CSC363 - Summer 2007 Assignment 2

Problem 1 [20p]

Show that a language L is decidable iff there exists an enumerator E that enumerates the strings in L in lexicographical order.

Problem 2 [10p]

Let Σ be a finite alphabet.

1. Let A be the set of all functions $f: \Sigma^* \to \{0,1\}$. Is A countable or uncountable? Justify briefly.

2. Let B be the set of all functions $f: \{0,1\} \to \Sigma^*$. Is B countable or uncountable? Justify briefly.

Problem 3 [10p]

Prove that the halting problem for C programs is undecidable. In your proof, you may *not* mention the Church-Turing thesis or Turing Machines. Simply adapt the diagonalization-like argument seen in class to work for this problem.

Formally, let us assume that C programs are single-functions with signatures of the form int f(char *w). Assume that a C program either halts with an integer output by calling the special return(int value) function, or it does not halt (in particular, treat any crash as a not halt). Furthermore, assume that you have access to a built-in function int run(char *P, char *x) that interprets P as a C program and x as an input, and it effectively runs program P on input x (in reality, one can actually implement this function by compiling the code of P at run-time and running the resulting executable on input x). If P halts on input x, the run function returns the value P(x). If P does not halt on input x, the call to the run function will not halt either.

Show that there is no C program with signature int halt(char *P, char *x) such that for all C programs P and inputs x, halt(P,x) returns 1 if the call P(x) halts and 0 if it does not halt.

Note: We said that C programs take only one **char** * argument and now we're asking about a C program that takes two arguments. Do not get stuck into this kind of details, that's not the point of the question. If it makes you feel better, assume that both **halt** and **run** work as they should when P is a C program with a single argument and crash otherwise.

Problem 4 [20p]

We can encode each TM M as a unique string $\langle M \rangle$ over the alphabet $\{0, 1\}$. Let $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ be the list of all TM encodings in lexicographical order. You may assume that it is computationally possible to (i.e. some TM can) accomplish the following: when presented with an input w, find out if $w = \langle M_i \rangle$ for some i, and output that index i.

Define $f: \mathcal{N} \to \mathcal{N}$ by f(k) = index in the above list of the k-th TM M such that $L(M) = \emptyset$.

Notice that f is well defined for every k, since there are infinitely many TMs M with $L(M) = \emptyset$. For example, if $L(M_2) = L(M_5) = \emptyset$ and $L(M_1), L(M_3), L(M_4)$ are not empty, then f(1) = 2 and f(2) = 5.

Prove that f is not computable. Hint: assume it is computable by some TM M_f and show how to use M_f to construct another decider TM for a language we know is undecidable.

Problem 5 [10p]

Consider the following problem. We are given two TMs M_1, M_2 with the same input alphabet and a string w, and we need to decide if it is the case that: if M_1 accepts w, then M_2 accepts w. So: if M_1 does not accept w (rejects or doesn't halt), then the answer should be YES, regardless of what M_2 does. If M_1 accepts w and M_2 accepts w, again the answer should be YES. If M_1 accepts w and M_2 doesn't accept w, then the answer should be YES. If M_1 accepts w and M_2 doesn't accept w, then the answer should be YES.

We formalize this problem as language membership by defining the language

$$L = \{ \langle M_1, M_2, w \rangle : M_1, M_2 \text{ are TMs and } w \in L(M_1) \Rightarrow w \in L(M_2) \}$$

- 1. Show that $A_{TM} \leq_m L$.
- 2. Show that $\overline{A_{TM}} \leq_m L$.