NP-completeness

- Cook, Levin, 1971: showed SAT is NP-complete
- Karp, 1972: showed 21 well-known problems are *NP-complete*
 - CLIQUE, VC, HAM-CYCLE, SUBSET-SUM
- Since then, hundreds of problems appearing in practice have been shown to be NP-complete
- Showing a problem L is NP-hard is very strong evidence there is no polynomial time algorithm solving L.
 - Otherwise, P=NP, and all these problems have polynomial time algorithms.

Most Believed View of the World

CSC 363 Summer 2005

Lecture Week 12

1972, P or NP-complete?

- Linear Programming ("LP")
 - given some constraint functions and an objective function, find a solution which satisfies the constraints and optimizes the objective
 - Simplex algorithm known, but not polynomial
 - Khachiyan, 1979: ellipsoid algorithm, LP is in P

1972, P or NP-complete?

- Primality Testing ("PRIME")
 - given an integer n in binary (log n bits), decide whether it is prime or not
 - cannot try all divisors from 2 to n (or n^{1/2}), not polynomial in *log n*
 - easy: PRIME is in coNP
 - if *n* is not prime, guess divisor and check it
 - harder: PRIME is in NP
 - probably not NP-complete, unless NP=coNP

1972, P or NP-complete?

- Agrawal, Kayal, Saxena, 2002: PRIME is in P
 - there exists an algorithm which, given integer *n*, decides whether *n* is prime in time polynomial in log n
 - the output is only YES/NO
 - we still do not know how to (or if we can) actually compute a divisor of n
 - some cryptographic systems assume this is hard

1972, P or NP-complete?

- Graph Isomorphism
 - given two graphs, are they a permutation of each other?
 - to obtain isomorphic graphs:
 - draw the graph with all its edges
 - erase node labels
 - write down a new label for every node

-

1972, P or NP-complete?

- GRAPH-ISOMORPHISM is in NP

 guess a permutation π (*n log n* bits)
 check (u,v) in E(G₁) iff (π(u),π(v)) in E(G₂)
- not known or believed to be in P
- not known or believed to be NP-complete
- still open today ..

If P≠NP..

- There are problems inside NP which are neither in P nor NP-complete
- There are infinitely many classes, getting harder and harder, strictly between P and NP-complete
- GRAPH-ISOMORPHISM conjectured to be strictly in between P and NP-complete

SUBGRAPH-ISOMORPHISM

- however, SUBGRAPH-ISOMORPHISM is NP-complete!
 - given G, H
 - can delete nodes of G, together with incident edges
 - do not delete any edges between remaining nodes
 - only afterwards match the remains of G with H
 - harder, because not clear what we should delete

SUBGRAPH-ISOMORPHISM

Decision, Search and Optimization Problems

- We developed our theory using languages, or, equivalently, *decision problems*
 - i.e. given input *x*, output YES or NO
- In practice, many problems are search problems
 i.e. given input x, output some object y, if one exists
- Yet more general are optimization problems
 - i.e. given a set of input constraints and an objective function, output an object which satisfies all the constraints and optimizes (minimizes/maximizes) the objective function

Search Problems

- Given formula, output a satisfying assignment if one exists
- Given a graph *G* and an integer *k*, output a clique/vertex cover/independent set of *G* of size *k*, if one exists
- Given a set of numbers and a target, output a subset of those numbers which sum up to the target, if such a subset exists

Optimization Problems

- Given graph G, output a clique C of G of maximum size
 - constraint: C is a set of vertices in G
 - constraint: C is a clique
 - objective: maximize |C|
- Given a set of weights w₁, ..., w_m and a capacity W, output a subset S of those weights which have a maximum weight, while not exceeding W
 - constraint: S is a subset of 1, ..., m
 - constraint: sum of weights w_i with i in S is at most W
 - objective: maximize sum of weights w_i with i in S

Relation Between Decision, Search and Optimization Problems

- In general:
 - decision problem is "easiest"
 - search problem is "harder"
 - optimization problem is "the hardest"
- Meaning:
 - IF we can solve the search problem in polytime, THEN we can solve the decision problem in polytime
- In most cases, *but not all*, these problems are polytime equivalent:
 - IF we can solve the decision problem in polytime, THEN we can solve the optimization problem in polytime
 - e.g. MAX-CLIQUE, MIN-VC, MAX-SK
- Notable exception:
 - PRIME is in P, but PRIME-SEARCH maybe not in P

Dealing with NP-completeness

- NP-complete problems appear in practice
- We can't hope to solve them in polynomial time, but we still have to solve them somehow..
- Approaches
 - problem restrictions
 - heuristics
 - randomization
 - approximation

Problem Restrictions

- Maybe problem statement is too general, make extra assumptions about input:
 - degree of vertices is bounded in a graph
 - graph is planar
 - weights are not too large
- Hopefully, problem becomes easier
- Example: a graph with maximum vertex degree *d* can be coloured with *d*+1colours by a simple Greedy algorithm

Heuristics

- Use an algorithm that works well in most practical cases, but
 - output not necessarily correct in all cases
 - runtime not necessarily good in all cases
 - worst-case runtime may be unknown or exponential, hopefully it doesn't occur often
- Example: Simplex algorithm for solving Linear Programming
 - worst case runtime is exponential
 - in practice it works well
 - still used even after polytime algorithms discovered

Randomization

- Allow Turing Machine to "flip coins"
 output is correct with some high probability
 - runtime is polynomial with some high probability
- BPP = class of decision problems which have algorithms with
 - worst case runtime is always polynomial
 - probability of error < 1/3
- Idea: if probability of error can be made very low (say, 2⁻¹⁰⁰), then it is more likely that the machine will crash then that it will give a wrong answer
- Example: Primality testing
- However, conjectured BPP≠NP

Approximation Algorithms

- For optimization problems, compromise on optimizing the objective function
- Output a solution which

 satisfies all the constraints
 - not necessarily optimal
- Runtime is polynomial
- Need some measure of how useful the algorithm really is
- Approximation ratio = ratio between
 - objective value achieved by some (hypothetical) optimal solution
 - objective value achieved by algorithm
 - always >= 1
- How can we argue about an optimal solution??

Approximation Algorithms

- Minimization problem P:
 - input constraints C, objective function f
 - output a solution S satisfying C
 - minimize f(S)
- An r-approximation algorithm for P
 - output a solution S satisfying C
 - let O be an optimal solution
 - $f(O) \le f(S) \le r^{*}f(O)$
 - runtime is polynomial
- For a maximization problem
 - $\ (1/r)^* f(O) <= f(S) <= f(O)$

Approximation Algorithms

- Confusing: must compare the objective value achieved with the optimal objective value without computing the optimal objective value
 - Every given instance has some optimum solution
 - Approximation algorithm must get "close enough" to that optimum
- Even more confusing: maybe for "small" instances, algorithm gets closer to the optimum than for "large" instances
 - approximation ratio may depend on the size of the input

Vertex Cover

- Consider following algorithm:
 an input C
 - on input G:
 - 1. C = empty
 - E' = all edges in G
 while E' is not empty
 - 4. let (u,v) be some edge in E'
 - 5. C = C + u + v
 - remove from E' every edge touching u or v
 - 7. return C
- Runtime: O(n²). Loop executed O(n) times.

Vertex Cover

Vertex Cover

- Claim: the previous algorithm is a 2-approximation
- Output C is a vertex cover

 edges are removed only when one of their endpoints is included in the cover
- Let O = an optimal vertex cover
 - so, |O| <= |C|
- Let A = set of edges picked in main loop
 - edges in A share no endpoints
 - to cover all edges in A, any vertex cover needs at least |A| vertices
 - in particular, $|O| \ge |A|$
 - but $|C| = 2^*|A|$
 - − so, |C| <= 2*|O|</p>

Approximation Algorithms

- The 2-approximation to MIN-VC is pretty simple
 - can we do better? maybe 3/2-approximation?
- Does every optimization problem have such a "nice" approximation algorithm?

Inapproximability Results

- Results of the form
 - "If there exists an *r*-approximation to this problem, then something very unlikely happens"
- They are "negative" results, seen as strong evidence that an *r*-approximation algorithm does not exist
- Highly technical
- Example:
 - If there exists a 1.36-approximation to Vertex Cover, then P=NP

Travelling-Salesman Problem

- Theorem: If there exists a constant ratio approximation to TSP, then P=NP
 bolds for any constant
 - holds for any constant
 - maybe a (*log n*)-approximation exists
- Suppose there exist a constant r >= 1 and a polynomial time algorithm A such that A is an rapproximation for TSP
- We develop a new algorithm *B*, using *A*, that solves HAM-CYCLE in polynomial time
- Since HAM-CYCLE is NP-complete, this implies P=NP

Travelling-Salesman Problem

Algorithm B

on input G:

G' = add all missing edges to Gdefine weight function w: w(original edge) = 1 w(new added edge) = $r^*n + 1$ run A on input G', w to get a cycle Cif $w(C) <= r^*n$, output YES otherwise, output NO

Runtime: O(n² + n^s), where O(n^s) is runtime of A

Travelling-Salesman Problem

Travelling-Salesman Problem

- If *G* has a hamcycle *D*, then *D* is a hamcycle in *G*' with weight *n*
 - no other hamcycle in G' has smaller weight
 - -A is an *r*-approximation, and outputs *C*
 - $\operatorname{so}, w(C) \le r^*n$
- If G has no hamcycle, then *any* hamcycle in G'must use at least one "heavy" edge
 - weight of any hamcycle of $G' \ge r^*n+1$
 - $-\operatorname{so},\,w(C)>r^*n$