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NP-completeness

• Cook, Levin, 1971: showed SAT is NP-complete
• Karp, 1972: showed 21 well-known problems 

are NP-complete
– CLIQUE, VC, HAM-CYCLE, SUBSET-SUM

• Since then, hundreds of problems appearing in 
practice have been shown to be NP-complete

• Showing a problem L is NP-hard is very strong 
evidence there is no polynomial time algorithm 
solving L.
– Otherwise, P=NP, and all these problems have 

polynomial time algorithms.
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1972, P or NP-complete?

• Linear Programming (“LP”)
– given some constraint functions and an 

objective function, find a solution which 
satisfies the constraints and optimizes the 
objective

– Simplex algorithm known, but not polynomial

– Khachiyan, 1979: ellipsoid algorithm, LP is in P

1972, P or NP-complete?

• Primality Testing (“PRIME”)
– given an integer n in binary (log n bits), decide 

whether it is prime or not
– cannot try all divisors from 2 to n (or n½), not 

polynomial in log n
– easy: PRIME is in coNP

• if n is not prime, guess divisor and check it

– harder: PRIME is in NP
– probably not NP-complete, unless NP=coNP

1972, P or NP-complete?

• Agrawal, Kayal, Saxena, 2002: PRIME is in P
– there exists an algorithm which, given integer n, 

decides whether n is prime in time polynomial in 
log n

– the output is only YES/NO
– we still do not know how to (or if we can) actually 

compute a divisor of n
– some cryptographic systems assume this is hard



1972, P or NP-complete?

• Graph Isomorphism
– given two graphs, are they a permutation of 

each other?
– to obtain isomorphic graphs:

• draw the graph with all its edges

• erase node labels
• write down a new label for every node
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1972, P or NP-complete?

• GRAPH-ISOMORPHISM is in NP
– guess a permutation � (n log n bits)

– check (u,v) in E(G1) iff (�(u),�(v)) in E(G2)

• not known or believed to be in P
• not known or believed to be NP-complete
• still open today..

If P�NP..

• There are problems inside NP which are 
neither in P nor NP-complete

• There are infinitely many classes, getting 
harder and harder, strictly between P and 
NP-complete

• GRAPH-ISOMORPHISM conjectured to 
be strictly in between P and NP-complete

SUBGRAPH-ISOMORPHISM

• however, SUBGRAPH-ISOMORPHISM is 
NP-complete!
– given G, H
– can delete nodes of G, together with incident 

edges
– do not delete any edges between remaining 

nodes
– only afterwards match the remains of G with 

H
– harder, because not clear what we should 

delete

SUBGRAPH-ISOMORPHISM
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Decision, Search and Optimization 
Problems

• We developed our theory using languages, or, 
equivalently, decision problems
– i.e. given input x, output YES or NO

• In practice, many problems are search problems
– i.e. given input x, output some object y, if one exists

• Yet more general are optimization problems
– i.e. given a set of input constraints and an objective 

function, output an object which satisfies all the 
constraints and optimizes (minimizes/maximizes) the 
objective function



Search Problems

• Given formula, output a satisfying 
assignment if one exists

• Given a graph G and an integer k, output a 
clique/vertex cover/independent set of G of 
size k, if one exists

• Given a set of numbers and a target, 
output a subset of those numbers which 
sum up to the target, if such a subset 
exists

Optimization Problems

• Given graph G, output a clique C of G of 
maximum size
– constraint: C is a set of vertices in G
– constraint: C is a clique
– objective: maximize |C|

• Given a set of weights w1, ..., wm and a capacity 
W, output a subset S of those weights which 
have a maximum weight, while not exceeding W
– constraint: S is a subset of 1, ..., m
– constraint: sum of weights wi with i in S is at most W

– objective: maximize sum of weights wi with i in S 

Relation Between Decision, Search 
and Optimization Problems

• In general:
– decision problem is “easiest”
– search problem is “harder”
– optimization problem is “the hardest”

• Meaning:
– IF we can solve the search problem in polytime, THEN 

we can solve the decision problem in polytime
• In most cases, but not all, these problems are 

polytime equivalent:
– IF we can solve the decision problem in polytime, THEN 

we can solve the optimization problem in polytime
– e.g. MAX-CLIQUE, MIN-VC, MAX-SK

• Notable exception:
– PRIME is in P, but PRIME-SEARCH maybe not in P

Dealing with NP-completeness

• NP-complete problems appear in 
practice

• We can’t hope to solve them in 
polynomial time, but we still have to solve 
them somehow..

• Approaches
– problem restrictions
– heuristics
– randomization
– approximation

Problem Restrictions

• Maybe problem statement is too general, 
make extra assumptions about input:
– degree of vertices is bounded in a graph
– graph is planar
– weights are not too large

• Hopefully, problem becomes easier
• Example: a graph with maximum vertex 

degree d can be coloured with d+1colours 
by a simple Greedy algorithm

Heuristics

• Use an algorithm that works well in most 
practical cases, but
– output not necessarily correct in all cases
– runtime not necessarily good in all cases
– worst-case runtime may be unknown or exponential, 

hopefully it doesn’t occur often

• Example: Simplex algorithm for solving Linear 
Programming
– worst case runtime is exponential
– in practice it works well
– still used even after polytime algorithms discovered



Randomization
• Allow Turing Machine to “flip coins”

– output is correct with some high probability
– runtime is polynomial with some high probability

• BPP = class of decision problems which have 
algorithms with
– worst case runtime is always polynomial
– probability of error < 1/3

• Idea: if probability of error can be made very low 
(say, 2-100), then it is more likely that the machine 
will crash then that it will give a wrong answer

• Example: Primality testing
• However, conjectured BPP�NP

Approximation Algorithms
• For optimization problems, compromise on 

optimizing the objective function
• Output a solution which

– satisfies all the constraints
– not necessarily optimal

• Runtime is polynomial
• Need some measure of how useful the algorithm 

really is
• Approximation ratio = ratio between

– objective value achieved by some (hypothetical) optimal 
solution

– objective value achieved by algorithm
– always >= 1

• How can we argue about an optimal solution??

Approximation Algorithms

• Minimization problem P:
– input constraints C, objective function f
– output a solution S satisfying C
– minimize f(S)

• An r-approximation algorithm for P
– output a solution S satisfying C
– let O be an optimal solution
– f(O) <= f(S) <= r*f(O)
– runtime is polynomial

• For a maximization problem
– (1/r)*f(O) <= f(S) <= f(O)

Approximation Algorithms

• Confusing: must compare the objective value 
achieved with the optimal objective value without 
computing the optimal objective value
– Every given instance has some optimum solution
– Approximation algorithm must get “close enough” to 

that optimum

• Even more confusing: maybe for “small” 
instances, algorithm gets closer to the optimum 
than for “large” instances
– approximation ratio may depend on the size of the input

Vertex Cover

• Consider following algorithm:
on input G:
1. C = empty
2. E’ = all edges in G
3. while E’ is not empty
4. let (u,v) be some edge in E’
5. C = C + u + v
6. remove from E’ every edge touching u or v
7. return C

• Runtime: O(n2). Loop executed O(n) times.

Vertex Cover

Algorithm

Optimum

objective value = 4

objective value = 2



Vertex Cover

• Claim: the previous algorithm is a 2-approximation
• Output C is a vertex cover

– edges are removed only when one of their endpoints is included 
in the cover

• Let O = an optimal vertex cover
– so, |O| <= |C|

• Let A = set of edges picked in main loop
– edges in A share no endpoints
– to cover all edges in A, any vertex cover needs at least |A| 

vertices
– in particular, |O| >= |A|
– but |C| = 2*|A|
– so, |C| <= 2*|O|

Approximation Algorithms

• The 2-approximation to MIN-VC is pretty 
simple
– can we do better? maybe 3/2-approximation?

• Does every optimization problem have 
such a “nice” approximation algorithm?

Inapproximability Results

• Results of the form
– “ If there exists an r-approximation to this problem, 

then something very unlikely happens”

• They are “negative” results, seen as strong 
evidence that an r-approximation algorithm does 
not exist

• Highly technical
• Example:

– If there exists a 1.36-approximation to Vertex Cover, 
then P=NP

Travelling-Salesman Problem

• Theorem: If there exists a constant ratio 
approximation to TSP, then P=NP
– holds for any constant
– maybe a (log n)-approximation exists

• Suppose there exist a constant r >= 1 and a 
polynomial time algorithm A such that A is an r-
approximation for TSP

• We develop a new algorithm B, using A, that 
solves HAM-CYCLE in polynomial time

• Since HAM-CYCLE is NP-complete, this implies 
P=NP

Travelling-Salesman Problem

• Algorithm B
on input G:

G’ = add all missing edges to G
define weight function w:

w(original edge) = 1
w(new added edge) = r*n + 1

run A on input G’,w to get a cycle C
if w(C) <= r*n, output YES
otherwise, output NO

• Runtime: O(n2 + ns), where O(ns) is runtime of A

Travelling-Salesman Problem

G G’,w

weight 1

weight r*n+1



Travelling-Salesman Problem

• If G has a hamcycle D, then D is a 
hamcycle in G’ with weight n
– no other hamcycle in G’ has smaller weight
– A is an r-approximation, and outputs C
– so, w(C) <= r*n

• If G has no hamcycle, then any hamcycle 
in G’ must use at least one “heavy” edge
– weight of any hamcycle of G’ >= r*n+1
– so, w(C) > r*n


