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Abstract—We propose a novel search mechanism for unstruc-
tured p2p networks, and show that it is both scalable, i.e., it leads
to a bounded query traffic load per peer as the peer population
grows, and reliable, i.e., it successfully locates all files that are
(sufficiently often) brought into the system. To the best of our
knowledge, this is the first time that a search mechanism for
unstructured p2p networks has been shown to be both scalable
and reliable. We provide both a formal analysis and a numerical
case study to illustrate this result. Our analysis is based on a
random graph model for the overlay graph topology and uses
a mean-field approximation to characterize the evolution of how
files are replicated in the network.

I. INTRODUCTION

In this paper, we consider an unstructured peer-to-peer (p2p)
network, whose purpose is to allow peers to share their files.
A peer interested in a file propagates a query over the p2p
network. If the query reaches a peer that has the file, this peer
notifies the one that issued the query and lets it download a
copy. Finally, a peer that downloads such a copy shares it for
the remainder of the time it stays in the system.

Due to their inherent simplicity, unstructured peer-to-peer
systems have many attractive features: they require very little
maintenance, are very efficient under high churn and, by the
arbitrary nature of their topology, are also highly resilient
under peer failures.

However, searching (i.e., propagating query messages) in
unstructured systems can generate high traffic overheads,
thereby rendering such systems unscalable. For example, it is
well-known that the naı̈ve flooding mechanism used in early
Gnutella implementations does not scale [1]. To address this,
an extensive body of work has focused on designing search
mechanisms that reduce query traffic [2]. Random walk and
expanding ring mechanisms have attracted the most interest
because they can be easily implemented in a distributed way.
Moreover, they indeed reduce the amount of traffic incurred
by queries for files that are available in the network, i.e., are
stored by at least one peer [3]–[5].

But random walk (and expanding ring) search mechanisms
still generate a high query traffic overhead when the requested
file is not stored by any peer. We show this formally in
Section VI, as well as through simulations in Section VII.
Unfortunately, searches for unavailable files are very common
in practice (see, e.g., the measurement study in [6]). As a re-
sult, unstructured p2p networks using such search mechanisms

do not scale, precisely because of the high traffic overhead
generated by queries for files not in the system.

One approach used in practice to reduce the amount of
query traffic generated by searches for unavailable files is to
set the query time-to-live (TTL) to a small value (see also our
discussion in Sections VI-A and VII-B). However, queries with
a small TTL can only reach a small fraction of the peers in
the system. Consequently, it has been observed that a search
is unlikely to succeed, even if the requested file is actually
available in the network [6], [7]. Indeed, query success rates
in actual systems are typically around 10-20% [8].

The reason why a small TTL leads to such a low success
rate is that it limits the search radius of both searches for files
that are in the system and files that are not. This suggests
that a more efficient approach would be to only limit queries
for unavailable files without affecting queries for files in the
system. This would make the system scalable (by eliminating
long, unsuccessful searches) without affecting the success rate
of queries for available files.

Therefore, a fundamental question in the design of search
mechanisms for unstructured p2p networks is whether this can
be done. I.e., is it possible to limit searches for unavailable
files without reducing the query success rate for files that are
in the system? The aim of this paper is to study this issue.
Surprisingly, we find is that this can indeed be done.

The following provides some intuition as to why this is true.
If peers knew a priori whether a file is in the system or not,
limiting searches for unavailable files would be trivial: peers
simply need not search for such files, as they have no chance
of finding them. Of course, it is not clear how to determine
whether a file is available before searching for it. On the other
hand, after searching for a file, a peer has more information
about it than before: a failed search suggests that it is likely
to not be in the system. In this sense, the outcome of a search
can help in determining whether a file is available or not.

This observation leads us to consider the following mecha-
nism. If a peer fails to locate a file, it treats the failed query as
“evidence of absence” of the file. It then stores this information
and shares it with other peers, for as long as it stays in the
system. That is, whenever it receives a query for this same file,
it stops the search and informs the peer that issued the query
that the file is (likely to be) unavailable. The peer that receives
this information treats it again as “evidence of absence” of the



file, and shares this information with other peers in the same
manner. Basically, the system treats the absence of evidence
(the failure to locate the file) as evidence of absence (evidence
that the file is not available).

The main contribution of this paper is to show that the
above mechanism indeed succeeds at stopping searches for
files that are not in the system early on, without jeopardizing
the query success rate. More precisely, we show that the
proposed search mechanism is (a) scalable, i.e., it keeps the
query traffic load generated by searches for any file bounded at
each peer, and (b) reliable, i.e., it is able to locate all files that
are brought into the system sufficiently often. We obtain this
result both through a formal analysis, on a mathematical model
of unstructured p2p networks that we introduce in Section IV,
as well as by numerical results, presented in Section VII.

In order to keep the discussion as concrete as possible,
we focus on the application of the above mechanism to un-
structured p2p file sharing systems. We note however that our
approach can be applied to searching over other unstructured
systems as well, such as a decentralized BitTorrent tracker [9]
or a universal swarm.

II. RELATED WORK

There exists an extensive literature on search mechanisms
for unstructured p2p systems (see, e.g., the survey by Risson
and Moors [2]). Roughly, the proposed search mechanisms can
be classified into two categories: (a) search mechanisms based
on passive replication, whereby a file is replicated only at peers
that request and download it, and (b) search mechanisms based
on proactive replication, whereby peers proactively replicate
their files at peers that have not requested them.

a) Search Mechanisms using Passive Replication: Most
search mechanisms with passive replication are based on
a random walk or an expanding ring search mechanism.
The random walk search mechanism was first proposed and
analyzed by Lv et al. [3]. In their analysis, Lv et al. [3]
studied the performance of random walk searches for files that
are available in the system using a model based on uniform
sampling. This model significantly simplifies the analysis of a
random walk, as it allows to ignore the impact of the network
topology on the amount of query traffic generated. Gkantsidis
et al. relate the cover time of a random walk to the network’s
relaxation time [10] and, as such, take the network topology
into account. Our analysis follows a similar approach, by using
well-known results on the relaxation time appearing in the
monograph by Aldous and Fill [11].

Though the random walk performs very well in terms of
incurred query traffic, it can lead to poor performance in terms
of query response times (delay). Several variants of the random
walk have been proposed to address this [3], [12], [13].

The expanding ring search mechanism can also significantly
improve the delay performance, without increasing the query
traffic considerably [3]. Our results can be extended to other
search mechanisms, that fare better in terms of delay, such
as the expanding ring; however, the analysis becomes more
involved and, as such, is beyond the scope of this paper.

b) Search Mechanisms using Proactive Replication: One
approach to reduce query traffic in unstructured p2p systems
is to proactively replicate files in the network [13]–[17].
This increases the availability of a file, as peers that neither
requested it or brought it into the system may have a copy.
Increasing the number of replicas of a file decreases the traffic
generated by queries for the file, so there is a fundamental
trade-off between query traffic and replication traffic [13],
[16]. Proactive replication under constraints on the peers’
storage capacity has been studied by Cohen and Shenker [14]
and Tewari and Kleinrock [5].

As proactive replication increases the availability of a file,
search mechanisms with proactive replication generate less
query traffic compared with mechanisms that use passive
replication. However, as such mechanisms can only replicate
files that are in the system, the traffic generated by queries for
unavailable files is still high.

c) Dealing with Absent Files: The search mechanisms
based on passive and proactive replication have been shown
to work well for files available in the system, but they can lead
to a large amount of query traffic for unavailable files. As a
result, reducing the query traffic generated by unavailable files
remains a fundamental open question.

One proposed approach to reduce the query traffic generated
by unavailable files, and to the best of our knowledge, the only
approach that has been presented in the literature, is to use a
hybrid architecture [6], [7], [18]–[20], consisting both of an
unstructured and a structured p2p network. Queries for files
that are very likely to be in the system are served by the
unstructured p2p network, whereas queries for rare files are
handled by the structured p2p network.

A challenge posed by the above approach is how to obtain
the information on file availability that is needed to decide
whether a query should be served by the unstructured or
the structured network. In [7], [18], Loo et al. propose that
each peer estimates file availability by monitoring its local
query traffic for popular terms and inferring from them which
files are widely available in the system. This approach has a
potential pitfall, as files which are often requested may not
necessarily be widely replicated (see, e.g., our discussion in
Section III). Zaharia et al. propose collecting global statistics
on the availability of files through a gossiping mechanism [20].
Note that obtaining statistics through gossiping introduces an
additional traffic overhead.

Our approach, namely, using “absence of evidence” as
“evidence of absense”, is simpler than the above as (a) it does
not require an additional infrastructure for serving queries for
rare files and (b) it does not require to proactively collect and
maintain information about file availability.

III. PROPERTIES OF UNSTRUCTURED P2P NETWORKS

In this section, we provide a summary of some key prop-
erties of unstructured p2p networks and discuss how they are
captured in our model. A complete description of our model
can be found in the next section (Section IV).



A. System Size

An important characteristic of unstructured p2p networks is
that they can grow significantly over time [21], [22], reaching
population sizes in the order of millions [21]. This growth
occurs over long-term periods of time, such as months or
years [21], [22]. Over shorter periods of time, such a days
[23] or weeks [24], [25], the population size is relatively stable,
tending to oscillate around a fixed operating point.

In our analysis, we consider p2p networks for which the
population size is constant and equal to n. More precisely,
we assume that, whenever a peer departs, it is immediately
replaced by a new peer, keeping thus the system size fixed.
By fixing n, we characterize system behavior over short-term
periods of time. To capture long-term growth, we consider a
sequence of unstructured p2p networks of increasing size n.

Note that assuming that the number of peers in the system is
constant and equal to n (over a short-term period) is a simpli-
fication. In our numerical study, appearing in Section VII, we
relax this assumption and let the system size oscillate around
an operating point n.

B. File Popularity and Availability

Two other important aspects of unstructured p2p networks
are file “popularity”, i.e., the fraction of new peers that request
the file when they join the system, and file “availability”,
i.e. the fraction of peers in the network that have a copy of
the file. The following two observations were made on actual
unstructured p2p systems:

1) The popularity and availability of a file varies very little
within short time periods such as a day or a week [26],
[27], though both can change significantly over longer
periods of time [26].

2) There is almost no correlation between the popularity
and the availability of a file: it is quite common that a file
is very popular (i.e., a large fraction of new peers request
this file) but hardly available (i.e., only a small fraction
of peers has a copy of the file), and vice versa [27].

The difference between file popularity and availability can
be modeled through a discrepancy between the number of
peers that “publish” a file, i.e., bring it in the system with the
purpose of sharing it, and the number of peers that request it.
One reason why a very popular file may be published by only
a small fraction of peers is “free-riding”: peers may not share
content they downloaded in the past. Note that, for a file to
be available, it has to be brought into the system (published)
by at least one peer. If only a small fraction of peers bring
a given file into the system when they join, then queries for
this file are likely to fail, and only a small fraction of peers
will be able to locate and download the file. As a result, the
availability of this file will be small, even if it is very popular
and a large fraction of peers request it.

To capture the above aspect of unstructured p2p systems in
our analysis, we associate two quantities with each file: the
publishing probability q and the request probability p. The
request probability models the file popularity, i.e., the fraction

of new peers that request the file. The publishing probability
captures the fraction of peers that bring the file into the system
when they arrive. We treat all arriving users as new users; in
reality, users that publish the file can in fact be returning users,
that downloaded the file at some time in the past. In this sense,
q can be interpreted as the likelihood that a peer downloaded
the file in the past and is willing to share it.

We allow probabilities p and q to be functions of the system
size n, i.e., we allow p and q to change as the system grows
(over a longer time period). We denote by p(n) and q(n) the
request and publishing probability of a file for the system of
size n. Note that, in a system of size n, the expected number
of peers that requested the file upon their arrival is equal to
np(n), and the expected number of peers that brought the
file into the system is nq(n). If, e.g., q(n) = 0.01, then
1% of all peers publish the file, in expectation. The expected
number of peers that publish file is thus 0.01n and increases
linearly as the system size grows. If q(n) = c/n, where c a
constant, only c peers publish the file, in expectation. In the
case where q(n) decays faster than 1/n, e.g., q(n) = 1/n2,
the expected number of peers that publish the file decreases
as the system size grows, i.e., fewer and fewer peers publish
it. Similar observations can be made, w.r.t. p(n), about the
expected number of peers that request the file.

C. Overlay Network

When new peers join an unstructured p2p network, they
typically connect to a random subset of existing peers [21].
As a result, the topology of the overlay graph, i.e., the network
formed by the peers in the system, is highly dynamic.

Another characteristic of overlay graphs in unstructured
p2p networks is that the link degrees of peers tend to be
concentrated around a single value [21]. For example, it has
been observed that link degrees in unstructured p2p networks
based on the Gnutella protocol tend to be concentrated around
32 connections, with no more than 6% of peers exceeding
this number [21]. This is because (a) implementations of
unstructured p2p networks typically set a limit to the number
of connections each peer maintains (to limit the overhead) and
(b) peers actively try to maintain a number of connections as
close to this limit as possible, by establishing new connections
when old ones are dropped.

For our analysis, we assume that each peer has the same
degree d and model the overlay graph as a connected d-regular
graph [28], where d is even. Furthermore, we assume that
the overlay graph belongs to a particular class of d-regular
graphs, namely the class of Hn,d graphs (see for example
[28], [29]). There are two reasons for making this assumption.
First, practical protocols for peers joining an unstructured p2p
network [10], [30] lead to a Hn,d graph (see our discussion
in Section VII). Second, with high probability, a random d-
regular graph of size n is a Hn,d graph [28]. In this sense, the
above model describes the behavior under general d-regular
graphs (with high probability).

The class Hn,d is as follows. Each graph in the class consists
of d/2 Hamilton cycles, i.e., cycles of length n that contain all



peers [28]. These cycles are superimposed, and the result is the
d-regular graph. The class Hn,d contains all graphs that can be
constructed this way (i.e., all graphs that can be decomposed
into d/2 Hamilton cycles).

IV. MODEL

We will use the following model for our analysis.

A. Network Model

To study the scalability of the proposed search mechanism,
we consider a sequence of unstructured peer-to-peer networks
indexed by n, n ≥ 1, where n is the number of peers connected
to the network. More precisely, we assume that peers join and
leave the system as described below.

Initially (at time 0), the network that consists of n peers.
Each peer stays in the system for an exponentially distributed
time (lifetime) with mean 1/μ, independent of the lifetimes
of all other peers in the system. When a peer departs, it
is immediately replaced by a new peer that again has an
exponentially distributed lifetime with mean 1/μ, independent
of the lifetimes of all other peers that are, or have been, in
the system. Note that under this process the total number of
peers in the system is at all times equal to n.

The overlay graph is dynamic: we assume that incoming
and departing peers use a protocol (as, e.g., in [30]) to join
and leave the network so that, at any point in time, the network
is an Hn,d graph.

B. Request and Publishing Probabilities

We assume that peers may issue queries for M(n) distinct
files, that may or may not be present in the system. A file
j, j = 1, . . . , M(n) is requested by an incoming peer with
a probability pj(n), and brought into system by a new peer
with a probability qj(n). We call pj the request probability
of file j. The expected number of queries an incoming peer
issues and the expected number of files it brings is given by∑M(n)

i=1 pi(n) and
∑M(n)

i=1 qi(n), respectively.
Without loss of generality, we focus in our analysis on a

single file. In particular, we characterize the query traffic load
generated by queries for a single file j. The total traffic load
generated by all M(n) types of queries can be obtained by
summing the individual loads generated per file, as discussed
in Section VIII. We therefore omit the index in our analysis
and denote the request and the publishing probabilities by p(n)
and q(n), respectively.

For simplicity, we assume that all files are requested by
a peer immediately when it enters the system. However, our
analysis and our results can be extended to the case where
peers issue a query for a file at an epoch uniformly distributed
over a peer’s lifetime (see [31]).

C. Search Mechanism

To define the precise operation of our search mechanism,
we use the following notation. For a given file, we distinguish
among three different types of peers: positive peers, which are
peers that have a copy of the file, negative peers, which are

peers that believe that the file is not in the system, and null
peers, which are peers that neither have the file nor believe it is
not in the system. Peers that publish the file, i.e., that already
have a copy of the file when they enter the network, are always
positive. Peers that request the file can become either positive
or negative, depending on the outcome of the search. Finally,
peers indifferent to the file, that neither request it or bring it
in the system, are null.

The search mechanism then works as follows. In order
to locate a file, peers propagate a query over the overlay
network using a random walk mechanism with TTL. That is,
a peer issuing a query (the source peer) chooses one of its
d neighbors in the overlay network at random and forwards
a query packet to it. Each query contains an expiration time
field that is initialized to a predefined value TTL(n) = Θ(n)
by the source peer (i.e., the TTL is proportional to the size of
the p2p network). When a query reaches a positive peer, i.e.,
a peer that has a copy of the file, the positive peer responds to
the source peer by allowing it to download a copy of the file,
thus converting it to a positive peer. When a query reaches
a negative peer, the negative peer responds by informing the
source peer that the file is (likely) not in the system, thus
converting it to a negative peer. The query propagation is
thus terminated when the query reaches either a positive or
a negative peer. When a query reaches a null peer, the null
peer first reduces the expiration time by one; if the resulting
expiration time is larger than 0, then the null peer continues
to forward the query by choosing one of its d neighbors at
random, and sending the query to it. On the other hand, if the
expiration time is equal to 0, then the null peer terminates the
query and informs the source peer. Such a query is considered
failed, and the source peer becomes negative.

Note that the additional storage overhead introduced by
this mechanism is minimal. In particular, a peer can become
negative only if it first requests the file. In other words, the only
peers required by the above mechanism to store the “evidence”
of a file’s absence are the ones that were willing to store and
share the entire file in the first place.

We require that the TTL value grows proportionally to the
system size n, i.e., TTL(n) = Θ(n), but not that it is exactly
equal to n. The peer issuing the query thus merely needs
to have an estimate of the system size. There are known
distributed algorithms for obtaining such an estimate at a small
overhead (see, e.g., [32]). Moreover, such algorithms can be
executed infrequently (e.g., once a day), as the system size
grows slowly.

For our analysis, we assume that (a) each transmission of
a query packet is exponentially distributed with mean δ time
units, (b) the network topology does not change during a query
propagation, and (c) at the start of each query propagation the
network topology is independent from the network topology
at previous searches, and chosen uniformly at random from
the set of all Hn,d graphs [29].

The assumption that the network topology does not change
during the query propagation simplifies the analysis; we re-
lax this assumption in our numerical study in Section VII,



validating our results even when the topology changes while
queries are propagated. Similarly, the assumption that the
overlay graph is independent between consecutive searches is
unrealistic. It introduces more “randomness” into the overlay
graph topology than there exists in a real system: as arrivals
and departures affect the network only “locally”, overlay
topologies between searches might overlap. Again, we relax
this assumption in our numerical study, validating our results
even when the topology changes only locally.

D. Performance Metrics

In our analysis, we characterize the performance of the
proposed search mechanism as a function of the network size
n. In particular, for a given a file with request probability
p(n) and publishing probability q(n), we characterize the
performance in terms of the average load per peer ρ(n), which
is defined as the expected number of query packets that a peer
has to forward per unit time, and the query success rate γ(n),
which is the steady state probability that a query for this file
is successful (and the source peer becomes positive).

We say that the search mechanism is scalable if the average
load per peer ρ(n) stays bounded as the system size n
increases, i.e., we have

ρ(n) = O (1) . (1)

for all possible combinations of p(n) and q(n).
In addition, a search mechanism should be considered

reliable if queries for files that are available in the system
are successful. In the following, we will use a weaker notion
of reliability: we only require that queries for files which are
brought into the system sufficiently often are successful. More
precisely, we will say that a search mechanism is reliable if

if q(n) = ω

(
1
n

)
then lim

n→∞ γ(n) = 1, (2)

for all possible values of p(n).
Keeping in mind that nq(n) is the expected number of peers

in the system that publish the file (i.e., already had a copy of
the file when they entered the system), q(n) = ω

(
1
n

)
means

the expected number of peers in the system that publish the
file increases with n; however, this increase can be arbitrarily
slow. For example, the expected number of peers in the system
that publish the file can grow as slowly as log log(n), or even
slower. The above definition is therefore just slightly weaker
than requiring that queries are successful if there exists at least
one peer in the system that publishes the file.

V. MAIN RESULT

In our main result, we show that the search mechanism that
we proposed is both scalable and reliable. It is interesting to
contrast this result with the performance of the traditional ran-
dom walk search mechanism that uses a TTL value, but does
not share information about failed queries. In Section VI-A,
we show that this mechanism cannot be both scalable and
reliable, no matter what value is used for the TTL. More
precisely, in order to obtain a bounded average load per peer

for the traditional random walk search mechanism, the TTL
value has to be of the order O (1), i.e., it has to stay bounded
as the system size grows. However, queries under such a TTL
value will reach only a small fraction of the network; they
may succeed only if the publishing probability q is constant,
i.e., the number of peers in the network that publishes the file
grows linearly in n. In light of the above, the fact that the
proposed search mechanism with “evidence of absence” leads
to a bounded average load per peer for all possible functions
p(n) and q(n), while almost all queries succeed as long as
q(n) = ω(1/n), is quite remarkable.

We discuss the above results in more detail in Sections V-A
and V-B. Due to space constraints, we formally state our main
results in Section VI without proofs; the full analysis can be
found in our technical report [33]. The following discussion
provides some insight why these results hold.

A. Scalability

We can get some intuition into why the system is scalable by
approximating a random walk search with uniform sampling:
whenever we send a query to a new peer we pick this peer
uniformly at random from all peers in the network.

Recall that a query stops either when it reaches a positive
or negative peer, or when its expiration time becomes zero.
Assume for simplicity that TTL(n) = n. Consider a file with
request and publishing probabilities p(n) and q(n) such that

p(n) + q(n) ≥ 1
n

.

Then, at each step of the query propagation under uniform
sampling, the probability that we hit a positive or negative
peer is equal to p(n)+q(n), and the expected time to hit a
positive or negative peer is equal to

1
p(n) + q(n)

≤ n = TTL.

Therefore, each query for this file will generate a total query
traffic of (roughly) 1/(p(n) + q(n)) packets. This traffic is
generated whenever a new peer that enters the system requests
the file. Hence, the total query traffic per unit time that is
generated by searches for this file is equal to

nμp(n)
p(n) + q(n)

≤ nμ,

where nμ is the rate at which new peers arrive in our model.
Note that this is the total traffic generated per unit time in

the network, and thus the average query traffic load per peer
ρ(n) is no more than μ. As μ is also the lifetime of a peer, each
peer sees no more than 1 query packet for this file while it is
in the system. This is independent of p(n) and q(n), as long as
we have that p(n)+q(n) ≥ 1/n. This may be quite surprising
at first, but the above derivations provide some intuition why
it is true.

Similarly, for a file such that

p(n) + q(n) <
1
n

,



the expected time to hit a positive or negative peer is equal to

1
p(n) + q(n)

> TTL(n).

and the TTL will expire before a positive or negative peer is
found. As a result, the total query traffic per unit time that is
generated by searches for this file is equal to

nμp(n)TTL(n) = n2μp(n),

and the query traffic per unit time at a peer ρ(n) is equal to

ρ(n) = μp(n)n < μ,

as we assumed that the request and publishing probabilities are
such that p(n) + q(n) < 1

n . Again, the query traffic load will
be bounded and a peer sees no more than one query packet
for this file while it is in the system.

The above argument is a simplification, as a random walk
can go from a given peer only to one of its neighbors. To
address this, our proof of Theorem 3 takes also into account
the topology of the overlay graph. In particular, using bounds
from Aldous and Fill [11], we relate the relaxation time
of a graph in Hn,d to the number of query messages the
random walk generates. We then bound the relaxation time
of a graph uniformly sampled from Hn,d using the analysis
of Friedman [29]. This allows us to fully describe the message
cost per query and determine the average traffic load per peer.

B. Reliability

The main challenge in proving that the proposed mechanism
is reliable is to show that one can indeed treat the “absence of
evidence” as “evidence of absence”. Or in other words, one
has to show that, if q(n) = ω(1/n) and the file is published
sufficiently often, then false negatives (i.e., queries that failed
even though the file is actually in the system) are very rare,
and searches for such a file succeed with high probability. The
following analogy provides some insight into why this so.

Consider a bin consisting of n balls that are either blue,
red, or white. At times t = 1, 2, 3..., one ball is removed from
the bin by either Alice, Bob, or Charlie, and is immediately
replaced as follows. Let p, q ∈ (0, 1] be such that p + q ≤ 1.
Then, with probability q, Alice replaces the removed ball with
a blue ball, and with probability 1−p−q Charlie replaces it
with a white ball. Otherwise, Bob replaces the removed ball
with either a blue or red ball. The probability that Bob puts
in a red ball is equal to the ratio of the number of red balls
to the total number of red and blue balls in the bin.

Let’s now just focus on the ratio of blue to red balls in
the bin. Clearly, Charlie does not affect this ratio as she only
puts in white balls. Furthermore, Bob also does (on average)
not change the ratio of red to blue balls that are currently in
the bin. However, Alice always puts in a blue ball, and hence
changes the ratio between red and blue balls always in the
favor of blue balls. Because of this, if the process goes on
forever there will eventually only be white and blue balls in
the bin, but no red balls.

We can map the situation to our search mechanism by
letting positive peers be blue balls, negative peers be red
balls, and null peers be white balls; and let q(n) and p(n)
be the publishing and request probabilities of a given file.
With probability q(n), a new peer that enters the system will
publish the file and become a positive peer. Hence, such an
event corresponds to the action of Alice in the above analogy,
and puts a blue ball into the bin.

With probability p(n), a new peer will request the file and
become a positive or negative depending the outcome of the
search. In our technical report [33], we show that if q(n) =
ω (1/n) then searches terminate by either hitting a positive
or negative peer, with high probability. Hence, such an event
corresponds to the action of Bob, and puts a blue or red ball
in the bin. Moreover, a ball is chosen according to the current
ratio of positive and negative peers (red and blue balls) in the
system. Finally, with probability 1−p(n)−q(n) a new peer will
not request the file and become a null peer, which corresponds
to the action of Charlie.

Using the above analogy, if a sufficiently large number of
peers bring the file into the system (i.e. if q(n) = ω(1/n))
then, eventually, there will only be positive (blue balls) and
null (white balls) peers in the system, and all negative peers
(red balls) will die out. Furthermore, as for q(n) = ω(1/n)
almost all searches terminate by either hitting a positive or
a negative peer, searches must terminate by hitting a positive
peer (blue ball) and hence be successful.

Formalizing the above argument requires additional effort
to address the fact that most searches find a non-null peer
asymptotically (as n tends to infinity). To do so, in our proof
of Theorem 4, we use a mean field analysis, based on the
work of Benaı̈m and Le Boudec [34]. In particular, we show
that the stochastic process describing the number of positive
peers in the system, over the total number of non-null peers,
can be approximated by a deterministic process as n tends to
infinity, provided that q(n) = ω (1/n).

VI. ANALYSIS

In this section, we formally state our main results. We first
present results obtained for the traditional random walk search
mechanism with a TTL [3]. We then present the analysis of
the random walk mechanism that uses evidence of absence,
which was proposed in Section IV-C.

Due to space constraints, we state our theorems without
proofs; all proofs can be found in our technical report [33].

A. Random Walk with TTL.

Consider the traditional random walk search mechanism that
uses a TTL(n) value that depends on the system size n. Peers
do not share information about failed queries —a peer that
does not locate a copy simply becomes null. We then have the
following result.

Theorem 1. A random walk search with TTL has bounded
average load per peer ρ(n) = O (1) for all possible functions
p(n) and q(n) only if

TTL(n) = O (1) .



This result states that in order to bound the average load per
peer for the traditional random walk search mechanism, the
TTL value has to be of the order O (1). The intuition behind
this is that one needs TTL(n) = O (1) in order to ensure that
queries for unavailable files only generate a bounded query
traffic load at each peer (as the system grows).

However, queries under such a TTL value will not reach all
peers in the network. As a result, such queries cannot succeed
unless a large number of peers publish the file.

Theorem 2. For a random walk search with TTL(n) = O (1),
queries are guaranteed to be successful, i.e., we have

lim
n→∞ γ(n) = 1

for all possible values of p(n), only if

q(n) = Ω (1) .

The restriction that q(n) = Ω (1) implies that the expected
number of peers that publish the file has to grow linearly with
the system size n, in order to guarantee that queries succeed.
This is a strong assumption. For example, suppose that q(n) =
1/n0.1. Then, a large number of peers bring the file into the
system: the expected number of peers that publish the file
grows as n0.9, almost linearly in n. However, even though so
many peers have the file, the traditional random walk search
with constant TTL cannot locate it reliably.

The above two theorems state that the traditional random
walk search mechanism cannot be both scalable and reliable,
under the definitions we gave in Section IV-D. To achieve a
bounded query traffic load per peer, the TTL value has to be
so low that most queries fail, even for files that are widely
available (see also our discussion in Section I). We illustrate
this result in Section VII using a numerical case study.

B. Random Walk with Evidence of Absence.

In this section, we present our main result, which states
that our proposed mechanism, defined in Section IV-C, is both
scalable and reliable.

Recall that we assume that the overlay graph of the p2p
network is a d-regular graph. The next theorem states that, if
d ≥ 12, the proposed search mechanism is scalable.

Theorem 3. If the overlay graph has a degree d ≥ 12, then
the random walk search mechanism with evidence of absence
is scalable. I.e., ρ(n) = O (1), for all functions p(n) and q(n).

In other words, the average load per peer is bounded,
irrespectively of how often the file is requested or published.
In addition, the search mechanism is reliable:

Theorem 4. If the overlay graph has a degree d ≥ 12, then
the random walk search mechanism with evidence of absence
is reliable. I.e., if the file is brought into the system sufficiently
often, such that

q(n) = ω

(
1
n

)

then the file will be located reliably, i.e.,

lim
n→∞ γ(n) = 1

for all p(n).

Note that the restriction on q(n) is much weaker than the
restriction on q(n) needed in Theorem 2 for the traditional
random walk with a TTL to be reliable.

VII. NUMERICAL STUDY

In this section, we present a numerical study to illustrate
the theorems of the previous section. To do that, we relax
the modelling assumptions we made in Sections III and IV
as follows: (a) we no longer assume that the system size is
fixed, (b) we no longer assume that the overlay topologies are
independent between searches, and (c) we allow the overlay
network to change even during the propagation of queries.

A. Simulation Setup

In our simulations, new peers arrive according to a Poisson
process of rate λ. The lifetime of each peer is exponentially
distributed with mean 1/μ = 20min while the time to transmit
a query is exponentially distributed with mean δ = 20msec.
We repeated our simulations for different arrival rates λ,
between 10,000μ and 500,000μ. As a result, the average
system size n = λ/μ is scaled in each experiment from ten
thousand to half a million peers.

To connect peers during arrivals and departures, we imple-
mented the connection protocol defined by Law and Siu [30].
The graphs constructed by the Law and Siu connection
protocol are precisely the Hn,d graphs; we use d = 16
in our simulations. In particular, at any point in time, the
overlay network consists of d/2 cycles. Every peer in the
graph has degree d: for each cycle k, k = 1, . . . , d, peer
i is connected to two other peers, its predecessor predk(i)
and its successor succk(i). When a new peer i′ enters the
system, it joins each of the d/2 cycles at a random position
as follows: for each cycle k, k = 1, . . . , d/2 peer i′ picks
a node j at random and becomes its successor on the cycle
while also becoming succk(j)’s predecessor. Departures are
handled similarly: when a node i leaves, its d/2 predecessors
reconnect to the respective d/2 successors of i, maintaining
thus both a constant degree and the d cycles property in the
graph. We note that the protocol is fully distributed, and that
peers need only keep track of their immediate neighbors.

We present results for two different systems: a system in
which a traditional random walk with TTL is used, and one
in which the walk uses evidence of absence.

B. Random Walk with TTL

Scalability: When a traditional random walk is used,
queries for unavailable files can generate an unbounded traf-
fic load. Fig. 1(a) shows the traffic load with and without
evidence of absence for p(n) = 0.3, q(n) = e−n and
TTL(n) = 0.01n. In both simulations, all queries failed. In the
simple random walk the traffic load grows linearly, reaching
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Fig. 1. Traffic load and success rate of the random walk with TTL. In (a),
the traffic load generated for a file that is brought rarely in the system grows
linearly in n, while using evidence of absence reduces it to a constant. In
(b), the TTL(n) grows slower than linear; as a result, even when the file is
brought reliably in the system, most queries for it fail.
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Fig. 2. Traffic loads and success rates for files brought in the system with
publishing probabilities q(n) = 1000/n and q(n) = 10002/n2. Queries for
the files brought in the system with probability q(n) = 1000/n almost always
succeed, which is not true for q(n) = 10002/n2. In all cases however, the
traffic load per peer remains bounded as the system size grows.

0.9609sec−1 (57.6 queries per minute) when the system size
is 400,000 peers. In contrast, the traffic load when evidence
of absence used is bounded: for all sizes, it varies between
1.217E−3sec−1 and 1.218E−3sec−1 (about 4.38 queries per
hour). This happens precisely because negative peers stop
unsuccessful queries quickly.

Reliability: Decreasing the TTL (e.g., to
√

n) improves
the traffic load incurred by the simple random walk, but
does not make it constant in n —such simulations can be
found in our technical report [33]. Most importantly, choosing
a smaller TTL makes the system unreliable. We illustrate
this in Fig. 1(b), where query success rates for the simple
random walk with TTL(n) = 0.1

√
n, TTL(n) = log(n)

and TTL(n) = 4 are plotted. In all three experiments,
q(n) = ω

(
1
n

)
. We see that the query success rate goes to

zero even if an increasing number of peers publishes the file.

C. Random Walk with Evidence of Absence

Scalability: In Fig. 2(a) and 2(b), we plot the average
traffic load per peer for two different publishing probabilities,
q(n) = 1000/n and q(n) = 10002/n2, respectively. In both
cases, we set the time-to-live to TTL(n) = 0.01n, i.e., linear in

n. For q(n) = 1000/n, the expected number of peers bringing
the file in the system are 1000. This number does not grow
with n and, therefore, the experiments in Fig. 2(a) are “border
line” in terms availability of the file. Note that a larger q(n)
(such as, e.g., q(n) = 1/

√
n), can only improve the system’s

performance, by reducing the traffic load and increasing the
query success rate. In the case where q(n) = 10002/n2, the
file is not brought reliably in the system, as the expected
number of peers that publish it decreases with n.

In each graph, we plot the traffic loads with the following
request probabilities: p(n) = 0.3, p(n) = log(1000)/ log(n),
p(n) =

√
1000/

√
n, p(n) = 1000/(n) and p(n) = 10002/n2.

In Fig. 2(a), in all cases except the last, the average traffic load
per peer is bounded; for p(n) = 10002/n2, we observe a de-
creasing traffic load. We observe an almost identical behavior
in Fig. 2(b): the only difference is that, for p(n) = Θ (1/n),
the average traffic load per peer is 1 query every 1000 seconds
—as opposed to 1 query every 2000 seconds, in Fig. 2(a).

Over all, the traffic load generated in all experiments does
not grow with the system size, both when the file is reliably
brought into the system and when it is not.

Reliability: In Fig. 2(c) and (d) we show the query
success rate of the same experiments. When the file is brought
reliably in the system (i.e., for q(n) = 1000/n), the query
success rate was virtually 1 for all p(n) and for all n: as seen
in Fig. 2(c), almost all queries succeeded (i.e., located positive
peers). In Fig 2(c), as q(n) = o (1/n), we are not guaranteed
to find the file by Theorem 4. However, we observe that for
high request probabilities the file can still be located reliably;
this is not true for p(n) = 1000/n and p(n) = 10002/n2, as
almost all queries fail in this case.

System Dynamics: Because our focus is on the metrics
ρ(n) and γ(n), both our theoretical and our numerical analysis
describe the steady state behavior of the system. Understand-
ing the system’s transient behavior (i.e., its behavior until
it reaches the steady state) is not within the scope of this
work. Nonetheless, the transient behavior can be important
as, e.g., it can help determine the system’s response to abrupt
phenomena, like “flash crowds”. For this reason, we briefly
describe the evolution of a transient system below.

Figures 3(a) and 3(b) show how the fractions of positive
and negative peers evolve during a simulation. In both cases,
p = 0.8, q = 0.1, TTL = 100 and n = 10, 000. In
Fig. 3(a), the simulation starts with all peers being null.
Initially, negative peers grow faster than positive peers (as most
queries fail); however, within 20min the positive peers have
surpassed the negative peers, which peak at 33min and then
start to decay. In Fig. 3(b), the same experiment is repeated
starting from a system where all peers are negative. Again, the
effect of the initial state eventually dies out: although negative
peers initially outnumber the positive peers, within 2 hours the
positive peers prevail. In both simulations, the positive peer
population converges to 90%, i.e., to p + q, indicating that,
eventually, most queries succeed and every peer that requests
the file becomes a positive peer.
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Fig. 3. Simulation traces of the fractions of positive and negative peers. In
(a), all peers are initially null, while in (b) all peers are initially negative. In
both cases, positive peers eventually prevail and negative peers vanish.

VIII. FILE DISTRIBUTION

Our results describe the query traffic load per peer generated
by queries issued for a single file. The aggregate traffic load
(over all files) incurred at a peer will depend on number of files
M(n) that can be requested, as well as on the distribution of
the request and publishing probabilities pj(n) and qj(n) over
different files j. An immediate implication of Theorem 3 is
that the aggregate traffic load is bounded if the number of
files served by the system is no more than a constant, i.e.,
if M(n) = O(1). We note however that this condition is
sufficient but not necessary: the following lemma implies that
the traffic load can be bounded even if the number of files is
not.

Lemma 1. The aggregate traffic load at a peer
is bounded if there exists a constant B such that
limn→∞

∑M(n)
i=1

pi(n)
pi(n)+qi(n) ≤ B.

IX. CONCLUSIONS AND FUTURE WORK

Our results show that using the “absence of evidence” as
“evidence of absence” can make an unstructured p2p system
scalable, by limiting the traffic load generated by queries
for files that are not in the system. Most importantly, the
above mechanism is also reliable, in the sense that queries
for files that are brought into the system sufficiently often are
guaranteed to succeed.

There are several interesting extensions of the above work.
One is investigating our scheme under different query propaga-
tion mechanisms, as well as under proactive replication. The
latter approach includes, e.g., proactively changing negative
peers to positive, thus increasing the availability of a file, at an
additional traffic cost. Understanding the transient behavior of
such a mechanism would also be interesting. This is because,
e.g., such proactive replication could expedite the convergence
of the system to the steady state in the face of “flash crowds”.
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counting and sampling in overlay networks based on random walks,”
Journal of Distributed Computing, vol. 20, no. 4, 2007.

[33] S. Ioannidis and P. Marbach, “Absence of evidence as evidence of
absence: A simple mechanism for p2p search,” Univ. of Toronto, Tech.
Rep. CNRL-08-001, 2008.

[34] M. Benaı̈m and J.-Y. Le Boudec, “A class of mean field interaction
models for computer and communication systems,” EPFL, Tech. Rep.
LCA-REPORT-2008-010, 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT-CondensedLight
    /ACaslon-Italic
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AGOldFace-Outline
    /AharoniBold
    /Algerian
    /Americana
    /Americana-ExtraBold
    /AndaleMono
    /AndaleMonoIPA
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Anna
    /ArialAlternative
    /ArialAlternativeSymbol
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMT-Black
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /BakerSignet
    /BankGothicBT-Medium
    /Barmeno-Bold
    /Barmeno-ExtraBold
    /Barmeno-Medium
    /Barmeno-Regular
    /Baskerville
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /Baskerville-BoldItalic
    /Baskerville-Italic
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /Bellevue
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlingAntiqua-Bold
    /BerlingAntiqua-BoldItalic
    /BerlingAntiqua-Italic
    /BerlingAntiqua-Roman
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BiffoMT
    /BinnerD
    /BinnerGothic
    /BlackadderITC-Regular
    /Blackoak
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolSeven
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /Botanical
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BradleyHandITC
    /Braggadocio
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScript
    /BrushScriptMT
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Carta
    /CaslonOpenfaceBT-Regular
    /Castellar
    /CastellarMT
    /Centaur
    /Centaur-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchL-Bold
    /CenturySchL-BoldItal
    /CenturySchL-Ital
    /CenturySchL-Roma
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Chiller-Regular
    /CMB10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /CMBX10
    /CMBX12
    /CMBX5
    /CMBX6
    /CMBX7
    /CMBX8
    /CMBX9
    /CMBXSL10
    /CMBXTI10
    /CMCSC10
    /CMCSC8
    /CMCSC9
    /CMDUNH10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /CMFF10
    /CMFI10
    /CMFIB8
    /CMINCH
    /CMITT10
    /CMMI10
    /CMMI12
    /CMMI5
    /CMMI6
    /CMMI7
    /CMMI8
    /CMMI9
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /CMR10
    /CMR12
    /CMR17
    /CMR5
    /CMR6
    /CMR7
    /CMR8
    /CMR9
    /CMSL10
    /CMSL12
    /CMSL8
    /CMSL9
    /CMSLTT10
    /CMSS10
    /CMSS12
    /CMSS17
    /CMSS8
    /CMSS9
    /CMSSBX10
    /CMSSDC10
    /CMSSI10
    /CMSSI12
    /CMSSI17
    /CMSSI8
    /CMSSI9
    /CMSSQ8
    /CMSSQI8
    /CMSY10
    /CMSY5
    /CMSY6
    /CMSY7
    /CMSY8
    /CMSY9
    /CMTCSC10
    /CMTEX10
    /CMTEX8
    /CMTEX9
    /CMTI10
    /CMTI12
    /CMTI7
    /CMTI8
    /CMTI9
    /CMTT10
    /CMTT12
    /CMTT8
    /CMTT9
    /CMU10
    /CMVTT10
    /ColonnaMT
    /Colossalis-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CourierX-Bold
    /CourierX-BoldOblique
    /CourierX-Oblique
    /CourierX-Regular
    /CreepyRegular
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /Desdemona
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dingbats
    /DomCasual
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversGothicBT-Regular
    /EngraversMT
    /EraserDust
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErieBlackPSMT
    /ErieLightPSMT
    /EriePSMT
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EuroSig
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /FelixTitlingMT
    /Fences
    /FencesPlain
    /FigaroMT
    /FixedMiriamTransparent
    /FootlightMTLight
    /Formata-Italic
    /Formata-Medium
    /Formata-MediumItalic
    /Formata-Regular
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothicITCbyBT-Book
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-Medium
    /FuturaBT-MediumItalic
    /Futura-Light
    /Futura-LightOblique
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Gautami
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /Giddyup
    /Giddyup-Thangs
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-CondensedBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /Gothic-Thirteen
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /GoudyTextMT-LombardicCapitals
    /GSIDefaultSymbols
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Fraction
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Humanist521BT-BoldCondensed
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-RomanCondensed
    /Imago-ExtraBold
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /Ironwood
    /ItcEras-Medium
    /ItcKabel-Bold
    /ItcKabel-Book
    /ItcKabel-Demi
    /ItcKabel-Medium
    /ItcKabel-Ultra
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /JoannaMT
    /JoannaMT-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kaufmann
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KidTYPEPaint
    /KinoMT
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KorinnaITCbyBT-Regular
    /KozGoProVI-Medium
    /KozMinProVI-Regular
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldOblique
    /LetterGothic-BoldSlanted
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Slanted
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LevenimMT
    /LevenimMTBold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /Lithos-Black
    /Lithos-Regular
    /LotusWPBox-Roman
    /LotusWPIcon-Roman
    /LotusWPIntA-Roman
    /LotusWPIntB-Roman
    /LotusWPType-Roman
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Lydian
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /Map-Symbols
    /MathA
    /MathB
    /MathC
    /Mathematica1
    /Mathematica1-Bold
    /Mathematica1Mono
    /Mathematica1Mono-Bold
    /Mathematica2
    /Mathematica2-Bold
    /Mathematica2Mono
    /Mathematica2Mono-Bold
    /Mathematica3
    /Mathematica3-Bold
    /Mathematica3Mono
    /Mathematica3Mono-Bold
    /Mathematica4
    /Mathematica4-Bold
    /Mathematica4Mono
    /Mathematica4Mono-Bold
    /Mathematica5
    /Mathematica5-Bold
    /Mathematica5Mono
    /Mathematica5Mono-Bold
    /Mathematica6
    /Mathematica6Bold
    /Mathematica6Mono
    /Mathematica6MonoBold
    /Mathematica7
    /Mathematica7Bold
    /Mathematica7Mono
    /Mathematica7MonoBold
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /Mesquite
    /Mezz-Black
    /Mezz-Regular
    /MICR
    /MicrosoftSansSerif
    /MingLiU
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-Ornaments
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MonotypeSorts
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MS-Gothic
    /MSHei
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MSSong
    /MS-UIGothic
    /MT-Extra
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-Italic
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /Myriad-Roman
    /Narkisim
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewMilleniumSchlbk-BoldItalicSH
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Italic
    /NewsGothicBT-Roman
    /NewsGothic-Condensed
    /NewsGothic-Italic
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NimbusMonL-Bold
    /NimbusMonL-BoldObli
    /NimbusMonL-Regu
    /NimbusMonL-ReguObli
    /NimbusRomNo9L-Medi
    /NimbusRomNo9L-MediItal
    /NimbusRomNo9L-Regu
    /NimbusRomNo9L-ReguItal
    /NimbusSanL-Bold
    /NimbusSanL-BoldCond
    /NimbusSanL-BoldCondItal
    /NimbusSanL-BoldItal
    /NimbusSanL-Regu
    /NimbusSanL-ReguCond
    /NimbusSanL-ReguCondItal
    /NimbusSanL-ReguItal
    /Nimrod
    /Nimrod-Bold
    /Nimrod-BoldItalic
    /Nimrod-Italic
    /NSimSun
    /Nueva-BoldExtended
    /Nueva-BoldExtendedItalic
    /Nueva-Italic
    /Nueva-Roman
    /NuptialScript
    /OCRA
    /OCRA-Alternate
    /OCRAExtended
    /OCRB
    /OCRB-Alternate
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OzHandicraftBT-Roman
    /PalaceScriptMT
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /PapyrusPlain
    /Papyrus-Regular
    /Parchment-Regular
    /Parisian
    /ParkAvenue
    /Penumbra-SemiboldFlare
    /Penumbra-SemiboldSans
    /Penumbra-SemiboldSerif
    /PepitaMT
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PhotinaCasualBlack
    /Playbill
    /PMingLiU
    /Poetica-SuppOrnaments
    /PoorRichard-Regular
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /PrestigeElite
    /Pristina-Regular
    /PTBarnumBT-Regular
    /Raavi
    /RageItalic
    /Ravie
    /RefSpecialty
    /Ribbon131BT-Bold
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /Rod
    /RodTransparent
    /RunicMT-Condensed
    /Sanvito-Light
    /Sanvito-Roman
    /ScriptC
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /Serpentine-BoldOblique
    /ShelleyVolanteBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SimHei
    /SimSun
    /SnapITC-Regular
    /StandardSymL
    /Stencil
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /Stop
    /Swiss721BT-BlackExtended
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /TechnicalItalic
    /TechnicalPlain
    /Tekton
    /Tekton-Bold
    /TektonMM
    /Tempo-HeavyCondensed
    /Tempo-HeavyCondensedItalic
    /TempusSansITC
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldItalicOsF
    /Times-BoldSC
    /Times-ExtraBold
    /Times-Italic
    /Times-ItalicOsF
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Times-RomanSC
    /Trajan-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-CondensedMedium
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-Medium
    /Univers-MediumItalic
    /URWBookmanL-DemiBold
    /URWBookmanL-DemiBoldItal
    /URWBookmanL-Ligh
    /URWBookmanL-LighItal
    /URWChanceryL-MediItal
    /URWGothicL-Book
    /URWGothicL-BookObli
    /URWGothicL-Demi
    /URWGothicL-DemiObli
    /URWPalladioL-Bold
    /URWPalladioL-BoldItal
    /URWPalladioL-Ital
    /URWPalladioL-Roma
    /USPSBarCode
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /VinerHandITC
    /Viva-BoldExtraExtended
    /Vivaldii
    /Viva-LightCondensed
    /Viva-Regular
    /VladimirScript
    /Vrinda
    /Webdings
    /Westminster
    /Willow
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /XYATIP10
    /XYBSQL10
    /XYBTIP10
    /XYCIRC10
    /XYCMAT10
    /XYCMBT10
    /XYDASH10
    /XYEUAT10
    /XYEUBT10
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


