NP-completeness

CSC 363 Summer 2005

Lecture Week 12

Most Believed View of the World

1972, P or NP-complete?

- Primality Testing ("PRIME")
- given an integer n in binary ($\log n$ bits), decide whether it is prime or not
- cannot try all divisors from 2 to n (or $\mathrm{n}^{1 / 2}$), not polynomial in $\log n$
- easy: PRIME is in coNP
- if n is not prime, guess divisor and check it
- harder: PRIME is in NP
- probably not NP-complete, unless NP=coNP
- Cook, Levin, 1971: showed SAT is NP-complete
- Karp, 1972: showed 21 well-known problems are NP-complete
- CLIQUE, VC, HAM-CYCLE, SUBSET-SUM
- Since then, hundreds of problems appearing in practice have been shown to be NP-complete
- Showing a problem L is NP-hard is very strong evidence there is no polynomial time algorithm solving L .
- Otherwise, $\mathrm{P}=\mathrm{NP}$, and all these problems have polynomial time algorithms.

1972, P or NP-complete?

- Linear Programming ("LP")
- given some constraint functions and an objective function, find a solution which satisfies the constraints and optimizes the objective
- Simplex algorithm known, but not polynomial
- Khachiyan, 1979: ellipsoid algorithm, LP is in P

1972, P or NP-complete?

- Agrawal, Kayal, Saxena, 2002: PRIME is in P
- there exists an algorithm which, given integer n, decides whether n is prime in time polynomial in $\log n$
- the output is only YES/NO
- we still do not know how to (or if we can) actually compute a divisor of n
- some cryptographic systems assume this is hard

1972, P or NP-complete?

- Graph Isomorphism
- given two graphs, are they a permutation of each other?
- to obtain isomorphic graphs:
- draw the graph with all its edges
- erase node labels
- write down a new label for every node

If $\mathrm{P} \neq \mathrm{NP}$..

- There are problems inside NP which are neither in P nor NP-complete
- There are infinitely many classes, getting harder and harder, strictly between P and NP-complete
- GRAPH-ISOMORPHISM conjectured to be strictly in between P and NP-complete

SUBGRAPH-ISOMORPHISM

G

1972, P or NP-complete?

- GRAPH-ISOMORPHISM is in NP
- guess a permutation π ($n \log n$ bits)
- check (u, v) in $E\left(G_{1}\right)$ iff ($\pi(u), \pi(v)$) in $E\left(G_{2}\right)$
- not known or believed to be in P
- not known or believed to be NP-complete
- still open today..

SUBGRAPH-ISOMORPHISM

- however, SUBGRAPH-ISOMORPHISM is NP-complete!
- given G, H
- can delete nodes of G , together with incident edges
- do not delete any edges between remaining nodes
- only afterwards match the remains of G with H
- harder, because not clear what we should delete

Decision, Search and Optimization Problems

- We developed our theory using languages, or, equivalently, decision problems
- i.e. given input x, output YES or NO
- In practice, many problems are search problems
- i.e. given input x, output some object y, if one exists
- Yet more general are optimization problems
- i.e. given a set of input constraints and an objective function, output an object which satisfies all the constraints and optimizes (minimizes/maximizes) the objective function

Search Problems

- Given formula, output a satisfying assignment if one exists
- Given a graph G and an integer k, output a clique/vertex cover/independent set of G of size k, if one exists
- Given a set of numbers and a target, output a subset of those numbers which sum up to the target, if such a subset exists

Relation Between Decision, Search and Optimization Problems

- In general:
- decision problem is "easiest"
- search problem is "harder"
- optimization problem is "the hardest"
- Meaning:
- IF we can solve the search problem in polytime, THEN we can solve the decision problem in polytime
- In most cases, but not all, these problems are polytime equivalent:
- IF we can solve the decision problem in polytime, THEN we can solve the optimization problem in polytime
- e.g. MAX-CLIQUE, MIN-VC, MAX-SK
- Notable exception:
- PRIME is in P, but PRIME-SEARCH maybe not in P

Optimization Problems

- Given graph G, output a clique C of G of maximum size
- constraint: C is a set of vertices in G
- constraint: C is a clique
- objective: maximize $|C|$
- Given a set of weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}$ and a capacity W, output a subset S of those weights which have a maximum weight, while not exceeding W
- constraint: S is a subset of $1, \ldots, m$
- constraint: sum of weights w_{i} with i in S is at most W
- objective: maximize sum of weights w_{i} with i in S

Dealing with NP-completeness

- NP-complete problems appear in practice
- We can't hope to solve them in polynomial time, but we still have to solve them somehow..
- Approaches
- problem restrictions
- heuristics
- randomization
- approximation

Problem Restrictions

- Maybe problem statement is too general, make extra assumptions about input:
- degree of vertices is bounded in a graph
- graph is planar
- weights are not too large
- Hopefully, problem becomes easier
- Example: a graph with maximum vertex degree d can be coloured with $d+1$ colours by a simple Greedy algorithm

Heuristics

- Use an algorithm that works well in most practical cases, but
- output not necessarily correct in all cases
- runtime not necessarily good in all cases
- worst-case runtime may be unknown or exponential, hopefully it doesn't occur often
- Example: Simplex algorithm for solving Linear Programming
- worst case runtime is exponential
- in practice it works well
- still used even after polytime algorithms discovered

Randomization

- Allow Turing Machine to "flip coins" - output is correct with some high probability - runtime is polynomial with some high probability
- BPP = class of decision problems which have algorithms with
- worst case runtime is always polynomial
- probability of error < $1 / 3$
- Idea: if probability of error can be made very low (say, 2^{-100}), then it is more likely that the machine will crash then that it will give a wrong answer
- Example: Primality testing
- However, conjectured BPP \ddagger NP

Approximation Algorithms

- Minimization problem P :
- input constraints C, objective function f
- output a solution S satisfying C
- minimize $f(S)$
- An r-approximation algorithm for P
- output a solution S satisfying C
- let O be an optimal solution
$-f(O)<=f(S)<=r^{*} f(O)$
- runtime is polynomial
- For a maximization problem
$-(1 / r)^{*} f(O)<=f(S)<=f(O)$

Approximation Algorithms

- For optimization problems, compromise on optimizing the objective function
- Output a solution which
- satisfies all the constraints
- not necessarily optimal
- Runtime is polynomial
- Need some measure of how useful the algorithm really is
- Approximation ratio = ratio between
- objective value achieved by some (hypothetical) optimal solution
- objective value achieved by algorithm
- always >= 1
- How can we argue about an optimal solution??

Approximation Algorithms

- Confusing: must compare the objective value achieved with the optimal objective value without computing the optimal objective value
- Every given instance has some optimum solution
- Approximation algorithm must get "close enough" to that optimum
- Even more confusing: maybe for "small" instances, algorithm gets closer to the optimum than for "large" instances
- approximation ratio may depend on the size of the input

Vertex Cover

- Consider following algorithm:
on input G:

1. $C=$ empty
2. $\mathrm{E}^{\prime}=$ all edges in G
3. while E^{\prime} is not empty
4. let (u, v) be some edge in E^{\prime}
5. $\quad \mathrm{C}=\mathrm{C}+\mathrm{u}+\mathrm{v}$
6. remove from E' every edge touching u or v
7. return C

- Runtime: $\mathrm{O}\left(\mathrm{n}^{2}\right)$. Loop executed $\mathrm{O}(\mathrm{n})$ times.

Vertex Cover

Algorithm

Optimum

Approximation Algorithms

- The 2-approximation to MIN-VC is pretty simple
- can we do better? maybe 3/2-approximation?
- Does every optimization problem have such a "nice" approximation algorithm?

Travelling-Salesman Problem

- Theorem: If there exists a constant ratio approximation to TSP , then $\mathrm{P}=\mathrm{NP}$
- holds for any constant
- maybe a $(\log n)$-approximation exists
- Suppose there exist a constant $r>=1$ and a polynomial time algorithm A such that A is an r approximation for TSP
- We develop a new algorithm B, using A, that solves HAM-CYCLE in polynomial time
- Since HAM-CYCLE is NP-complete, this implies $\mathrm{P}=\mathrm{NP}$

Travelling-Salesman Problem

Travelling-Salesman Problem

G
otherwise, output NO

- Runtime: $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{n}^{s}\right)$, where $\mathrm{O}\left(\mathrm{n}^{s}\right)$ is runtime of A

Travelling-Salesman Problem

- If G has a hamcycle D, then D is a hamcycle in G ' with weight n
- no other hamcycle in G^{\prime} has smaller weight
- A is an r-approximation, and outputs C
- so, $w(C)<=r^{*} n$
- If G has no hamcycle, then any hamcycle in G' must use at least one "heavy" edge - weight of any hamcycle of $G^{\prime}>=r^{*} n+1$
- so, $w(C)>r^{*} n$

