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Abstract— We consider Carrier Sense Multiple Access
(CSMA) schedulers for wireless networks. For networks where
all nodes are within transmission range of each other, it has
been shown that such schedulers achieve the network capacity
in the limiting region of large networks with a small sensing
delay. However the design and analysis of CSMA schedulers
for general networks has been an open problem due to the
complexity of the interaction among coupled interference con-
straints. For networks with primary interference constraints, we
introduce a tractable analysis of such CSMA schedulers based
on a fixed point approximation. We then use the approximation
to characterize the achievable rate region of static CSMA
schedulers. We show that the approximation is asymptotically
accurate for the limiting regime of large networks with a small
sensing delay, and that in this case the achievable rate region
of CSMA converges to the capacity region.

I. I NTRODUCTION

Recently, there has been a growing interest in the devel-
opment of distributed transmission policies for interference-
limited wireless networks. A key objective of these dis-
tributed policies is to achieve any throughput within the
capacity region1 of the network. In this paper we focus on
Carrier Sense Multiple Access (CSMA) schedulers where
nodes sense whether the channel is idle before making
an attempt to transmit a packet. For single-hop networks
where all nodes are within transmission range of each other,
it is well-known that CSMA schedulers achieve network
capacity in the limiting regime of large networks with a
small sensing time [2]. However the analysis of CSMA
schedulers for general networks has been an open problem
due to the complexity of the interaction among coupled
interference constraints. In this paper, we provide an analysis
of CSMA schedulers for networks with primary interference
constraints.

The main contributions of the paper are as follows. We
provide a fixed point approximation, called the CSMA fixed
point, to characterize the service rates of CSMA schedulers
in networks with primary interference constraints, and show
that (under some assumptions) the fixed point approximation
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1The capacity region contains the set of arrival rates that are achievable
by some feasible policy. A more rigorous definition will be provided later.

is asymptotically accurate for large networks with a small
sensing time. Using the fixed point approximation, we char-
acterize the achievable rate region of the static CSMA sched-
ulers for networks with primary interference constraints.We
show that the achievable rate region converges to the capacity
region for large networks with a small a sensing time.

Most recent work in this area focused on distributed
mechanisms that can implement thethroughput-optimal(or
max-weight) policies (see for example [3], [7], [8], [10],
[12]) that has been proposed in the seminal work of Tas-
siulas and Ephremides [11]. In view of their low-complexity
nature, random access schemes provide an attractive alter-
native class of distributed transmission strategies; however,
the current understanding of such schemes is still limited.
Random access protocols have been analyzed in [13] by
Durvy and Thiran using a packing approach, and in [14]
by Bordenave, McDonald, and Proutiere, using a mean-field
analysis approach. Related to [14], in this paper we analyze
CSMA random access schemes using the CSMA fixed point
approximation.

The paper is organized as follows. We describe the
wireless network and the static CSMA schedulers that we
consider for our analysis in Section II. In Section III, we
review well-know results for networks where all nodes share
a single communication channel. Section IV presents the
CSMA fixed point formulation that we use to approximate
the performance of static CSMA schedulers. We show in
Section IV that there always exists a unique CSMA fixed
point and hence our fixed point approximation is well-
defined. In Section V, we show that the fixed point approx-
imation is asymptotically accurate for large networks witha
small sensing delay. Section VI uses the CSMA fixed point
approximation to characterize the achievable rate region of
static CSMA schedulers. Finally, in Section VII, we show
that the achievable rate region asymptotically converges to
the capacity region for large networks with a small sensing
time. Due to space constraints, we state our results without
proofs.

II. PROBLEM FORMULATION

Consider a wireless network consisting ofN nodes andL
directed links. A link(i, j) is given by a node pairi and j,
where i is the sending andj is the receiving node. LetL
be the set of all links in the network. LetSi be the set of
all nodes j such that there exists a link from nodei to node
j, and letRi be the set of all nodesj for which there exists
a link from node j to nodei. Let Ni = Si ∪Ri denote the
neighbourhood of nodei. Furthermore letLi be the set of



links originating at nodei, i.e. we have that

Li = {(k, j) ∈ L |k = i}.

In the following we assume thatSi = Ri , i = 1, ..,N, i.e. all
nodes have the same transmission range.

For our analysis, we focus on networks under theprimary
interference, or node exclusive interference, model as given
below (see also [8], [12]).

Definition 1 (Primary Interference Model):An attempt
by node i to capture link(i, j) is successful if it does not
overlap with any attempt by another node to capture a link
(k, l) which has a node in common with link(i, j). ⋄
This interference model applies, for example, to wireless
systems where multiple frequencies/codes are available (us-
ing FDMA or CDMA) to avoid interference, but each node
has only a single transceiver and hence can only send to
or receive from one other node at any time (see [5] for
additional discussion).

A. Static CSMA Schedulers

We consider a Carrier Sense Multiple Access (CSMA)
mechanism to schedule the times when nodes try to capture
a link that is given as follows.

Before trying to capture a link, nodes sense whether the
link is idle. More precisely, we say that anode i is idleif
it currently does not capture any link(i, j), j ∈ Ri , nor does
any nodej ∈ Si capture the link( j, i). We say that thelink
(i, j) is idle if both nodei and nodej are idle. Nodes only
try to capture links that have been idle forβ time units. We
refer toβ as thesensing time(or delay), and define anidle
slot for link (i, j) as the event that link(i, j) has been idle
for β time units. In addition, we define theend of an idle
period at link(i, j) as the event that nodei and j have been
jointly idle for exactlyk idle slots,k∈ {1,2, ...}.

Definition 2 (Static CSMA Policy):A static CSMA policy
is given by a vectorp = (p(i, j))(i, j)∈L ∈ [0,1]L. At a given
time t ≥ 0, let Li(t) be the set of links inLi for which
an idle period ends at timet. Then nodei will mark link
(i, j) ∈ Li(t) at time t with probability p(i, j), independently
of all other attempts by any node in the network. If at time
t, nodei marks a single link(i, j) ∈Li(t), then it will make
an attempt at timet to capture that link. If nodei marks two,
or more, links in the setLi(t) at time t, then it will choose
an arbitrary link among the marked links, say(i, j), and will
make an attempt at timet to capture the link(i, j).

If a node tries to capture a link, it will hold (occupy) the
link for one packet transmission duration. In the following,
we assume that the transmission time of each packet is equal
to 1 time unit. If a node does not make an attempt to capture
a link, then it will wait until the next time that an idle period
of a link (i, j), j ∈ Ni , ends. ⋄

To simplify the analysis, we assume in the rest of the
paper that the propagation delay between a nodei and a node
j ∈Ni , i 6= j (i.e. the time it takes a nodei to detect that node
j stopped/started transmitting) is equal to the sensing timeβ .
Furthermore, we assume that all nodes are initially idle and
start sensing at timet = 0. The analysis can be extended (but

becomes more involved) to the case where the propagation
delay between neighbouring nodes is upper-bounded byβ
and the initial sensing times are not aligned.

B. Performance Measures

We define the service rate of a static CSMA policy for a
link (i, j) ∈ L as follows.

Definition 3 (Service Rate):The service rateT(i, j)(p) of a
static CSMA policyp for link (i, j) ∈ L is the fraction of
time nodei successfully captures link(i, j) underp. ⋄
Note that the service rateT(i, j)(p) of the link (i, j) is equal
to the throughput for the link(i, j) under the static CSMA
policy p for the case where all links are saturated, i.e. there
is always a packet to be sent for all links(i, j) ∈ L . Using
the service ratesT(i, j)(p), (i, j) ∈ L , we next define the
achievable rate region of static CSMA policies.

Let R be a given set of routes for the above wireless
network, where router ∈ R is characterized by the links
that it traverses. Letλ = {λr}r∈R ∈R

|R|
+ be the mean packet

arrival rate vector whereλr is the mean packet arrival rate
for route r. Given a rate vectorλ , let

λ(i, j) = ∑
r:(i, j)∈r

λr , (i, j) ∈ L , (1)

be the total mean packet arrival rate over all routesr ∈ R

that traverse link(i, j), and let

Λi = ∑
j∈Ni

[

λ(i, j) + λ( j ,i)

]

, i = 1, ..,N, (2)

be the total mean packet arrival rate over all routesr ∈ R

that pass through nodei.
We assume that the incoming packets for each link(i, j)

are stored in a separate input-queue of infinite size.
Definition 4 (Stability):Consider an arrival rate vector

λ = {λr}r∈R and a static CSMA policyp with service rates
T(i, j)(p), (i, j) ∈ L . We say thatp stabilizes the networkif

λ(i, j) < T(i, j)(p), (i, j) ∈ L ,

i.e. the arrival rate is strictly less than the service rate on all
links (i, j) ∈ L . ⋄

The achievable rate region of static CSMA policies is then
given as follows.

Definition 5 (Achievable Rate Region):The achievable
rate region of static CSMA policiesis the set of arrival rate
vectorsλ = {λr}r∈R for which there exists a static CSMA
policy that stabilizes the network. ⋄

In the following we characterize the service rates of a
given static CSMA policy, as well as the achievable rate
region of static CSMA policies.

III. S INGLE-HOP NETWORKS

Before we present our analysis of static CSMA policies
for general networks, we review in this section well-known
results on CSMA schedulers for networks whereN nodes
share a single communication channel [2]. In this case, an
attempt by a node to capture the channel after an idle period
is only successful if it does not overlap with an attempt by



any other node. A static CSMA policy is then given by the
vector p = (p1, ..., pN) ∈ [0,1]N where pn is the probability
that noden makes an attempt to capture the channel. Under a
given static CSMA policyp, the service rateTn(p) of noden
is the fraction time noden successfully captures the channel
underp. The network service rateT(p) is given by

T(p) =
N

∑
n=1

Tn(p).

For a given static CSMA scheduling policyp =
(p1, ..., pN), let G(p) = ∑N

n=1 pn denote the rate (also called
theoffered load) with which nodes make attempts to capture
the channel at the end of an idle period. For a given static
CSMA policyp, the following approximation for the network
service rate is well-known (see for example [2]),

τ(G(p)) =
G(p)e−G(p)

β +1−e−G(p)
. (3)

For β > 0, one can show that (see for example [2])

τ(G) < 1, G≥ 0, (4)

and forG+(β ) =
√

2β , β > 0, we have that

lim
β↓0

τ(G+(β )) = 1. (5)

Using Eq. (3), the service rateτn(p) of noden under a
given static CSMA policyp can be approximated by

τn(p) =
pne−G(p)

1+ β −e−G(p)
, n = 1, ...,N. (6)

In the above expression,pn is the probability that noden
tries to capture the channel after an idle period ande−G(p)

characterizes the probability that this attempt is successful,
i.e. the attempt does not collide with an attempt by any other
node.

Similarly, the fraction of time that the channel is idle can
be approximated by

ρ(p) = ρ(G(p)) =
β

β +1−e−G(p)
, (7)

where we have that limβ↓0ρ(G+(β )) = 0.
Eq. (3)-(7) are obtained by approximating the number of

nodes that make an attempt to capture the channel after an
idle period by a Poisson distribution with meanG(p). This
approximation is asymptotically accurate for large networks
where each node makes an the attempt to capture the channel
with a small probability. More precisely, consider a sequence
of networks withN nodes and let{p(N)}N≥1, p(N) ∈ [0,1]N,
be a sequence of CSMA policies such that

N

∑
n=1

p(N)
n = G, N ≥ 1

for some constantG ≥ 0, and limN→∞ p(N)
n = 0, ∀n. Under

the above scaling, the offered load stays constant, and equal
to G, as the number of nodesN increases.

Let T(p(N)) be the network service rate for the network
with N nodes, and let̄ρ(p(N)) be the fraction of time that the

channel is idle. For the above scaling, it is then well-known
(see for example [15]) that the number of nodes that make
an attempt to capture the channel after an idle period weakly
converges to a Poisson random variable with meanG. Using
this result, it then follows that

lim
N→∞

|T(p(N))− τ(G)| = 0 and lim
N→∞

|ρ̄(p(N))−ρ(G)|= 0,

i.e. the approximations given by Eq. (3) and Eq. (7) are
asymptotically accurate.

IV. CSMA FIXED POINT ANALYSIS

In this section, we approximate the service rates of a static
CSMA policy p for a general network using a fixed point
analysis. In the Section V, we show that this approximation
is asymptotically accurate for large networks with a small
sensing time.

A. Fixed Point Formulation

Given a static CSMA policyp, we approximate the
fraction of time ρi(p) that nodei is idle underp by the
following fixed point equation,

ρi(p) =
β

(β +1−e−Gi(p))
, i = 1, ...,N, (8)

whereGi(p) is given by

Gi(p) = ∑
j∈Ni

[

p(i, j) + p( j ,i)

]

ρ j(p), i = 1, ...,N. (9)

Let G(p) = (G1(p), · · · ,GN(p)). We refer to Eq. (8)
as the CSMA fixed point equationand to ρ(p) =
(ρ1(p), · · · ,ρN(p)), as well asG(p) = (G1(p), ...,GN(p)), as
the CSMA fixed point.

The intuition behind the CSMA fixed point can be ex-
plained as follows. Suppose that the fraction of time that
node i is idle under the static CSMA policyp is equal to
ρi(p), and suppose that the times when nodei is idle are
independent of the processes at all other nodes. If nodei has
been idle forβ time units then the probability that nodei
makes an attempt to capture the link(i, j), j ∈ Ni , is equal
to p(i, j)ρ j(p), and the probability that nodej ∈ Ni makes
an attempt to capture the link( j, i) is p( j ,i)ρ j(p). Hence, the
rate at which nodei receives or makes attempts to capture a
link after it has been idle forβ time units is given by Eq. (9).
Using Eq. (7) of Section III, the fraction of time that nodei
is idle underp can be approximated by Eq. (8).

Let
GR

i (p) = ∑
j∈Ni

p( j ,i)ρ j(p).

Using the above CSMA fixed point formulation, we approx-
imate the service rate for link(i, j) under a static CSMA
policy p by

τ(i, j)(p) =
p(i, j)ρ j(p)e−(GR

i (p)+Gj (p))

1+ β −e−Gi(p)
(10)

Note that the above equation is similar to Eq. (6) where
p(i, j)ρ j(p) captures the probability that nodei makes an
attempt to capture link(i, j) if it has been idle forβ time



units, and exp
[

−(GR
i (p)+G j(p))

]

is the probability that this
attempt is successful, i.e. the attempt does not overlap with
an attempt by any other node to capture a link that has an
endpoint in common with link(i, j). Note that

τ(i, j)(p) ≥
p(i, j)βe−(Gi(p)+Gj (p))

(

1+ β −e−Gi(p)
)

(

1+ β −e−Gj(p)
) (11)

asGi(p) ≥ GR
i (p).

In the next subsection we show that there always exists a
unique CSMA fixed point, and hence the CSMA fixed point
approximation (8) is well-defined.

B. Existence of a Unique Fixed Point

The next proposition shows the existence of a CSMA fixed
point for all p.

Lemma 1:For every static CSMA policyp, there exists a
CSMA fixed pointρ(p).
The proof for Lemma 1 uses the continuity properties of the
fixed point equation given Eq. (8), and is a straightforward
application of the Brouwer’s fixed point theorem.

The next lemma states that for the CSMA policyp̄ with
p̄(i, j) = 0, (i, j) ∈L , there exists a single CSMA fixed point.

Lemma 2:Consider the CSMA policȳp with p̄(i, j) = 0,
(i, j) ∈L . Then for anyβ > 0 theuniqueCSMA fixed point
ρ(p̄) is given byρi(p̄) = 1 andGi(p̄) = 0, for i = 1, ...,N.
Thes result of Lemma 2 is obtained by applying
Eq. (8) and (9) to the CSMA policȳp with p̄(i, j) = 0.

We next study the continuity properties ofG(p). To do
this, we consider the mapping

fi(G,p) = Gi − ∑
j∈Ni

β
[

p(i, j) + p( j ,i)

]

(

1+ β −e−Gj
) , i = 1, . . . ,N. (12)

Note that the mappingf (G,p) = [ fi(G,p)]i=1,...,N is contin-
uous and we have thatf (G(p),p) = 0. We then obtain the
following result.

Proposition 1: The correspondenceG : [0,1]L 7→ R
N
+ is

upper-semicontinuous; i.e.,G(p) has a closed graph.
Using the mappingf (G,p) = [ fi(G,p)]i=1,...,N given by

Eq. (12), we obtain the next proposition which establishes
the local uniqueness of the correspondenceG(p).

Proposition 2: For all static CSMA policiesp̄ and all
CSMA fixed pointsḠ ∈ G(p̄), there exist neighbourhoods
U ⊂R

N
+ of Ḡ andV ⊂ [0,1]L of p̄ such that for eachp∈V the

equationf (G,p) = 0 has a unique solutionG∈U . Moreover,
this solution can be given by a functionG = φ(p) whereφ
is continuously differentiable onV.

Proposition 2 can be proved using the implicit function
theorem [1]. Combining Lemma 2 with Propositions 1 and
2, we obtain the following result.

Theorem 1:For every static CSMA policyp, there exists
a unique CSMA fixed pointρ(p).

The uniqueness result of Theorem 1 combined with the
upper-semicontinuity of Proposition 1 directly implies the
continuity of G(p), and hence ofρ(p). This is stated in the
following corollary.

Corollary 1: The fixed pointρ(p) is continuous inp.

V. L ARGE NETWORKS WITH A SMALL SENSING TIME

In this section, we study the behavior of the CSMA fixed
point under the limiting regime where the number of nodes
N increases to infinity and the sensing timeβ decreases to
zero. For this case, we show that the CSMA fixed point
description of the operating point is asymptotically accurate.
This result states that for large networks with a small sensing
time β , the CSMA fixed point approximates well the actual
performance of the static CSMA policy.

Consider a sequence of networks for which the number
of nodesN increases to infinity. LetL (N) be the set of all
links in the network withN nodes, and letN (N)

i be the set
of neighbours of nodei. As the network size increases, we
assume that the sensing time decreases as follows.

Assumption 1:The sensing timeβ (N) for the network with
N nodes given by

β (N) =
1

K(N)

whereK(N) is a positive integer such that

lim
N→∞

N

K(N)
= 0.

For the above scaling, consider a sequence of static CSMA
policies{p(N)}N≥1, wherep(N) defines a static CSMA poli-
cies for the network withN nodes. We make the following
assumptions for the sequence{p(N)}N≥1.

Assumption 2:For the sequences{p(N)}N≥1 and
{β (N)}N≥1 the following is true.

(a) For p(N)
max= max

(i, j)∈L (N)
p(N)

(i, j) we have that

lim
N→∞

p(N)
max

β (N)
= 0.

(b) There exists a constantχ and an integerN0 such that
for all N ≥ N0 we have that

∑
j∈N

(N)
i

[p(N)
(i, j) + p(N)

( j ,i)] ≤ χβ (N), i = 1, ...,N.

Condition (a) implies that the attempt probability of each
link becomes small asN becomes large, and that the sensing
delay does not decrease too fast asN increases. Condition
(b) implies that the total rate with which links that originate
or end at a given nodei are captured, is upper-bounded by
χ .

For the above scaling, let ρ (N)(p(N)) =

(ρ (N)
1 (p(N)), ...,ρ (N)

N (p(N))) be the CSMA fixed point
for the network of sizeN, and letρ̄ (N)

i (p(N)) be the actual
fraction of time that nodei is idle. Furthermore, let

δ (N)
ρ = max

i=1,...,N
|ρ (N)

i (p(N))− ρ̄ (N)
i (p(N))|

be the maximum approximation error of the CSMA fixed
point. Similarly, let

δ (N)
τ = max

(i, j)∈L (N)

∣

∣

∣

∣

∣

∣

1−
τ(N)
(i, j)(p

(N))

T(N)
(i, j)(p

(N))

∣

∣

∣

∣

∣

∣



be the maximum relative approximation error of the link
service rates under the CSMA fixed point. We following
result states that in the limit asN approaches infinity the
CSMA fixed point approximation becomes asymptotically
accurate.

Proposition 3: For the above defined scaling we have that

lim
N→∞

δ (N)
ρ = 0, and lim

N→∞
δ (N)

τ = 0.

To prove the above Proposition 3, we make a connection
with the Erlang fixed point for loss networks [6]. Specifically,
we show that for the above scaling the CSMA fixed point is
asymptotically identical to the Erlang fixed point of a loss
network with two-hop routes where each link can support
at most one connection, and use the analysis of Hajek and
Krishna in [4].

VI. A CHIEVABLE RATE REGION

In this section we use the CSMA fixed point approxi-
mation to characterize the achievable rate region of static
CSMA schedulers. In Section VII we will show that this
characterization is asymptotically accurate for large networks
with a small sensing time.

Consider a wireless network with sensing timeβ > 0 as
described in Section II. Note thatR denotes the set of routes
in the network. Also, recall the definitions ofλ and Λi ,
i ∈ N , as given in (1) and (2), respectively. Using these
definitions, let the setΓ(β ) be given by

Γ(β )=
{

λ = {λr}r∈R |Λi < τ(G+(β ))e−(G+(β )), i = 1, ...,N
}

,

whereG+(β ) =
√

2β (see Section III). The next proposition
states that under the CSMA fixed point approximation the
achievable rate region of static CSMA policies is equal to
Γ(β ).

Proposition 4: Given β > 0, for every λ ∈ Γ(β ) there
exists a static CSMA policyp such thatλ(i, j) < τ(i, j)(p),
(i, j) ∈ L .

Our proof for Proposition 4 is constructive in the sense
that given a rate vectorλ ∈ Γ(β ), we derive a static CSMA
policy p such thatλ(i, j) < τ(i, j)(p), (i, j)∈L . It is also shown
that the resulting policy satisfies Assumption 2, and hence is
feasible.

Using the results of Section III, we have that

lim
β↓0

Γ(β ) = {λ = {λr}r∈R |Λi < 1 i = 1, ...,N} .

Note that any rate vectorλ for which there exists a nodei
with Λi ≥ 1 cannot be stabilized, as the service rate at each
node is upper-bounded by 1. Hence, the above result suggests
that for network with a small sensing time the achievable
rate region of static CSMA policies is equal to the capacity
region. In the next section we show that this result is true for
the limiting regime of large networks with a small sensing
time.

VII. A SYMPTOTIC OPTIMALITY OF CSMA

In this section we consider the case of large networks with
a small sensing time under the many flow asymptotic.

A. Many Flow Asymptotic

Recall that in Section V we introduced a sequence of
networks for which the number of nodesN increases to
infinity, and letL (N) be the set of all links in the network
with N nodes, andN (N)

i be the set of neighbors of nodei
in the network withN nodes. In this section, we introduce
a similar scaling for the set of flows in addition to those.
In particular, we letR(N) be the set of given routes for the
network with N nodes and letλ (N) = {λ (N)

r }r∈R(N) be the
mean arrival rate vector. For the mean rate vectorλ (N), let

λ (N)
(i, j) = ∑

r∈R(N):(i, j)∈r

λ (N)
r , (i, j) ∈ L

(N),

be the total mean packet arrival rate over all routesr ∈R(N)

that traverse link(i, j), and let

Λ(N)
i = ∑

j∈N
(N)

i

[

λ (N)
(i, j) + λ (N)

( j ,i)

]

, i = 1, ...,N,

be the total mean packet arrival rate over all routesr ∈R(N)

that traverse nodei.
Definition 6 (Many Flow Asymptotic):Given a sequence

of networks{L (N),R(N)}N≥1, we defineD as the set of
all rate vector sequences{λ (N)}N≥1 for which the following
properties hold.

(a) There exists a constant̄Λ and an integer̄N such that
for all N ≥ N̄ we have thatΛ(N)

i ≤ Λ̄, i = 1, ..,N.
(b) For everyε > 0, there exists an integerN0 such that

for N ≥ N0 we have thatλ (N)
(i, j) < ε, (i, j) ∈ L (N). ⋄

A sequence{λ (N)}N≥1 ∈ D defines the limiting regime
where (a) the number of nodes and routes of the network
increases, (b) the arrival on each route decreases, and (c)
for each node we have that the total rate over all routes
that pass through the node stays bounded. The definition is
closely related to the definition oflarge networks with diverse
routing that has been used in the context of the Erlang fixed
point approximation [6], [4].

We define the asymptotic achievable rate region of static
CSMA policies for large networks as follows.

Definition 7: The asymptotic achievable rate region of
static CSMA policies under the many flow limitis the set of
sequences{λ (N)}N≥1 ∈D for which there exists a sequence
of static CSMA scheduling policies{p(N)}N≥1 such that

liminf
N→∞

(

∆(N)
min−1

)

> 0, n≥ 1.

where∆(N)
min = min(i, j)∈L (N) T(N)

(i, j)/λ (N)
(i, j). ⋄

The above definition implies that every rate sequence
{λ (N)}N≥1 in the asymptotic rate region can eventually be
stabilized by a static CSMA policy.

Note that a sequence{λ (N)}N≥1 ∈D for which there exists
a nodei with

lim
N→∞

Λ(N)
i ≥ 1

can not be stabilized as service rate at each node is bounded
by 1. Hence, the achievable region under the many flow limit



is contained in the set

C =
{

{λ (N)}N≥1 ∈ D | ∃Λ̄ < 1 and an integer̄N such that

∀N ≥ N̄ we haveΛ(N)
i ≤ Λ̄, i = 1, ...,N

}

.

We refer toC as the capacity region under the many flow
limit.

B. Asymptotic Rate Region

In this subsection we characterize the asymptotic achiev-
able rate region of static CSMA policies under the many
flow limit for networks with a small sensing time, and show
that the asymptotic achievable rate region of static CSMA
policies is equal to capacity regionC .

Consider the same scaling of the sensing time as in
Section V as described in Assumption 1. We have the
following result.

Proposition 5: Under the scalingβ (N), for every sequence
λ (N) ∈ C there exists a sequence of static CSMA policies
{p(N)}N≥1 that asymptotically stabilizes the network, i.e.

liminf
N→∞

(

∆(N)
min−1

)

> 0, n≥ 1.

where

∆(N)
min = min

(i, j)∈L (N)

T(N)
(i, j)(p

(N))

λ (N)
(i, j)

.

We provide a sketch of the proof for Proposition 5. By
definition, for each sequence{λ (N)}N≥1 ∈ C there exists a
scalarΛ̄ < 1 and an integer̄N such that forN ≥ N̄ we have

Λ(N)
i ≤ Λ̄, i = 1, ...,N.

As limN→∞ β (N) = 0 and limβ↓0τ(G+(β )) = 1 (see Eq. (5)),
there exists a integerN0 and a constantε1 such that for
N ≥ N0 we have that

Λ(N)
i < τ(G+(β (N)))e−(G+(β (N)))(1− ε1), i = 1, ...,N.

Using the proof of Proposition 4, we can then construct a
sequence of static CSMA policies{p(N)}N≥1 such that for
N ≥ N0 we have

λ (N)
(i, j) < τ(i, j)(p

(N))(1− ε2), (i, j) ∈ L
(N)

where ε2 > 0 is a constant that does not depend onN.
Using Proposition 3, the approximationτ(i, j)(p(N)) of the
service rate of link(i, j) is then asymptotically accurate as
N increases, and the result follows.

VIII. C ONCLUSIONS

In this paper we introduced the CSMA fixed point ap-
proximation to study static CSMA schedulers in wireless
networks with primary interference, and showed that the
approximation is asymptotically accurate for large networks
with a small sensing time. There are three important issues
that are not addressed in this paper, but are being investigated
in our ongoing work. First, while we showed that the
CSMA fixed point approximation is asymptotically accurate,
we did not investigate “how large” a network has to be

in order to obtain a good approximation. We carried out
several numerical case studies which suggest that the CSMA
fixed point approximation is already remarkably accurate for
networks where each nodes has more than 5-10 neighbours.
Second, the construction of a static CSMA scheduler re-
quires the a priori-knowledge of the arrival rate vector. We
are investigating an approach using a queue-length based
scheduler similar to [9] in order to obtain CSMA schedulers
that are able to dynamically adapt to any rate vector in the
achievable rate region. Third, the current analysis is restricted
to wireless networks with primary interference, and it is
an open problem to extend the analysis to more general
interference models.
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