CSC 363-Summer 2005
 Assignment 2
 due on Tuesday, June 28th, at 6 pm

Problem 1 [5p] For every positive integer t, we say that a language L is decidable with lag t if there exists a TM M deciding L, which also satifies the requirement that on every input w, M halts in at most $|w|+t$ steps. For example, the arguments presented in the solution to question 4c from Assignment 1 show that every finite language is decidable with lag 1.

Consider a table whose rows are labelled with TMs, whose columns are labelled with TM encodings, and where the entry at $\left(M_{i},\left\langle M_{j}\right\rangle\right)$ contains a 1 if M_{i} accepts $\left\langle M_{j}\right\rangle$ in at most $\left|\left\langle M_{j}\right\rangle\right|+t$ steps, and a 0 otherwise.

Use a diagonalization argument to show that for every t, there exists a language L which is decidable in general, but not decidable with lag t.

Problem 2 [10p] Let $M_{1}, M_{2}, \ldots, M_{i}, \ldots$ be the list of all TMs in lexicographical order.
For every positive integer k, define $f(k)$ to be the index in the above list of the k-th TM M such that $L(M)=\emptyset$. Formally,

$$
f(k)=\max \left\{i: \exists J \subseteq\{1 \ldots i-1\} \text { such that }\left(|J|=k-1 \text { and } \forall j \in\{1 \ldots i-1\}, L\left(M_{j}\right)=\emptyset \Leftrightarrow j \in J\right)\right\}
$$

Notice that f is well defined for every k, since there are infinitely many TMs M with $L(M)=\emptyset$. For example, if $L\left(M_{2}\right)=L\left(M_{5}\right)=\emptyset$ and $L\left(M_{1}\right), L\left(M_{3}\right), L\left(M_{4}\right)$ are not empty, then $f(1)=2$ and $f(2)=5$.

Prove that f is not computable.
Problem 3 [10p] This is problem 5.14 in Sipser. Let L be the language of all encodings $\langle M, w\rangle$ such that the TM M on input w attempts to move its head left of the initial position (i.e. left of the position of the leftmost symbol in the input string). Show that L is undecidable.

Note: TMs in Sipser have one-way infinite tapes, while our TMs have a two-way infinite tapes. The statement above is relevant for our model.

Problem 4 [10p] This is problem 5.10 in Sipser first edition, and 5.24 in Sipser second edition. Let

$$
J=\left\{0 x: x \in A_{T M}\right\} \cup\left\{1 y: y \in \overline{A_{T M}}\right\}
$$

Show that neither J nor \bar{J} is recognizable.

