same as it would be if all the
brain structures of interest were classified simultaneously. But,
by taking the approach of classifying one brain structure at a
time, we are able to minimize the number of required key im-
ages to only one per structure of interest. The automatic classi-
fication algorithm will always start in the images adjacent to the
key images.

The automatic classification algorithm consists of two stages:
first, a segmentation of the images in regions (using the same
region growing algorithm of the interactive segmentation), and
second, a classification of the regions as belonging to particular
anatomical structures.

To produce the segmented images, for each image in the set,
the algorithm must:

1) create a list of candidate pixels for each region (seed list);
2) initialize the segmentation parameters (these are the same
parameters that were used in the interactive classifica-
tion);
3) generate the segmented regions in the images.
To produce the classified images, for each image in the set,
the algorithm must:

1) evaluate a set of fuzzy indexes on the regions;

2) label the resulting pixels as belonging to a particular brain

structure;

3) eliminate the classified pixels from the list of candidate

pixels for analysis.

Fig. 7 shows a schematic diagram of the tasks involved in the
automatic classifier. We describe these tasks in the next subsec-
tions.

1) Automatic Segmentation: The segmentation algorithm
uses information from adjacent images that have already
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been classified whether they are key images or automatically
classified images, as well as information from the image being
segmented to produce a set of parameters that will guide the
region growing routine that produces the segmented regions.
We will call the adjacent, already classified image that is
used as segmentation reference at any particular time I,.f; we
will call the image under segmentation ... As described in
Section II-A2, the segmentation needs a seed pixel s that will
be the origin of the region growing and two parameters. An
estimate of the standard deviation of the structure’s gray level
values M;, and an estimate of the width of the Gaussian curve
that models the structure’s distribution v; = k;M; to evaluate
the stopping criteria (3) and (7).

The algorithm starts the segmentation of I, by selecting
a seed pixel s for the brain structure that will be segmented.
For this, the gradient of I, is calculated using a Sobel 3 x
3 operator. The gradient includes the borders between regions,
high-frequency features, and noise. Since we are only interested
in the pixels representing region borders, we select the pixels in
the 10% upper gradient values and label these as border pixels.
To close the regions, we then perform 3 x 3 dilation on border
pixels. Each of the remaining image pixels is labeled as be-
longing to the same region as the pixel having the same (x, y)
position in I c¢. Pixels in I g labeled as the structure of interest
are candidates to become a seed pixel. The final seed pixel for
the structure is chosen as the first pixel that is tested and com-
plies with (3) and (7) as defined for L,.f, that is: 1) a pixel whose
gray level value lies within the tolerable limits for the structure
that it is being assigned to and 2) a pixel whose gray level value
is similar to that of its eight-neighbors.

The segmentation algorithm will then produce one region in
Lieg using the same parameter values for M; and k; as in L.f.
After the segmentation of the structure in I, is complete, we
update the statistic measures M; and k; to reflect the intensity
inhomogeneities and the biological variations along the images.

2) Automatic Classification: The job of the classifier is to
label each of the segmented regions in I as belonging to a
particular anatomical structure. To do this, we define three fuzzy
indexes, each of which, alone, is incapable of indicating whether
a pixel definitely belongs or not to a particular anatomical struc-
ture, but can give us a degree of likeliness that the pixel belongs
to the structure. We then define a global decision index as the
weighted sum of the three fuzzy indexes. This global decision
index provides the crisp decision of whether a pixel belongs or
not to the structure. The indexes also act as error controllers that
prevent divergences coming from the segmentation stage to be
validated as anatomical structures. We define the indexes next.

a) Fuzzy size index: The first index measures the size of
every segmented structure relative to its counterpart classified
structure in I,.t. We expect the changes in size for every struc-
ture to vary lightly from one image to the next.

Let pn be a pixel that does not belong to an anatomical struc-
ture in I,o but does belong to the anatomical structure in Igeg.
The number of px pixels for one anatomical structure in Iseg is
Px. Let py be a pixel within an anatomical structure both in
Iier and in Ieg. Py is the number of pixels pyr. Last, let ps be
a pixel that belonged to an anatomical structure in I ¢ but no
longer belongs to the structure in Ise. The number of pixels pa
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is P o. We measure the relative difference in size of an anatom-
ical structure between two consecutive images as

Py

Is= —————.
’ Py + Py

(®)

We evaluate I over the segmented region in I, that is being
classified. We accept the classification of a segmented region
in Lo as the brain structure we are interested in if Iy > 0.7.
Notice that we do not use P 5 in the definition of I;. I can mea-
sure different evolutions of a brain structure through the image
set. In the case where a structure is growing from ILies 10 Iseq,
I; will be lower than unity. In this case, I will reject big size
changes that could occur if the segmentation algorithm had di-
verged from the boundaries of the structure of interest. In the
situation where a brain structure divides itself into multiple re-
gions from ILef t0 Iseq, Is will not penalize these subdivisions
that occur frequently in brain images, instead, I will be mea-
sured for each of the subdivided regions (from the description
of the automatic segmentation we recall that the subdivided re-
gions were all labeled as the same structure and will all be clas-
sified) and will be accepted. If we had considered P  as part of
I, we would consistently misclassify images where a structure
subdivides into smaller regions. The last situation occurs when
the structure reduces its size from Iier to Ise,. In this case, I
will be accepted. After I is accepted for a region (value > 0.7)
the remaining two fuzzy indexes are evaluated over the region.
If I, < 0.7, we do not evaluate the remaining two fuzzy indexes
and simply reject the segmented region as candidate for classi-
fication. We then return to the segmentation stage and produce
a new segmented region with a different seed pixel taken from
the candidate pixel list.

b) Fuzzy indexes for gray level statistics: We build two
fuzzy indexes based on the gray level statistics of the regions: a
mean index and a standard deviation index.

Mean Index: Every time we segment a region, we calculate a
mean value for the gray levels of the region both in I;¢f and Iseg.
We are interested in the absolute difference between these two
means. We build an index I,; that measures this difference

IM _ mseg — Meyef + 1 (9)
max(Myef, Mseg)
where m., is the mean of the region in I, and m,.f is the mean
of the region in I,¢. I\; varies between [0,1], with 1 meaning
no difference between means and values lower than 1 meaning
different means.

Standard Deviation Index: The standard deviation indicates
how much the gray level values of all pixels in the region are
different from the mean value. We are interested in the absolute
difference between the standard deviations of the region in I;ef
and I;.,. We build an index I, that measures this difference

Oseg — Oref

I, =— +1 (10)

max(Tyef, Tseg)

where o is the standard deviation of the region in I and ot
is the standard deviation of the region in L. I, varies between
[0, 1], with 1 meaning no difference between ¢’s and values
lower than 1 meaning different o’s.
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c) Global decision index: We combine the three fuzzy in-
dexes just described into a global decision index. The global de-
cision index is a joint measure of the characteristics measured
by the individual indexes. It will allow the classification algo-
rithm to take a final decision on whether a segmented region
belongs or not to an anatomical structure. We define the global
index as

Iy, +1.251 + IU)
3.25

L

Y

where we give slightly more weight to Iy than to I and I,,. This
is because I; measures statistical information present in the im-
ages, and the global index I is experimentally proven to produce
a better decision when Iy is given more weight than Is, an index
that is modeled after human expectation and knowledge about
the nature of the MR brain images. Our criteria for acceptance
of the classification results are values of I > 0.75 since these
values indicate a higher likelihood of the region belonging to
the anatomical structure than not. If I < 0.75, we simply re-
ject the classification result and choose a different seed pixel s
for the region from the list of candidate pixels defined in Sec-
tion II-B1. If I is accepted, we classify the region in L. as the
same anatomical structure of its counterpart region in ;.. Typ-
ically, if a region is well segmented, I takes values > 0.95. The
highest values of I are found when classifying images adjacent
to the key images, and the values start to decrease as we classify
images far away from the key images. The classification results
that we present and validate in the next sections have all been
obtained using only one key image for every classified brain
structure. Our validation indexes compare favorably to others in
literature. If the user requires a higher classification precision,
it is always possible to enhance the classification results by in-
creasing the number of key images for each classified structure.

III. RESULTS

We tested and validated our algorithm on different sources
of MR images. We classified five T1 MR brain image sets and
then had them qualitatively validated by a clinical expert. The
sets were 256 by 256 by 8 by 110-124 images. All five studies
were coronal. The images were taken from living healthy adult
subjects with no brain lesions. The qualitative validation by the
clinical expert was satisfactory in all five cases. In order to pro-
vide a verifiable measure of the performance of the algorithm,
we also tested it on a simulated Brainweb [30]-[34] MR brain
image set. The Brainweb simulated image set contained 181 im-
ages, 217 by 181 pixels, axial type, T1 mode. The parameters of
the Brainweb image set used were o2 = 0.03, white noise, and
20% of nonuniformity, no lesions.

The algorithm was implemented in Visual C++ and executed
on a Pentium IV system running at 2.4 GHz with 0.5-GB RAM
and graphics accelerator. Typical classification time for one
brain structure in an image set was 1 min.

Fig. 8 shows three comparative examples of the classification
results of the white matter. Fig. 8(a) shows images obtained from
a clinical MR study, Fig. 8(b) shows the classification results
of the algorithm, Fig. 8(c) shows three images of the Brainweb
simulated set, Fig. 8(d) shows the “true” classification of the
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Fig. 8. (a)Clinical MR T1 images, (b) classification results of the white matter
provided by our algorithm, (c) Brainweb T1 MR simulated images, (d) real
classification provided by the Brainweb simulator, and (e) our classification
results of the white matter in the Brainweb images.

a) b) c) d) €)

Fig. 9. (a) Clinical MR T1 images, (b) classification results of the ventricles
provided by our algorithm, (c) Brainweb T1 MR simulated images, (d) real
classification provided by the Brainweb simulator, and (e) our classification
results of the ventricles in the Brainweb images.

white matter also provided with the Brainweb simulated images,
and Fig. 8(e) shows our classification results.

Fig. 9 shows the same example of comparative results as
Fig. 8, but in this case for the ventricles.

Fig. 10 shows the 3-D reconstruction of the white matter and
the ventricles obtained using a general 3-D reconstruction tool,
rendering and texturizing.

IV. QUANTITATIVE EVALUATION

Expert validation by a clinical specialist has often been used
as a basic quality control procedure for segmentation results.
However, to obtain a quantitative, reproducible performance
index of the classification algorithm, adequate metrics of the
results must be reported on standard MR image sets. In [41], 20
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Fig. 10. Reconstruction results for a white matter and a pair of brain ventricles.

MR image sets along with their manual classifications are avail-
able to be used as standard image sets. In this paper, we carried
out a quantitative evaluation of the white matter classification
results obtained on the Brainweb image set. We computed three
validation indexes that prevail in segmentation literature for
comparison of algorithmic performance: the similarity index
or overlap metric [38]-[40], [42], [43], the Tanimoto index
[35], [36], [41], and the misclassification rate (MC) [9], [37].
The three indexes were obtained by comparing the image set
containing the “true” classification of the white matter provided
by the Brainweb simulator and the binary image set containing
the results of the white matter classification provided by our
algorithm. The reported indexes are the average value for the
181 image set.

1) Similarity Index or Overlap Metric: This index is defined
as twice the number of pixels assigned to a class k by both
the ground truth and the classification algorithm divided by the
sum of pixels assigned to class k by the ground truth plus the
pixels assigned to class k by the classification algorithm. The
similarity index is sensitive to segmentation errors both in size
and location, although differences in size affect the index more
than differences in location. In [40], the author explains that a
similarity index above 0.75 means excellent correspondence be-
tween two segmentation results. When comparing the results
of our classification algorithm to the ground truth provided by
the classified Brainweb image set, we got an average similarity
index for the whole image set of 0.83. For individual images we
got similarity indexes as high as 0.95.

2) Tanimoto Index: The Tanimoto index is calculated on
pairs of images, where one image comes from the binary
classified image set produced by the algorithm and the other
comes from the true classification binary image set used as
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Fig. 11.  Graph of the results obtained for the Tanimoto index with respect to
the size in pixels of the white matter over an image (only images with more than
3% white matter are shown).
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Fig. 12.  Graph of the MC rate with respect to the size in pixels of the white
matter in the images.

reference. The Tanimoto index is the result of dividing the
cardinality of the intersection of the binary images between the
cardinality of the union of the binary images. The Tanimoto
index is zero when the images have no pixels in common
and one when both images have all pixels in common. We
calculated an accumulated Tanimoto index (average over the
181 Brainweb images) for the white matter classification of
0.722. For comparison, [41] cites Tanimoto indexes for manual
segmentations of MR image sets of only 0.83. These index
values further prove that even to the human expert, MR image
segmentation is a difficult task. Fig. 11 shows a graph of the
variation of the Tanimoto index with respect to the size in
pixels of the white matter in an image.

3) Misclassification (MC) Rate : The MC rate is calculated
as the number of false positive pixels plus the number of false
negative pixels divided between the total number of pixels in
the image. After computing the MC rate of the complete auto-
matically classified white matter in the Brainweb image set, an
average MC rate of 0.02 was obtained. Fig. 12 shows a graph of
the MC rate with respect to the size of the white matter in the
image. Obviously, as the size of the white matter is reduced in
the image, the MC rate grows, and the MC rate decreases for im-
ages where the white matter covers a larger portion of the image.
For comparison, [37] and [9] cite MC rate values for fuzzy clas-
sification results of 0.03 and 0.04, respectively.

V. CONCLUSION

In this paper, we present a classification algorithm for
single-echo T1 MR brain images. The algorithm combines
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low-level image statistics with higher level knowledge con-
tained in semiautomatically classified key images and in a set
of fuzzy indexes that capture knowledge about the basic nature
of an MR brain image set. We classify the images one structure
at a time in a volumetric fashion. By considering more than
one image while classifying the brain structures we are able to
keep track of 3-D boundary continuity as well as account for
3-D intensity and biological variations. We seek to capitalize
on a variety of image aspects to mimic the way a human expert
reasons when confronted with a pattern recognition task. The
human expert will not take a mechanistic recognition approach,
but instead will gather as much contextual information as
possible and will use his own experience, expectation, and
intuition. To define the set of fuzzy indexes that shape the
final classifier we take into account the absolute and relative
position of every pixel in the set of images, the gray level
statistics of pixels, and of regions in the images. We compare
size and statistics between 3-D neighborhoods and we use the
user-input knowledge of the key images. Because the basic
statistics that guide the segmentation of the stack of images are
recalculated at every image and because we take into account
the information of the segmentation results across the images,
our tool succeeds in obtaining good quality results from a
limited number of key images.

The issue of validation of the classification results is key and
only in recent years literature has started to propose uniform re-
producible validation indexes over standard MR image sets such
as the Brainweb simulator and the image sets in [41]. However,
we feel that much work needs to be done to propose a stan-
dard validation metric against which algorithmic performance
can be compared. We believe that there is still the need in image
segmentation literature to propose a robust and representative
validation index. We think this index must not have the single
metric form of current indexes. The new index should be the
combination of a series of metrics: misclassified pixels, ratio
of perimeter to area, volume preservation, higher statistical mo-
ments, topological characteristics, etc. This new metric could
be read as a global index or as a series of indexes that could
categorize algorithms based on different performance metrics.
Current indexes are way too global and are hard to read and in-
terpret. The methodology to measure validation indexes should
also be standardized. In this paper, we have tried to give a de-
tailed explanation of the validation of our classification algo-
rithm so that it can be used for comparison in further algorithmic
developments. The question of the highest accuracy that a clas-
sification algorithm can obtain is also important. The answer
depends, among other things, of the characteristics of the image
set considered as ground truth (partial volume, noise, inhomo-
geneities, biological variations, etc.) and which of these charac-
teristics can be successfully taken into account by the classifi-
cation algorithm. The last question can also be complemented
with the question of what is considered good classification ac-
curacy. Although we cannot give a definite answer to the ac-
curacy questions, we think they could be better understood by
obtaining standard validation indexes such as the average value
of the Tanimoto index, similarity index, and MC rate over a se-
ries of manual expert classifications of the Brainweb simulated
image sets. Since humans design the classification algorithms
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based on their best understanding of the problem, it could be
useful to know just how good they can get at the job.
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