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Approximation Algorithms
• In an optimization problem, compromise on 

optmizing the objective function
• Optimization problem:

– given an input instance I (e.g. a graph, a sequence of 
weights)

– output an object S (e.g. a set of vertices, a subsequence 
of weights)

– S must satisfy some constraints relating to I (e.g. set is a 
clique, weights selected fit in knapsack)

– objective function assigns a real number value to every 
possible output object (e.g. size of the set, weight of items 
selected)

– on every instance I, output object S which optimizes 
objective function (e.g. minimum size set, maximum 
weight packed)

Approximation Algorithms

• A polytime r(n)-approximation algorithm ALG for 
a minimization problem:
– ALG is a polynomial time algorithm
– for every instance I, let ALG(I) denote object output by 

ALG when run on instance I
– for every instance I, let OPT(I) denote object which 

achieves optimal solution on I
– f(OPT(I)) <= f(ALG(I)) <= r(n) * f(OPT(I))
– equivalently, 1 <= f(ALG(I)) / f(OPT(I)) <= r(n)
– n is some parameter, not necessarily size of input 

instance (e.g. number of vertices in graph)

Approximation Algorithms

• How close can we get to the optimum?
• Equivalently, how close to 1 can r(n) be?
• For Vertex Cover, we have seen an 

approximation with r(n) = 2
• Known: there is no approximation for Vertex 

Cover with r(n) <= 1.36 unless P=NP
• For general TSP we proved that we cannot have 

an approximation with r(n) being any constant, 
unless P=NP.

• There are problems for which we can find 
arbitrarily good approximations!

Approximation Schemes

• A Polynomial-Time Approximation Scheme 
(PTAS) for a maximization problem is an 
algorithm that:
– takes as input an instance I
– takes as input an extra parameter � > 0
– for fixed �,runs in time polynomial in n, the size of I
– outputs a solution ALG(I) that satisfies

(1-�)* f(OPT(I) <= f(ALG(I)) <= f(OPT(I))

• The behaviour of the algorithm as � decreases 
can be “wild”. Runtime may be O(n(1/�)!)

• A Fully-Polynomial-Time Approximation Scheme 
(FPTAS) is an algorithm where the running time 
is polynomial in both n and 1/�. E.g. O(n3(1/�)4)

FPTAS for MAX-GK

• General Knapsack problem:
– given a sequence of items
– each has a weight wi and a profit pi

– given a capacity W
– select subsequence of weights such that

• weight capacity not exceeded: �i in S wi <= W

• profit is maximized: �i in S pi

• GKD is NP-complete as SKD <=p GKD
• MAX-GK is the optimization problem



A Pseudo-Polynomial Time Algo for 
MAX-GK

• Dynamic programming approach
• Define A[i, j] = minimum weight subset of 

{1…i} that has profit at least j (if no such 
subset exists, let A[i, j] = infinity)

• Let P = maximum profit of any single item
• Maximum profit we can hope for is n*P
• If we knew A[n, j] for every 0 <= j <= n*P, 

the maximum profit is the largest j such 
that A[n, j] � infinity and A[n, j] <= W

A Pseudo-Polynomial Time Algo for 
MAX-GK

• How to compute A[i, j]:
– A[i, 0] = empty set, for 0 <= i <= n
– A[0, j] = infinity, for 0 < j <= n*P
– for i > 0 and j > 0, we have A[i, j] =

• infinity, if A[i-1, j] = A[i-1, j-pi] = infinity
• A[i-1, j], if w(A[i-1, j]) <= w(A[i-1, j-pi]) + wi

• A[i-1, j-pi] + { i }, otherwise

• This algorithm is exact (finds the optimum solution)
• Runtime is O(n2P), which is “pseudo-polynomial”, 

because only log(P) is polynomial in input size, not 
P itself.

• Pseudo-polynomial = polynomial in values of 
numbers in input, not in size of those numbers.

Scaling and Rounding

• Many times, a pseudo-polynomial algorithm 
leads to a PTAS using scaling and rounding

• If all profits pi have a common factor f, and we 
divide each profit by this f, the optimal solutions 
remain the same

• If f is not a common factor, and we still divide the 
profits by f and round the values to integers, 
optimal solutions need not be the same, but we 
hope that they are “close”

FPTAS for MAX-GK
• Given I = ((w1, p1), …, (wm, pm), W) instance to 

MAX-GK
• Let K be a factor to be determined later
• Define a new instance I’ by

w’i = wi , p’i = � pi / K � , W’ = W

• Run pseudo-polynomial algorithm on I’. This 
produces a set S. Output S as an answer to the 
original instance I.

• Note S is feasible, because weights are the same
• Runtime: O(n2 * P/K), where P is maximum profit 

in I.

FPTAS for MAX-GK

• Let O be optimal solution to instance I
• Key idea: since algorithm is exact, S is the optimal 

solution to I’, so p’(S) >= p’(O).
• Then:

p(S) = � i in S pi = K * � i in S (pi / K) >=

>= K * � i in S � pi / K � = K * � i in S p’i = p’(S)

• And:
p’(O) = K * � i in O p’i = K * � i in O � pi / K � >=

>= K * � i in O (pi / K – 1) = p(O) – K * |O|

• Therefore, p(S) >= p(O) – K * n

FPTAS for MAX-GK

• Assume we throw away items that have a weight 
greater than W before we compute P, the 
maximum profit of a single item

• Then, p(O) >= P
• For given slack variable �, let K = �*P / n
• We get

p(S) >= p(O) – K * n = p(O) – � * P >=

>= p(O) – � * p(O) = (1-�) * p(O)

• Runtime O(n2 * P/K) = O(n2 * n/�) = O(n3 * 1/�)



Review Computability

• definitions and properties: TM variants, 
recognizable, decidable, computable 
function, mapping reduction

• diagonalization method

• common languages: ATM, ETM, …

• big picture: there are things we cannot 
solve algorithmically

Review Complexity

• definitions and properties: TM running time, P, 
nondeterministic TMs, NP, coNP, verifiers, 
polytime reductions, (co)NP-hard, (co)NP-
complete, approximation algorithms

• sketch of proof that SAT is NP-complete
• a bunch of reductions

• decision/search/optimization problems
• big picture: NP-hard = likely not polynomial, 

examples of reductions


