
Restricted Stack Implementations

Matei David, Alex Brodsky, Faith Ellen Fich

Department of Computer Science, University of Toronto

Contact
Matei David
Department of Computer Science, University of Toronto
3302—10 King’s College Road,
Toronto, Canada
M5S 3G4
matei@cs.toronto.edu

+1-416-946-3924

Brief Abstract
We give single-valued Stack (Queue) implementations from Registers and usual con-
sensus number 2 objects, such as Fetch&Add. We also give a Stack implementation for
two pushers and any number of poppers. We introduce the BH object type, which cap-
tures the computational power of a system of commutative and overwriting consensus
number 2 objects, and might prove a useful tool in developing impossibility results.

To be considered for regular track.

Eligible for best student paper award.

Restricted Stack Implementations

Matei David, Alex Brodsky, Faith Ellen Fich

Department of Computer Science, University of Toronto,
10 King’s College Road,

Toronto, Canada
matei|abrodsky|fich@cs.toronto.edu

Abstract. This paper shows that Stacks (and Queues) shared by any number of
processes, but, in which, all stored elements are the same, can be implemented
using only commutative and overwriting objects. These include Registers and
simple objects of consensus number 2, such as Fetch&Add. It also shows the
same result for Stacks that can contain arbitrary values and which support any
number of poppers, but at most two pushers.
For these implementations, a new object, BH, is introduced. We prove that a sys-
tem with one BH object and single-writer Registers has the same computational
power as a system with countably many commutative and overwriting objects.
This provides a simple characterization of the class of objects that can be imple-
mented from commutative and overwriting objects, and creates a potential tool
for proving impossibility results.

1 Introduction

Even though Stacks and Queues are important and well studied data structures, they
are not usually available in the hardware and, to use them, one has to implement them
from the available basic types. We know Stacks and Queues have consensus number
2 [Her91], so if the distributed system provides object types with consensus number∞
(Compare&Swap, LL/SC), wait-free Stack and Queue implementations exist, regard-
less of the number of processes in the system.

In this paper, we consider the question of implementing wait-free Stacks and Queues
in systems where only common consensus number 2 types (Fetch&Add, Swap) are
available. By Herlihy’s universality results [Her91], Stack and Queue implementations
exist in systems with two processes, from any consensus number 2 type. In contrast, no
such implementations are known when the number of processes is at least 3 and, in fact,
it is conjectured that they do not exist [Li01,Dav04b]. Proving this negative result would
also solve Herlihy’s long-standing open question regarding the ability of Fetch&Add
objects to implement every other consensus number 2 type. Working towards settling
the conjecture, we give several restricted Stack and Queue implementations.

Since modern distributed systems do provide more powerful types, our results are
mainly of theoretical interest. Their relevance stems from the fact that they are dealing
with questions at the foundations of our understanding of shared memory distributed
computing.

Two operationscommuteif the order in which they are applied does not change the
resulting state of the object. One operationoverwritesanother if applying this operation
results in the same object state whether or not the other operation is applied immedi-
ately before it. Commutative and overwriting objects are those for which every pair of
operations performed by different processes either commute or one overwrites the other.
Many such objects, including Test&Set objects, Fetch&Increment objects, Fetch&Add
objects, Swap objects and Registers are provided in real systems. All of them have
consensus number at most 2 [Her91]. The class of all commutative and overwriting
read-modify-write objects with consensus number 2 is called Common2.

Using Herlihy’s universal construction [Her91], any object of consensus number 2
shared by two processes can be implemented from Registers and Common2 objects.
Afek, Weisberger, Weisman [AWW93] prove that any Common2 object shared by any
number of processes can be implemented from Registers and any type of objects of
consensus number 2. Hence, if a Queue or Stack can be implemented from Registrers
and Common2 objects, it can be implemented from Registers and any type of objects of
consensus number 2. However, it is conjectured that this is impossible [Li01,Dav04b].
This negative result would imply that the characterization of an object as having con-
sensus number 2 is not sufficient to describe its computational power in systems of more
than 2 processes.

Attempts to prove this conjecture for Queues have resulted in the development of
a number of restricted implementations of Queues from commutative and overwriting
objects (such as Fetch&Add objects, Swap objects, and Registers). Specifically, there
are wait-free implementations of Queues shared by one or two dequeuers and any num-
ber of enqueuers [HW90,Li01] and wait-free implementations of Queues shared by one
enqueuer and any number of dequeuers [Dav04a].

Another natural restriction is to consider Stacks and Queues with domain size 1,
i.e. where all the elements stored in the Stack or Queue are the same. Note that single-
valued Stacks and Queues behave identically. Push and Enqueue increase the number
of stored elements by one. Pop and Dequeue decrease the number of stored elements
by one, if there was at least one, and return whether or not this was the case. We prove
that a single-valued Stack shared by any number of pushers and poppers can be im-
plemented from commutative and overwriting objects. This means that the difficulty of
implementing a general stack is not simply coordinating pushers and poppers so that
they can all complete their operations, but must involve poppers determining the order
in which the steps of different pushers are linearized.

We obtain our implementation by first constructing an implementation of a Stack
with arbitrary domain shared by one pusher and any number of poppers. Then we show
how to transform it to obtain an implementation of a single-valued Stack shared by any
number of pushers and poppers. We also show how to extend the number of pushers
from one to two when the domain is arbitrary. In contrast, it is not known how to im-
plement a Queue shared by two or more enqueuers and any number of dequeuers from
commutative and overwriting objects.

The implementations in this paper do not directly use Common2 objects. Instead,
we introduce a new object, BH, with a single operation, Sign, and we show that, for
any number of processes, the BH object can be implemented from a single Fetch&Add

object. Then we implement our Stacks from a single BH object and one single-writer
Register per pusher. The form of our implementations is very simple: To perform a
Push, a process appends its current state to its single-writer Register, and performs
one or two Sign operations (depending on the implementation). To perform a Pop, a
process may perform an Append, followed by two Sign operations and then it collects
the single-writer Registers of all pushers.

We also show that any countably infinite collection of Fetch&Add objects and
single-writer Registers can be simulated using one BH object and one single-writer
Register per process. In this case, a process can perform any operation by appending the
operation and its arguments to its single-writer Register, applying one Sign operation to
the BH object, and then reading the single-writer Registers of all other processes. Thus,
a system with one BH object and one single-writer Register per process and a system
with Common2 objects and Registers areequally powerful. In particular, to show that
an object cannot be implemented from Registers and objects in Common2, it suffices to
prove that it has no implementation from one BH object and one single-writer Register
per process. Moreover, it suffices to prove the lower bound for a restricted class of im-
plementations in which each operation is simulated by an algorithm with a fixed, very
simple form. This restriction enables us to better understand the flow of information
between processes and to analyze the interaction between them.

Although the BH object is not an object one would want to implement in hard-
ware or use in an efficient implementation, we believe it is a very useful theoretical
tool for studying the computational power of consensus number 2 objects that can be
implemented from Registers and objects in Common2, as it provides a simple charac-
terization of the information a process can obtain from such objects during the course
of a computation. It has certainly helped us understand why Stacks and Queues are
difficult to implement.

2 The BH object type

2.1 BH type definition

Consider an object with only one operation, in which a process appends its own id to
a shared log. We refer to an occurrence of a process id in the log as asignature. We
assume process ids are positive integers, so a list of signatures is a finite sequence of
positive integers. The object keeps, by means of its internal state, a complete ordered
list of signatures. As a process signs the log, that process receives in response the entire
list of signatures, including the one being applied by its current operation. It is not hard
to see that such an object has consensus number∞, so it does not represent the limited
power of a system with Registers and Common2 objects.

Informally, a BH object, short forBlurred History, works much like the object de-
scribed above, but it is restricted so that it can be implemented from Registers and
Common2 objects. As before, the object has one operation, Sign, and the state of the
BH object is the complete list of signatures applied so far. However, the responsePa

gets from Sign is not the exact stateσ of the BH object, but instead, a set of sequences
indistinguishable(in the sense defined below) toPa from σ.

Two sequences of integersσ,σ′ area-indistinguishableif there existb 6= c, both dif-
ferent froma, such thatσ = σ1 ·bc·σ2, σ′= σ1 ·cb·σ2 and neitherb norc appears inσ2.
In other words,σ′ is exactly the same asσ, except for the last consecutive occurences of
two different elements other thana, which are swapped. Two sequencesσ,σ′ are alsoa-
indistinguishable if there is a sequenceσ′′ which isa-indistinguishable from both. Thus,
a-indistinghuishability is transitively closed. We use the termsa-indistinguishable and
indistinguishable toPa to refer to the same realtion.

To provide further intuition, we also give a direct, yet equivalent, defintion for the
notion of indistinguishability. We can view a stateσ as encapsulating two types of
information:

– thenumber of signaturesby every process, and
– a total orderon these signatures (i.e. for each signature, which signatures precede

it and which signatures follow it).

Let σ be the state of the BH object immediately after a Sign byPa. Consider the loca-
tions within σ of the last signatures by every process other thanPa. In response to its
signing operation,Pa will retrieve the following information fromσ:

– the number of signatures by every process, and
– the relative position in the total order of any two signatures, at least one of which

is not the last signature by a process other thanPa (i.e. for each signature, except
for the last signatures of other processes, which signatures precede it and which
signatures follow it).

Hence,Pa won’t be able to tell therelative orderof the last signatures by other pro-
cesses, when those signatures are consecutive. For example, if the BH object is in state
123 and P1 applies Sign, the response will be{1231,1321}, which we can write as
1{23}1. As a more elaborate example, if the BH object is in the state1324451671718
andP9 applies Sign,P9 will get the response1{23}4{45}1671{178}9. Notice that in
this example,P9 can derive the exact location of the last (and only) signature byP6

because it knows the position of the two surrounding signatures (the second byP1 and
the first byP7).

When two sequencesσ,σ′ area-indistinguishable, one is a permutation of the other,
and the set of locations of last signatures by processes other thanPa is the same in both.
From the response to a Sign operation,Pa can compute the response of any previous
Sign operation by some other processPb, except possibly for the last operation byPb. To
see this, note thatPa has the position of any signature ofPb except possibly the last, and
furthermore, later steps (byPb and by other processes) can only add information about
the exact state at the end ofPb’s operation. For example, ifP1 receives the response
124{24}353151to a Sign operation, it can see that the responseP5 got to its first Sign
operation is124{234}5. In this example,P1 has the position of the first signature byP3,
but it can see thatP5 couldn’t have had that information from the response to its first
Sign.

2.2 Implementing a BH object

In this section, we informally explain how to implement a BH object from one Fetch&Add
object. A more formal description of this implementation appears in [Dav04b]. The

initial state of the BH object is an empty sequence, and the initial value held by the
Fetch&Add object in our implementation is 0.

We can view the valueV stored in the Fetch&Add object as an infinite sequence
of bits,b0b1 Let N denote the number of processes in the system. LetV1, . . . ,VN be
N infinite subsequences of bits ofV which are mutually disjoint. For example, allocate
the bits ofV in Round-Robin fashion, soVa consists of{b j |(j modN)+1= a}. At any
point in time,Va encodes a finite sequence of non-negative integers in such a way that
any value can be appended at the end of the sequence by only changing certain bits of
Va from 0 to 1 (e.g.u1,u2,u3 can be encoded as11+u1011+u2011+u300..).

We implement every Sign operation byPa using one Fetch&Add operation onV that
appends a number to the sequence encoded inVa. SincePa is the only process changing
Va, it can keepVa in a local registerva. WheneverPa needs to append a number to the
sequence encoded inVa, it can inspectva to decide which bits ofVa have to be set from
0 to 1.Pa can then set those bits by a Fetch&Add operation onV with an appropriate
argument. For example, ifVa stores2,0,3, encoded as111010111100.., andPa needs
to append the value 1 to this sequence, it has to set the 11-th and 12-th bits ofVa from
0 to 1.Pa can achieve this by performing a Fetch&Add operation onV with argument
2a−1+11N +2a−1+12N.

In our BH implementation, every processPa has, in addition tova, a second local
registerwa. The latter is used to store the last value recieved byPa from a Fetch&Add
operation onV. A high-level Sign is implemented as follows:

– Pa computes, usingva andwa, a valuex such that performing a Fetch&Add opera-
tion onV with argumentx has the effect of appendingwa to the sequence encoded
in Va;

– Pa performs Fetch&Add onV with argumentx;
– Pa stores inwa the value received as response to its Fetch&Add operation;
– Pa updatesva to again mirrorVa;
– Pa computes fromwa the response to the high-level Sign operation.

We have already argued that the computation ofx is possible, so all we have left to
explain is how to compute the return value for the high-level Sign.

From the value retrieved as response to its Fetch&Add operation,Pa can compute
the number of previous signatures by some other processPb as simply the number of
elements in the sequence encoded inVb. Let ub,i be thei-th number in the sequence
encoded inVb. Thenub,i is the value retrieved byPb as response to its Fetch&Add oper-
ation during its(i−1)-st high-level Sign operation. Hence,Pa can compute fromub,i the
relative position in the total order of the(i−1)-st signature byPb. The only information
about the signature log thatPa might not be able to compute is the relative order of the
last signatures by some other processes, when those signatures are consecutive. This is
precisely the information needed to construct the class of states indistinguishable toPa

from the signature log.

2.3 The power of a BH object

In this section, we show that a system with of one BH object and one single-writer
Register per process can be used to simulate a system with infinitely many Com-
mon2 objects and Registers. To do that, we implement a countably infinite collection

of Fetch&Add objects and SW Registers using one BH object and one SW Register
per process. Our claim follows from the fact that any Register can be implemented
from SW Registers [HW90], and that any Common2 object can be implemented from
Fetch&Add objects and Registers [AWW93].

Consider a system of countably infinitely many Fetch&Add objects and SW Regis-
ters. Assume the objects in this system are indexed by positive integers. A process may
perform three types of operations: Fetch&Add(k,x), if k is the index of a Fetch&Add
object; Read(k) and Write(k,x), if k is the index of a Register. In a system with one
BH object and one SW Register per process, we implement each of the three types of
operations as follows:

– Pa appends the current high-level operation to its Register;
– Pa signs the BH object;
– Pa collects the Registers of all processes;
– Pa locally computes the result of the implemented operation.

Throughout the implementation, the value held inPa’s Register is a complete ordered
list of all the high-level operations started byPa. We linearize a high-level operation at
the moment the process executing it signs the BH object. Thus, given the responsesPa

gets to its Sign and Read operations,Pa can compute all the high-level operations that
have occured so far. It can also compute the linearization of these operations, except for
what is blurred in the response it got from the BH object. This information is enough
for Pa to compute the result of its high-level operation:

– If the high-level operation is a Write, its response is simply OK.
– If the high-level operation is Read(k), we know that only one processPb might have

written to that object (recall that we are considering SW Registers). In this case,Pa

returns as result the argument of the last Write operation byPb linearized before
this Read.

– If the high-level operation is Fetch&Add(k,x), Pa needs to compute the sum of
the arguments of all the Fetch&Add operations on this object linearized before the
current one. Note thatPa does not need to know the order in which these opeartions
are linearized, since addition is commutative.

Something stronger can be said about a system with one BH object and one SW
Register per process.

Theorem 1. Let S1 be a system with countably infinitely many Common2 objects and
Registers. LetS2 be a system with one BH object and one SW Register per process.
If there exists an implementation of some objectO in S1, then there exists an imple-
mentation ofO in S2. Furthermore, the implementation of a high-level operation onO
by a processPa begins withPa appending this operation to its SW Register and then
alternately performing Sign and Reads of all Registers.

Corollary 1. If every process can apply only one type of high-level operation onO
(with no parameters), there exists an implementation ofO from Common2 objects and
Registers if and only if there exists an implementation ofO from one BH object.

Although we do not include formal proofs in this extended abstract, we give the two
main ideas needed to establish these results. On the one hand, in a deterministic im-
plementation, the next access to a shared object byPa is completely determined by the
interaction betweenPa and the shared memory, and by the high-level operations that
Pa is applying. On the other hand, as pointed out in Section 2.1,Pa can compute the
response obtained byPb to any previous Sign operation, except possibly for the last
operation byPb. These two facts allow a process to anticipate most of the values written
to Registers by other processes.

3 Stack Implementations from a BH object

3.1 A single-pusher Stack implementation

In this section, we give a single-pusher many-popper Stack implementation from one
BH objectB and an unbounded arrayV of SW Registers, all written by the pusher, and
each capable of holding one element in the Stack. LetP1 be the (single) pusher, and let
Pa be the poppers, fora > 1. The state ofB is initially the empty sequence.

The pusherP1 holds a local variablelast, initialized to 0, which is used to store the
index of the last slot ofV to which P1 wrote. To push an elementx on the Stack,P1

incrementslast and writesx into V[last]. P1 then applies a Sign operation onB. We
refer to signatures ofP1 in B as push steps.

To pop an element off the Stack,Pa first applies two Sign operations onB. From
the result of its second operation, which is an equivalence class ofa-indistinguishable
sequences,Pa selects any representativeσ. Pa then computes the functionf on σ. The
value obtained from this computation is either 0, in which casePa reports an empty
Stack, or a positive integer, which is the index inV of the valuePa outputs as result of
its Pop. We refer to signatures by a popperPa in B as pop steps. The signature produced
by the first Sign within a Pop operation is a first pop step, and the one produced by the
second Sign is a second pop step.

The heart of this implementation is the functionf , which takes as input a BH state
σ, and decides what value the process executing it should pop from the Stack. Inside the
function, we consider each Push operationφ, starting with the latest, and try to match
it with the earliest completed Pop operationα that starts after the push step ofφ. If no
suchα exists, we eraseφ from σ and continue. On the other hand, ifα exists, we erase
bothα andφ from σ and continue. Ifα turns out to be the Pop operation that invokedf
on σ, which is the case if the second pop step ofα is the last signature inσ, we decide
thatα should output the value pushed on the Stack byφ.

For the purposes of proving the correctness of this implementation, it will be conve-
nient to assume thatP1 is pushing the values1,2,3, . . ., thus identifying the value stored
in a cell ofV with the index of that cell.

A crucial fact in proving the correctness of this algorithm is given in Lemma 5,
where we show that the choice of a representative made in line 4 does not affect the
output of a Pop operation. In order to establish this result, we prove several Lemmas
saying that, under certain conditions, swapping two consecutive steps inσ does not
change the result off . We never try to move the last pop step inσ, as that is the second
pop step of the Pop operation invokingf .

ProcedureP1:Push(x)

1. increment(last)
2. Write(V[last], x)
3. Sign(B, 1)

ProcedurePd:Pop, for d > 1

4. Sign(B, d)
5. C ←− Sign(B, d)
6. σ ←− any sequence in C
7. l ←− f(σ)
8. if l = 0
9. return ε

else
10. return Read(V[l])

endif

Functionf(σ)

11.while there exist push steps in σ
12. i ←− location of last push step in σ
13. A ←− { (j , j ′) : j and j ′ are the indices of the first

and second steps of a pop operation and i < j }
14. if A is not empty
15. (k, k′) ←− pair with minimum j ′ in A
16. if k′ is the last location in σ
17. return number of push steps in σ

endif
18. delete locations i, k and k′ from σ

else
19. delete location i from σ

endif
endwhile

20. return 0

Fig. 1. A Single-Pusher Implementation

Let σ = σ1 · ab· σ2 and σ′ = σ1 · ba· σ2, such thata 6= b and σ2 is not empty.
Lemmas 1, 2 and 3 describe situations in whichf (σ) = f (σ′).

Lemma 1. Swapping two consecutive pop steps by different processes, of which at least
one is a first pop step, does not affect the result off . Formally, if a is a first pop step
andb is a pop step, thenf (σ) = f (σ′).

Proof. During every iteration of thewhile loop, membership inA is determined in
line 13 by the order between push steps and first pop steps, and the selection of a pop
operation in line 15 is determined by the order between second pop steps. Hence, the
computations off on σ andσ′ take exactly the same decision during every iteration of
thewhile loop.

The same argument can be used to show:

Lemma 2. Swapping a consecutive push step and second pop step does not affect the
result of f . Formally, if a is a push step andb is a second pop step,f (σ) = f (σ′).

Lemma 3. Swapping two consecutive second pop steps does not affect the result off .
Formally, if botha andb are second pop steps,f (σ) = f (σ′).

Proof. We use induction on the number of executions of thewhile loop to show that
f (σ) = f (σ′).

It is not hard to see that the only difference in the computations off on σ andσ′
might come in an iteration in which both pop operations involved in the swap are in the
setA, one of them is selected inf (σ) and the other is selected inf (σ′). Let τ andτ′ be
the sequences at the beginning of that iteration, respectively. Without loss of generality,
we must have

τ = τ1,1,τ2,a1,τ3,b1,τ4,a2,b2,τ5

τ′ = τ1,1,τ2,a1,τ3,b1,τ4,b2,a2,τ5.

Here, the 1 followingτ1 is the last step by the pusherP1, henceτ2,τ3,τ4,τ5 contain no
1s. The stepsa1 anda2 are the first and second steps of a pop operation byPa, andb1

andb2 are the first and second steps of a pop operation byPb. Notice that in this caseτ3

cannot contain pop steps byPa becausePa has a pending operation.
In this scenario,1,a1,a2 are deleted inf (σ) and1,b1,b2 are deleted inf (σ′). Let

τ = τ1,τ2,τ3,b1,τ4,b2,τ5

τ′ = τ1,τ2,a1,τ3,τ4,a2,τ5.

So f (σ) = f (τ) and f (σ′) = f (τ′). The computation off is not affected by what popper
is performing a particular Pop operation, only by the indices of those pop steps. Hence,
f (τ) = f (τ′′), whereτ′′ = τ1,τ2,τ3,a1,τ4,a2,τ5. Sinceτ3 contains no push steps or pop
steps byPa, τ′ can be transformed intoτ′′ by a series of swaps of consecutive pop steps,
of which one is the first pop stepa1. By Lemma 1,f (τ′) = f (τ′′).

Lemma 4. Removing the first step of an incomplete Pop does not affect the result off .

Proof. The first step of an incomplete pop operation is never considered when building
the setA, nor when selecting a pop operation out ofA, so removing it will cause no
change in the computation off .

Lemma 5. Letσ be the BH state at the end of a pop operation by some processPd. Let
σ′ be a sequence indistinguishable toPd from σ. Thenf (σ) = f (σ′).

Proof. By properties of the BH object, there is a sequence of statesσ0,σ1, . . . ,σm with
σ = σ0 andσm = σ′ such that any two consecutive statesσa,σa+1 can be obtained from
one another by swapping two consecutive last steps by some processes other thanPd.
We have three possibilities:

– One of these steps is a first pop step. Since it is the last step by that process, it
must be part of an incomplete pop operation. By Lemma 4, removing it will not
affect the result off . But removing it erases the difference betweenσa andσa+1,
so f (σa) = f (σa+1).

– Both steps are second pop steps. By Lemma 3,f (σa) = f (σa+1).
– One is a push step, the other is a second pop step. By Lemma 2,f (σa) = f (σa+1).

Inductively, f (σ) = f (σ′).

Next, we assign linearization points for Push operations and for completed Pop op-
erations. We are not linearizing any incomplete Pop operations (which only apply one
Sign). Push operations are linearized when their single Sign operation is performed.
Let α be a complete Pop operation and letσ be the BH state whenα is completed. By
Lemma 5, we may assume thatf (σ) is computed as part ofα. We define the lineariza-
tion point ofα as follows:

– If there are Push operations deleted unmatched (i.e. in line 19) during the computa-
tion of f on σ, let φ be the earliest such Push operation. We linearizeα at the only
step ofφ, beforeφ itself. Multiple Pop operations linearized at the only step ofφ are
ordered by the locations of their second steps. Note that the only step ofφ follows
the first step ofα, for otherwiseα itself would be matched withφ.

– Otherwise,α is linearized at its second step.

Given σ, we defineh(σ) to be the Stack history associated withσ, containing the se-
quence of operations in the order they are linearized, together with their return values.
For example,h(11216264241266) is the sequence (Push, OK), (Push, OK), (Pop (by
P2), 2), (Push, OK), (Pop (byP6), 3), (Pop (byP4), 1), (Pop (byP2), ε), (Push, OK),
(Pop (byP6), 4).

Theorem 2. For every stateσ, the Stack historyh(σ) is legal.

Proof. We use induction on the number of push steps inσ.
First, letσ be a history with no push steps. Any Pop operation which is completed

duringσ will output ε, henceh(σ) is legal.
Now letk≥ 0 and assume that for all sequencesσ′ with at mostk push steps,h(σ′)

is legal. Letσ be a history withk+1 push steps. Letφ denote the last Push operation.

First, consider the case whereσ contains no completed Pop operation that starts
after the last push step. Let us writeσ asτ0,1,τ1, whereτ1 contains no push steps.

We claim thath(σ) ends withφ. To see this, notice how the linearization points for
Pop operations can be either at a second pop step, or at a push step. A Pop operation
linearized at a push step occurs before the Push operation. Furthermore, a Pop operation
cannot be linearized at a second pop step fromτ1, for it would have to have started after
the last push step inσ, a situation ruled out by the case under consideration.

Now consider the historyσ′ = τ0,τ1. We claim thath(σ) = h(σ′),(Push,OK). The
only operations whose linearization point could be different inσ and in σ′ are Pop
operations started inτ0, finished inτ1, and linearized inσ at the last push step. Notice,
however, that theirorder is exactly the same inσ and inσ′, namely the one determined
by their second steps.

To establish our claim, we now have to argue that every Pop operation outputs the
same result inσ and inσ′. The only non-trivial situation is when the second pop step of
α occurs inτ1. In the case under consideration, the first pop step ofα must occur inτ0.
Then, during the first iteration of thewhile loop in f , the last push step is unmatched
and deleted in line 19. This erases the only difference between the historiesσ andσ′,
and hence,α outputs the same result in both. Therefore,h(σ) = h(σ′),(Push,OK).

By the induction hypothesis,h(σ′) is legal. Thus, so ish(σ).

Now consider the case whereσ contains at least one completed Pop operation that
starts after the last push step. We writeσ asτ0,1,τ1,d1,τ2,d2,τ3, whered1 andd2 are
the two steps of the first Pop operationα which starts after the last push step and is
completed. Informally, we show that the linearization point ofα immediately follows
that of the last Push operation. We then argue that removing both of these operations
will not cause any output values to change. By the induction hypothesis, the Stack
history obtained after removing the last Push operation is legal. Adding two consecutive
operations, a Push immediately followed by a matching Pop will preserve legality.

First we claim that the linearization point ofα immediately follows that ofφ. The
reasons is that if some Pop operaionα′ were linearized at a step inτ1 or τ2, that step
would have to be the second step ofα′, andα′ would have to have started after the last
push step. This would contradict our choice ofα.

Let σ′ = τ0,τ1,τ2,τ3. We want to show that the order between any two operations
other thanφ andα is the same inσ and inσ′. We classify Pop operations as follows:

– Type I Pop operations are those with their second step inτ0. Their linearization
points are the same inσ and inσ′ because they do not see the difference between
the two.

– Type II Pop operations have their second step in eitherτ1 or τ2, and are linearized
at the last push step inσ. By choice ofα, any type II Pop operation must have its
first step inτ0.

– Type III Pop operations have their second step in eitherτ1 or τ2, but they are lin-
earized at some earlier push step inσ. By choice ofα, any type III Pop operation
must have its first step inτ0. Their linearization points are the same inσ andσ′
because the same Push operations which are unmatched inσ will be unmatched in
σ′.

– Type IV Pop operations have their second step inτ3. Their linearization points
are the same inσ and inσ′, becauseφ andα are matched and deleted in the first
iteration of f when called by any such Pop operation.

So the only operations whose linearization point might change are type II Pop opera-
tions. These are operations which are linearized at the last push step inσ in the order
of their second steps; and at their second steps inσ′. Clearly, the ordering between any
such two Pop operations remains the same. To see that the order between two Pop op-
erationsα′ andα′′, exactly one of which (say,α′) is type II, remains unchanged, it is
enough to point out that the linearization step ofα′ changes from the last push step to
its second step inτ1 or τ2, while the linearization step ofα′′ is either inτ0 (types I, III
or IV) or in τ3 (type IV).

Next, we claim that any Pop operation outputs the same result inσ and inσ′. For
type I Pop operations, this is obvious, for they cannot tell the difference betweenσ and
σ′.

For a type II or III Pop operationα′, by Lemma 5, f is run on the appropriate
prefixesσ|α′ andσ′|α′ . But then,φ is unmatched and deleted in the first iteration of
f (σ|α′). The only difference betweenσ|α′ without the last push step andσ′|α′ is an
eventual first step ofα, but this can be eliminated by Lemma 4. Hence,α′ outputs the
same value inσ andσ′.

For a type IV Pop operationα′, again by Lemma 5,f is on the appropriate prefixes
σ|α′ andσ′|α′ . In the first iteration off (σ|α′), φ andα are matched and deleted, erasing
the difference betweenσ andσ′. Hence,α′ outputs the same value inσ andσ′.

Last but not least, we note thatα outputs the value pushed byφ. By Lemma 5,α
runs f on the sequnceτ0,1,τ1,d1,τ2,d2. By choice ofα, φ will be matched withα in
the first iteration of thewhile loop.

We have now established thath(σ) is exactly equal toh(σ′) with an inserted pair of
consecutive operations, the Pushφ and the associated Popα. By properties of a Stack
object, ifh(σ′) is legal, thenh(σ) is legal.

3.2 A single-valued Stack implementation

The single-popper Stack implementation is based on the observation that the number of
times each pusher signs the BH object prior to a Pop is precisely the number of elements
that were pushed on the Stack prior to that Pop. If there is only one pusher, there is no
ambiguity about the order in which the Push operations occurred. Unfortunately, this is
not the case when there are many pushers. For example, suppose processesP1 andP2

each pushed a value on the Stack by signing the BH object and then processP3 popped
a value by signing the BH object twice. The resulting state1233of the BH object is
indistinguishable toP3 from 2133, the state that results whenP1 andP2 perform their
operations in the opposite order. Consequently, it is not clear if the value pushed byP1

or P2 is the one which should be popped. While we can overcome this problem for the
special case of exactly two pushers (see following section), the general solution remains
elusive. However, if all the values pushed on the Stack are the same, then the problem
of choosing which value to match with which Pop is obviated.

A process performing a Pop on a single-valued Stack only needs to determine
whether or not its Pop operation has some matching Push. It does not matter which
pusher performed the Push. This is essentially the problem that is solved by the single-
pusher Stack implementation (in the previous section).

To perform a Push, a process appends 1 to its single-writer Register and Signs the
BH object once. To perform a Pop, a process appends 22 to its single-writer Register,
Signs the BH object twice, and then reads the Registers of all other processes. Let
C denote the equivalence class of BH states returned as a result of the second Sign
operation in a Pop. As in line 6, we select any representativeσ fromC. However, before
we computef on σ, we replace every push step inσ with a push step by a virtual
process,P0. A certain step by some processPa is a push step if the corresponding value
in Pa’s Register is a 1. Iff on the modified sequence returns 0, the Pop returnsε;
otherwise the Pop returns the single value in the domain.

The proof of correctness is, with a minor exception, identical to the proof for the
single-pusher Stack. We need one more lemma that deals with two Push operations
whose order can not be distinguished.

Lemma 6. Swapping two consecutive push steps does not affect the result off .

Proof. Since the selection of a push step is independent of its label, a swap of two
consecutive push steps simply corresponds to a relabeling of the Push operations. Con-
sequently, the only thing that changes is the label of a Push that is discarded or matched
with a Pop. Hence, inductively, the two computations, one on the original sequence and
one on the sequence with the swap, take exactly the same decision during every iteration
of thewhile loop.

3.3 A two-pusher Stack implementation

We will now extend the algorithm from the previous section to allow two pushers in-
stead of just one. Informallly, the basic idea is similar to the “helping” mechanism that
appears in Herlihy’s universal construction [Her91]: the completion of a Push operation
by one pusher might “help” linearize a pending Push operation by the other pusher.

Let P1 andP2 be the two pushers, and letPd be the poppers, ford > 2. We assume
that in addition to a BH objectB, we have two unbounded arraysV1,V2 of SW Registers,
with Va written by pusherPa. To push the valuex, Pa first writesx in the next avaliable
location infVa. Pa then appliestwoSign operations onB. Recall that in the single-pusher
implementation, a Push operation consisted of only one Sign.

A Pop operation byPd begins by applying two Sign operations on the BH object.
The return value of the second operation is an equivalence class of states indistinguish-
able toPd from the real state ofB. We then select any representativeσ, as in line 6.
However, before we can apply functionf on σ, we need to transformσ from a two-
pusher, 2-step/Push history into a single-pusher, 1-step/Push history. This transforma-
tion is performed by a new function,g, described below.

The functiong takes as arguments a 2-pusher 2-step/Push historyσ, and the arrays
V1,V2. It constructs a single-pusher 1-step/Push historyτ and an arrayV. The two his-
tories,σ andτ, contain exactly the same pop steps. The push steps byP1 andP2 in σ are

replaced inτ with push steps by a virtual process,P0. The idea is that a Push operation
φ is linearized either at its second step, or at the second step of the first push operation
φ′ by the other pusher which was started and completed after the first step ofφ. The
functiong performs the following:

– Find the earliest second push step inσ, call that push operationφ′;
– If there is a push operationφ which has a first step before the first push step ofφ′,

delete bothφ andφ′, and insert two steps byP0 in τ at the location of the second
push step ofφ′.

– If no suchφ exists, deleteφ′ and insert a step byP0 in τ at the location of the second
push step ofφ′.

– Whenever we delete thei-th Push operation byPa, appendVa[i] to V. In the first
case, when we deleteφ andφ′, append the value corresponding toφ before the one
corresponding toφ′.

– Repeat until no push operation inσ has two steps.
– At the end, delete the remaining first push steps.

For the purposes of proving correctness, we may assume that thei-th value pushed by
Pa, and written inVa[i], is the pair(a, i). For example, ifσ = 11123326112413322431426
(where second push and pop steps are underlined), we haveg(σ,V1,V2) = (τ,V) where
τ = 0330064033042406andV = (1,1), (1,2), (2,1), (1,3), (2,2), (2,3).

After computingg(σ) = (τ,V), a Pop operation computesf (τ). If the latter eval-
uates to 0, the Pop returnsε; otherwise the Pop returns the element at locationf (τ)
from V, the array computed ing. For example, forσ,τ,V from the previous example,
f (τ) = 2 andV[f (τ)] = (1,2).

The following two Lemmas are needed to prove the correctness of this extension.

Lemma 7. Let σ be the state at the end of a Pop operation byPd, let σ′ be a state
indistinguishable toPd fromσ. Letg(σ) = (τ,V) andg(σ′) = (τ′,V ′). ThenV = V ′ and
f (τ) = f (τ′).

Lemma 8. Let σ be a BH state. Letσ′ be any prefix ofσ. Let g(σ) = (τ,V) and let
g(σ′) = (τ′,V ′). Thenτ′ is a prefix ofτ andV ′ is a prefix ofV.

Finally, we argue that our algorithm is linearizable. Given a two-pusher 2-step/Push
historyσ, let g(σ) = (τ,V). We define the linearization points for Push operations inσ
to be the corresponding steps where they appear inτ. We define linearization points for
Pop operations inσ the same way they are defined in the single-pusher historyτ. By
Lemma 8, all Pop operations completed inσ have output the exact same values as if
they had occurred inτ. Since the single-pusher 1-step/Push historyτ is linearizable, so
is σ.

4 Conclusions

In this paper, we have showed that several restricted Stack and Queue implementations
exist from Registers and Common2 objects. Specifically, it is possible to implement

single-valued Stacks and Queues shared by any number of process, and general (multi-
valued) Stacks shared by one or two pushers and any number of poppers.

Queue implementations exist for any number of enqueuers and at most two de-
queuers [Li01], and for one enqueuer and any number of dequeuers [Dav04a]. In a
Stack implementation, only the poppers output relevant values. Informally, if there are
only two poppers, they would probably be able to agree on the sequence of values to
output. This suggests that Stack implamentations for any number of pushers and at
most two poppers might exist. However, we believe that implementing a Stack shared
by three pushers, three poppers, with domain size 2 is impossible to implement from
Registers and Common2 objects.

We also introduce the BH object type. Although unusable in practice, this type en-
capsulates the computational power of a system with Registers and Common2 objects,
and has the potential of helping in the development of negative results regarding wait-
free implementations in this system.

References

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. InProceedings of the 12th ACM Symposium on
Principles of Distributed Computing, pages 159–170, 1993.

[Dav04a] Matei David. A single-enqueuer wait-free queue implementation. InProceedings of
DISC 2004, pages 132–143, 2004.

[Dav04b] Matei David. Wait-free linearizable queue implementations. Master’s thesis, Univ. of
Toronto, 2004.

[Her91] Maurice Herlihy. Wait-free synchronization.ACM Transactions on Programming
Languages and Systems, 13(1):124–149, January 1991.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for
concurrent objects.ACM Transactions on Programming Languages and Systems,
12(3):495–504, January 1990.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous distributed
shared-memory systems. Master’s thesis, Univ. of Toronto, 2001.

