
CSC363 - Summer 2007
Assignment 4

Problem 1 [15p]
Recall that L ∈ coNP iff L ∈ NP. Also recall that L is coNP-hard iff for all L′ ∈ coNP, L′ ≤p L.

1. [5p] Show that if L is NP-complete, then L is coNP-complete.

2. [5p] Show that if P = NP, then P = coNP.

3. [5p] Show that if L is NP-complete and L ∈ coNP, then NP = coNP.

For the rest of this assignment, we will be concerned with some specific graph problems. Some definitions
first. You must have seen these in some other course.

In an undirected graph G, each edge is a set containing two vertices {u, v}. One can travel in either
direction along this edge. In a directed graph G′, each edge is an ordered pair of distinct vertices (u, v),
meaning that one can travel directly from u to v, but not necessarily backwards. In a directed graph, the
two edges (u, v) and (v, u) are distinct and one may be present independent of the other.

A cycle in an undirected graph G is a sequence of nodes (v1, . . . , vk) such that for every i ∈ {1, . . . , k−1},
the edge {vi, vi+1} exists in G and {vk, v1} also exists in G. A cycle in a directed graph G′ is also a sequence
of the form above, but now the edges must be directed, so for every i ∈ {1, . . . , k − 1}, (vi, vi+1) is an edge
in G′, and (vk, v1) is also an edge in G′. The size of a cycle is the number of nodes in it, k in the example
above.

A simple cycle is a cycle with no repeated vertices or edges. Thus, in an undirected graph the minimum
simple cycle has 3 nodes, while in a directed graph the minimum simple cycle has 2 nodes. The reason
for this is that, in an undirected graph, going from u to v and backwards, we are repeating an edge. In a
directed graph, this is not the case.

In either a directed or an undirected graph, we can assign weights to edges. In the problems below, we
will consider integer weights, positive, negative or zero. You may assume that these weights are encoded as
usual in binary and are given as part of the description of the graph. The weight of the cycle C = (v1, . . . , vk)
is wC = w((v1, v2)) + . . . + w((vk−1, vk)) + w((vk , v1)).

Given a graph with weights on edges, we are interested in determining if it has a simple cycle that has
weight 0. We define the following two languages for the undirected and the directed versions of this problem.
UZC stands for UNDIRECTED-ZERO-CYCLE and DZC stands for DIRECTED-ZERO-CYCLE:

UZC = {〈G〉 : G is an undirected graph with weights on edges that has a simple cycle of weight 0}

DZC = {〈G〉 : G is an directed graph with weights on edges that has a simple cycle of weight 0}.

Problem 2 [35p]
In this problem, we aim to show that both UZC and DZC are NP-complete. For that, we consider the

following intermediate problem:

ZERO-SUM = {〈S〉 : S is a set of integers that has a non-empty subset summing to 0}.

1. [5p] Argue that both DZC and UZC are in NP.

2. [5p] Show that SUBSET-SUM ≤p ZERO-SUM. You may assume that in the SUBSET-SUM problem,
the input set contains only positive integers. This should be easy.

3. [10p] Show that ZERO-SUM ≤p DZC. Hint: add a new edge to the graph for every integer in the set;
connect these edges using “neutral” edges; assign directions in order to avoid obtaining a zero-weight
cycle of neutral edges.

1



4. [15p] Show that DZC ≤p UZC. This is a bit tricky. If you can do it on your own without using the
ideas below, do it. Otherwise, I will get you started with an incomplete construction. Your job is to
realize why this does not work and how to fix it.

Given an input G to DZC, construct an input G′ to UZC as follows. For every node v of G add exactly
two nodes iv and ov to G′ (they stand for “incoming” and “outgoing”). For every directed edge (u, v)
in G, add the undirected edge {ou, iv} to G′ and set w′({ou, iv}) = w((u, v)). Finally, for every v in
G, add the undirected edge {iv, ov} to G′, with weight 0.

It should be clear that: if G has a zero-weight simple cycle, call it (v1, . . . , vk), then G′ has a zero-weight
simple cycle in (ov1

, iv2
, ov2

, . . . , ovk
, iv1

).

(a) [5p] Show that the other direction is false.

(b) [2p] Show how to compute a value B ≥ 0 such that no set of edges from G (cycle or not) can
achieve a total weight in absolute value greater than B.

(c) [8p] Show how to add either +B or −B to the weights of the edges in G′ in such a way that the
reduction is correct.

Problem 3 [10p]
Consider the search version of UZC, called UZC-SEARCH: given as input an undirected graph G with

weights on edges, output either a zero-weight cycle of G, or NIL if no such cycle exists. Show that if a
polynomial time algorithm exists for UZC, then we can construct a polynomial time algorithm for UZC-
SEARCH.

2


