Approximation Algorithms

CSC 363 Summer 2005

Lecture Week 13

Approximation Algorithms

- A polytime $r(n)$-approximation algorithm $A L G$ for a minimization problem:
- ALG is a polynomial time algorithm
- for every instance I, let $A L G(I)$ denote object output by $A L G$ when run on instance I
- for every instance I, let OPT(I) denote object which achieves optimal solution on I
$-f(O P T(I))<=f(A L G(I))<=r(n) * f(O P T(I))$
- equivalently, $1<=f(A L G(I)) / f(O P T(I))<=r(n)$
$-n$ is some parameter, not necessarily size of input instance (e.g. number of vertices in graph)

Approximation Schemes

- A Polynomial-Time Approximation Scheme (PTAS) for a maximization problem is an algorithm that:
- takes as input an instance I
- takes as input an extra parameter $\varepsilon>0$
- for fixed ε, runs in time polynomial in n, the size of I
- outputs a solution $A L G(I)$ that satisfies $(1-\varepsilon)^{\star} f(O P T(I)<=f(A L G(I))<=f(O P T(I))$
- The behaviour of the algorithm as ε decreases can be "wild". Runtime may be $O\left(n^{(1 / \varepsilon)!}\right)$
- A Fully-Polynomial-Time Approximation Scheme (FPTAS) is an algorithm where the running time is polynomial in both n and $1 / \varepsilon$. E.g. $O\left(n^{3}(1 / \varepsilon)^{4}\right)$
- In an optimization problem, compromise on optmizing the objective function
- Optimization problem:
- given an input instance I (e.g. a graph, a sequence of weights)
- output an object S (e.g. a set of vertices, a subsequence of weights)
- S must satisfy some constraints relating to I (e.g. set is a clique, weights selected fit in knapsack)
- objective function assigns a real number value to every possible output object (e.g. size of the set, weight of items selected)
- on every instance I, output object S which optimizes objective function (e.g. minimum size set, maximum weight packed)

Approximation Algorithms

- How close can we get to the optimum?
- Equivalently, how close to 1 can $r(n)$ be?
- For Vertex Cover, we have seen an approximation with $r(n)=2$
- Known: there is no approximation for Vertex Cover with $r(n)<=1.36$ unless $\mathrm{P}=\mathrm{NP}$
- For general TSP we proved that we cannot have an approximation with $r(n)$ being any constant, unless $\mathrm{P}=\mathrm{NP}$.
- There are problems for which we can find arbitrarily good approximations!

FPTAS for MAX-GK

- General Knapsack problem:
- given a sequence of items
- each has a weight w_{i} and a profit p_{i}
- given a capacity W
- select subsequence of weights such that
- weight capacity not exceeded: $\Sigma_{\text {ins }} w_{i}<=W$
- profit is maximized: $\Sigma_{i \text { ins }} p_{i}$
- GKD is NP-complete as SKD <=p GKD
- MAX-GK is the optimization problem

A Pseudo-Polynomial Time Algo for MAX-GK

- Dynamic programming approach
- Define $A[i, j]=$ minimum weight subset of $\{1 \ldots i\}$ that has profit at least j (if no such subset exists, let $A[i, j]=$ infinity)
- Let $P=$ maximum profit of any single item
- Maximum profit we can hope for is $n^{*} P$
- If we knew $A[n, j]$ for every $0<=j<=n^{*} P$, the maximum profit is the largest j such that $A[n, j] \neq$ infinity and $A[n, j]<=W$

Scaling and Rounding

- Many times, a pseudo-polynomial algorithm leads to a PTAS using scaling and rounding
- If all profits p_{i} have a common factor f, and we divide each profit by this f, the optimal solutions remain the same
- If f is not a common factor, and we still divide the profits by f and round the values to integers, optimal solutions need not be the same, but we hope that they are "close"

FPTAS for MAX-GK

- Let O be optimal solution to instance I
- Key idea: since algorithm is exact, S is the optimal solution to l^{\prime}, so $p^{\prime}(S)>=p^{\prime}(O)$.
- Then:

$$
\begin{aligned}
& p(S)=\Sigma_{i \text { ins }} p_{i}=K^{*} \Sigma_{\text {iins }}\left(p_{i} / K\right)>= \\
& >=K^{*} \sum_{\text {ins }}^{L} p_{i} / K^{\lrcorner}=K^{*} \Sigma_{i \text { ins }} p_{i}^{\prime}=p^{\prime}(S)
\end{aligned}
$$

- And:
$p^{\prime}(\mathrm{O})=K^{*} \Sigma_{\text {in } 0} p_{i}^{\prime}=K^{*} \Sigma_{\text {in }}{ }^{L} p_{i} / K^{\lrcorner}>=$
$>=K^{*} \Sigma_{\text {ino }}\left(p_{i} / K-1\right)=p(O)-K^{*}|O|$
- Therefore, $p(S)>=p(O)-K^{*} n$

A Pseudo-Polynomial Time Algo for MAX-GK

- How to compute $A[i, j]$:
- A[i, 0] = empty set, for $0<=i<=n$
- A $[0, j]=$ infinity, for $0<j<=n^{*} P$
- for $i>0$ and $j>0$, we have $A[i, j]=$
- infinity, if $A[i-1, j]=A\left[i-1, j-p_{j}=\right.$ infinity
- A $[i-1, j], \quad$ if $w(A[i-1, j])<=w\left(A\left[i-1, j-p_{j}\right]\right)+w_{i}$
- $A\left[i-1, j-p_{i}\right]+\{i\}, \quad$ otherwise
- This algorithm is exact (finds the optimum solution)
- Runtime is $O\left(n^{2} P\right)$, which is "pseudo-polynomial", because only $\log (P)$ is polynomial in input size, not P itself.
- Pseudo-polynomial = polynomial in values of numbers in input, not in size of those numbers.

FPTAS for MAX-GK

- Given $I=\left(\left(w_{1}, p_{1}\right), \ldots,\left(w_{m}, p_{m}\right), W\right)$ instance to MAX-GK
- Let K be a factor to be determined later
- Define a new instance l 'by $w_{i}^{\prime}=w_{i}, p_{i}^{\prime}=L_{p_{i}} / K^{\lrcorner} \mathrm{L}, W^{\prime}=W$
- Run pseudo-polynomial algorithm on l '. This produces a set S. Output S as an answer to the original instance I.
- Note S is feasible, because weights are the same
- Runtime: $O\left(n^{2 *} P / K\right)$, where P is maximum profit in I.

FPTAS for MAX-GK

- Assume we throw away items that have a weight greater than W before we compute P, the maximum profit of a single item
- Then, $p(O)>=P$
- For given slack variable ε, let $K=\varepsilon^{*} P / n$
- We get
$p(S)>=p(O)-K^{*} n=p(O)-\varepsilon^{*} P>=$
$>=p(O)-\varepsilon^{*} p(O)=(1-\varepsilon){ }^{*} p(O)$
- Runtime $O\left(n^{2} * P / K\right)=O\left(n^{2 *} n / \varepsilon\right)=O\left(n^{3} * 1 / \varepsilon\right)$

Review Computability

Review Complexity

- definitions and properties: TM variants, recognizable, decidable, computable function, mapping reduction
- diagonalization method
- common languages: $\mathrm{A}_{\text {TM }}, \mathrm{E}_{\text {TM }}, \ldots$
- big picture: there are things we cannot solve algorithmically
- definitions and properties: TM running time, P , nondeterministic TMs, NP, coNP, verifiers, polytime reductions, (co)NP-hard, (co)NPcomplete, approximation algorithms
- sketch of proof that SAT is NP-complete
- a bunch of reductions
- decision/search/optimization problems
- big picture: NP-hard = likely not polynomial, examples of reductions

