CSC 363 - Summer 2005
 Assignment 4
 due on Tuesday, August 9th, at 6pm

Problem 1 [15p]
Recall that we defined coNP as the class of languages L such that the complement of L is in NP. Formally, coNP $=\{L \mid \bar{L} \in \mathbf{N P}\}$.
(a) [5p] We can define the class coNP-hard in a manner similar to that in which we defined the class NP-hard. So, we say that language L is coNP-hard if every language $L^{\prime} \in \mathbf{c o N P}$ is polytime reducible to L, i.e. $L^{\prime} \leq_{p} L$. Furthermore, we say L is coNP-complete if L is both coNP and coNP-hard.
Show that, for every language L, L is coNP-hard iff \bar{L} is NP-hard.
(b) $[10 \mathrm{p}]$ Show that if there exists some $\mathbf{N P}$-complete language that is in $\mathbf{c o N P}$, then $\mathbf{N P}=\mathbf{c o N P}$.

Problem 2 [10p]
This is part of problem 7.23 on p. 296 of Sipser v2. Let CNF_{k} be the language consisting of encodings of satisfiable CNF formulas, in which every individual variable appears at most k times. Note that we are counting both positive and negative appearances. For example, $f=\left(x_{1} \vee x_{1} \vee x_{2} \vee \bar{x}_{1}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge \bar{x}_{2}$ is a satisfiable CNF formula in which x_{1} has 4 appearances, x_{2} has 2 appearances and x_{3} has one appearance. So $\langle f\rangle \in \mathrm{CNF}_{4}$, but $\langle f\rangle \notin \mathrm{CNF}_{3}$. Also note that the size of the clauses does not play any role in deciding membership to CNF_{k}.
Prove that CNF_{3} is NP-complete.
Problem 3 [20p]
In the Simple Knapsack problem, we are presented with m weights, w_{1}, \ldots, w_{m}, and a bound W, all in binary notation. We need to select a subset of weights $S \subseteq\{1, \ldots, m\}$, such that the sum of those weights, $\sum_{i \in S} w_{i}$ is maximum, while not exceeding W. In the decision version, we are also given a bound T, and we have to accept iff there is a subset with total weight at least T and not more than W.

Formally,

$$
\mathrm{SKD}=\left\{\left\langle w_{1}, \ldots, w_{m}, T, W\right\rangle \mid \exists S \subseteq\{1, \ldots, m\} \text { such that } T \leq \sum_{i \in S} w_{i} \leq W\right\}
$$

It is easy to show that SKD is NP-complete using a reduction from Subset-Sum. You may use this fact without proof.
(a) [5p] Show that, if $\mathbf{P}=\mathbf{N P}$, then there exists a polynomial time algorithm, which, on input $\left\langle w_{1}, \ldots, w_{m}, W\right\rangle$, outputs a value T, such that T is the maximum sum achievable with these weights, that is at most W. In other words, $T=\max \left(\sum_{i \in S} w_{i} \mid S \subseteq\{1, \ldots, m\}\right.$ and $\sum_{i \in S} w_{i} \leq$ $W)$.
Note: For this part, assume that all the values mentioned (weights, bounds) are positive integer numbers.
(b) [15p] We have seen that for problems like CLIQUE or VC, if the target parameter is a constant or the maximum value minus a constant, the problem has polynomial time solutions; and if the target parameter is half the maximum value, the problem is still NP-complete. We investigate whether this is the case for SKD.

For each of the following languages, prove either that it has a polynomial time algorithm, or that it is NP-complete:

$$
\begin{aligned}
\text { HALF-SKD } & =\left\{\left\langle w_{1}, \ldots, w_{m}, W\right\rangle \mid \exists S \subseteq\{1, \ldots, m\} \text { such that } \frac{W}{2} \leq \sum_{i \in S} w_{i} \leq W\right\} \\
\mathrm{K}-\mathrm{SKD} & =\left\{\left\langle w_{1}, \ldots, w_{m}, W\right\rangle \mid \exists S \subseteq\{1, \ldots, m\} \text { such that } W-k \leq \sum_{i \in S} w_{i} \leq W\right\}
\end{aligned}
$$

Note: For this part, assume that all the values mentioned (weights, bounds) are positive rational numbers. You may assume we represent the rational number p / q (where p, q are positive integers) as $\langle p, q\rangle$. In other words, the length of the encoding of p / q is in the order of the sum of the lengths of the encodings of p and of $q:|\langle p, q\rangle|=O(|\langle p\rangle|+|\langle q\rangle|)$. In a nutshell, what I'm saying is that you can perform division as long as both numerators and denominators are reasonably sized.

