
Wait-free Linearizable Queue Implementations

by

Matei David

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright c© 2004 by Matei David

Abstract

Wait-free Linearizable Queue Implementations

Matei David
Master of Science

Graduate Department of Computer Science
University of Toronto

2004

We study wait-free linearizable Queue implementations in asynchronous shared-memory systems

from other consensus number 2 types, such as Fetch&Add and Swap. It was known that such

implementations exist when at most two processes perform dequeue operations. We provide a new

implementation, when only one process performs enqueue operations and any number of processes

perfrom dequeue operations. We introduce the BH&AR type, which has two important charac-

teristics: only one BH&AR object simulates countably infinitely many Fetch&Add objects and

Registers; and we can exactly quantify the flow of information in a system providing only one

BH&AR object. The latter might prove useful in developing an adversarial argument showing that

there is no implementation of a Queue from Fetch&Add objects when three processes can fully

access the Queue. The B-History and Basic-Id-Queue types are restricted versions of the BH&AR

and Queue types, respectively. We show that implementing a Queue from one BH&AR object is

equivalent to implementing a Basic-Id-Queue from one B-History object. Preliminary results show

that this is impossible for two restricted classes of implementations.

ii

Acknowledgements

First of all, I would like to thank Andreea, my family and my old friends Lali, Bogdan, Alex and
many others, for shaping me into the person that I am today.

I would like to express my gratitude towards Canada as a country, for accepting me as a landed
immigrant and for financially supporting me during my undergraduate studies here. I would like
to thank NSERC for partly supporting my graduate studies with a PGS A scholarship.

The University of Toronto in general, and its department of Computer Science in particular, are
great places for learning and living. I am very grateful to my fellow graduate students, not only for
their helpful discussions on academic topics, but also for their moral support and extra-curricular
activities. The list of first names would include Travis, Cristiana, Daniela, Leoni, Alanoman, Josh,
Steve, Vlad, Natasha, Antonina, Panayiotis, Sebastian, Stavros and probably many others.

I would like to thank Nir Shavit, for his prompt reading of my thesis.
Last but not least, I would like to thank my supervisor, Faith Ellen Fich, for her helpful advice,

her constructive criticism of my sometimes hurried writing, her patience with me, and in general
for the invaluable support she provided me with throughout my studies here.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Related Work . 3
1.2 Mathematical Notation . 5
1.3 System Model Definitions . 5
1.4 Shared Object Types . 10

2 A (1, n)-Queue implementation 13

2.1 The algorithm . 13
2.2 Proof of Correctness . 16

3 Simulating a System with One Object 28

3.1 The B-History and BH&AR Object Types . 29
3.1.1 An Informal Description of the B-History and BH&AR Types 29
3.1.2 Notion of Indistinguishability . 30
3.1.3 Formal Object Type Definitions . 33

3.2 Implementing a B-History Object . 34
3.3 Implementing a BH&AR Object . 40
3.4 Implementing a Collection of Fetch&Add Objects and MRSW Registers 41

4 A Problem Equivalent to Implementing a (m,n)-Queue 43

4.1 The Basic-Id-Queue Object Type . 44
4.2 Basic-Id-Queue vs. Queue . 44
4.3 BH&AR Object vs. B-History Object . 45
4.4 Preliminary Negative Results . 48

4.4.1 No Implementation when Dequeue Takes Only One Step 49
4.4.2 No Implementation when Enqueue Takes Only One Step 51

5 Conclusions 52

Bibliography 54

Index 54

iv

Chapter 1

Introduction

A contemporary multi-processor system consists of a number of processors, a shared memory, and
a set of primitive operations by which processors can access the shared memory. This system can
be formally modeled by an asynchronous shared-memory distributed system, in which a number of
processes (or processors) run at independent speeds and communicate using a collection of shared
objects. The asynchronism takes into account the fact that processes may encounter arbitrary
delays in executing instructions, such as cache misses or page faults, or they may even crash. A
shared object can be viewed as an automaton which moves from state to state as operations are
applied on it, according to some sequential specification.

Different systems provide the processes with different collections of objects. Hence, an algorithm
for system S1, using the objects in the collection O1 provided by S1, may have to be translated to
work in system S2, with the objects in the collection O2 provided by S2. A generic approach which
allows us to avoid translating every single algorithm from S1 to S2 is to implement the objects in
O1 using those in O2. In this thesis, we focus on two correctness conditions for an implementation:
linearizability [HW90] and wait-freedom [Her91]. Exact definitions for these notions will be provided
later in this chapter. Informally, the former is an intuitive way of saying that the results produced
by an implementation must appear as if the simulated operations occurred atomically. The latter
is a strong progress condition, saying that no process can be infinitely delayed while executing a
simulated operation. In this thesis, every time we discuss (the existence of) an implementation, the
attributes wait-free and linearizable will be implicitly assumed, unless explicitly stated otherwise.

Given a target object O, and a set of base shared objects in B, there arises the question whether
or not O can be implemented from B in a wait-free and linearizable manner. A general way to
answer this question positively is to provide such an implementation. However, negative results
require more elaborate techniques [FR03].

An important approach for proving such negative results was developed by Herlihy in [Her91].
To explain it, let T be a target object type and let T ′ be a set of object types. If every object
O of type T can be implemented from a set of objects with types in T ′, we say that the type T
can be implemented by the types T ′. In that case, every set of objects of type T can be simulated
by some set of objects with types in T ′. Furthermore, by transitivity of wait-free linearizable
implementations, if some other object O′ can be implemented from a set of objects of type T and
Registers, then O′ can be implemented from a set of objects with types in T ′ ∪ { Register }.

In his paper [Her91], Herlihy considers the following Consensus problem. Each process starts
with an input value and outputs some value, satisfying:

Agreement No two processes output different values.

Validity Any value output by a process is the input of some process.

Termination No process can be infinitely delayed from outputting a value by the actions of other
processes.

1

Chapter 1. Introduction 2

This problem can be cast into a shared object, n-Consensus, in such a way that the Consensus
problem can be solved in a system of n processes using objects in B if and only if there exists
an implementation of an n-Consensus object from B. Suppose there exists an implementation of
n-Consensus from a set of objects of type T and Registers. If type T can be implemented from
a set of types T ′ containing Register, then there exists an implementation of n-Consensus from
objects with types in T ′. Hence, to show that there exists no implementation of some object O of
type T from objects with types in T ′, it is enough to show that there exists no implementation of
n-Consensus from objects with types in T ′.

Given an object type T , we define the consensus number of T to be the maximum n such that
the Consensus problem among n processes can be solved using objects of type T and Registers. If no
such maximum exists, the consensus number of type T is∞. This definition yields the hr

m hierarchy,
which was originally introduced by Jayanti in [Jay93], based on the work of Herlihy [Her91]. We
say that a type T is n-universal if every object O′ can be implemented from objects of type T and
Registers in a system of n processes. Herlihy proves that a type T is n-universal if and only if T
has consensus number at least n.

Now let T and T ′ be two object types, such that n is the consensus number of T and n′ is
the consensus number of type T ′. If type T can be implemented by the types T ′ and Register,
then the Consensus problem can be solved using objects of type T ′ and Registers in a system of n
processes, hence n′ ≥ n. Equivalently, if n′ < n, then there exists some object O of type T such
that there is no implementation of O from objects of type T ′ and Registers in a system of more
than n′ processes.

Let O1 and O2 be two objects of type T , which differ only in their initial states, q1 and q2. Let
T ′ be a set of types. Suppose that there is a finite sequence σ of operations on type T that drives
O1 from state q1 to state q2. If there exists an implementation of O1 from objects with types in
T ′, then there exists an implementation of O2 from objects with types in T ′, simply because we
can directly initialize the objects used in the implementation of O1 to the respective states they
reach after the operations in σ are simulated by the implementation. An object type is strongly
connected if every state can be reached from every other state by some finite sequence of operations.
All common object types such as Register, Test&Set (with Reset operation), Fetch&Add, Swap,
Queue, Stack and Compare&Swap are strongly connected. An object is oblivious if every process is
allowed to perform on it every operation provided by the object’s type. Let n-T denote an oblivious
object of type T in a system of n processes.

With the above definitions, the following two facts are consequences of Herlihy’s results. Let
T and T ′ be two types with consensus numbers n and n′, respectively. On the one hand, if T is
strongly connected and n′ < n, then there exists no implementation of an oblivious T object from
objects of type T ′ and Registers in a system of more than n′ processes. On the other hand, if
n′ ≥ n, then for every object O of type T , there exists an implementation of O from objects of type
T ′ and Registers in a system with at most n′ processors.

However, if two types T and T ′ have the same consensus number n, it is not known, in general,
whether an object O of type T has an implementation from objects of type T ′ and Registers in a
system of more than n processes. In fact, Herlihy leaves as an open problem in [Her91] the question
whether objects of the Fetch&Add type and Registers can implement any other object whose type
has consensus number 2 in a system of 3 or more processes.

We know from Herlihy’s previous work [Her91] that the Register type has consensus number
1, and that Test&Set, Fetch&Add, Swap and Queue types all have consensus number 2. In this
thesis, we study the problem of implementing a Queue object from objects with other types which
have consensus number 2 and are more commonly provided by real systems, such as Test&Set,
Fetch&Add and Swap.

A summary of related work is presented in section 1.1 of this chapter. Some useful mathematical
notation is introduced in section 1.2, followed by the formal definitions for our model of computation

Chapter 1. Introduction 3

in section 1.3. Section 1.4 contains the definitions for the shared object types relevant to this thesis.
In Chapter 2, we refute a conjecture made by Li [Li01], and prove that there exists a wait-free

linearizable implementation of a Queue object from Fetch&Add, Swap and Register objects, as long
as only one process performs enqueue operations.

The work presented in Chapters 3 and 4 is aimed at proving that there exists no wait-free
linearizable implementation of an oblivious Queue object from Fetch&Add objects and Registers in a
system of at least 3 processes. We cannot use Herlihy’s approach, since both Queue and Fetch&Add
object types have the same consensus number, 2. Another way of proving this impossibility result
is to use an adversarial argument [FR03]. This consists of assuming that such an implementation
exists, and eventually building a “bad” execution of this implementation, where either wait-freedom
or linearizability is violated. One difficulty with this approach is quantifying the exact information
that a process gets when it takes a step in a system of Fetch&Add objects and Registers.

In Chapter 3, we give a new characterization of a system providing Common2 types and Reg-
isters. By the results in [AWW93], this system is equivalent with one providing only Fetch&Add
objects and Registers. We introduce two new object types, B-History and BH&AR, which have two
important properties. On the one hand, a system with only one BH&AR object is as powerful as a
system providing countably infinitely many Fetch&Add objects and Registers. Hence the problem
of implementing a Queue object from Fetch&Add objects and Registers is equivalent to that of
implementing a Queue object from one BH&AR object. On the other hand, in a system with only
one object of either the BH&AR or the B-History type, we can exactly quantify the information
a process receives as a result of taking a step, and this might facilitate the development of an
adversary argument in that system.

In Chapter 4, we introduce a restricted version of the Queue object type, called the Basic-Id-
Queue. We then consider the problem of implementing a Basic-Id-Queue object from a B-History
object. Although this problem appears to be intuitively simpler than implementing a Queue object
from a BH&AR object, we show that they are equivalent when each process accessing the Queue
can perform either only Enqueue or only Dequeue operations. In section 4.4, we present two
results saying that in some restricted cases, there is no wait-free linearizable implementation of a
Basic-Id-Queue object from a B-History object. Several conclusions are drawn in Chapter 5.

1.1 Related Work

In [AWW93], Afek et al. study implementations of objects with types that have consensus number
2 from other types with consensus number 2. To explain their results, we say that an object type
T is a read-modify-write (RMW) type if the result of every operation provided by T is the state of
the object to which it is applied prior to the occurrence of that operation. The RMW type T is
commutative if for every two operations op, op′ of T and every state q of T , the state resulting from
the application of op starting from q followed by op′ is the same as the state resulting from the
application of op′ starting from q followed by op. The RMW type T is overwriting if for every two
operations op, op′ of T and every state q of T , the state resulting from the application of op starting
from q followed by op′ the same as the state resulting from the application of op′ starting from
q. For example, the Fetch&Add and Fetch&Increment types are commutative RMW types, the
Test&Set and Swap types are overwriting RMW types, and the Compare&Swap type is a RMW
type which is neither commutative nor overwriting. Section 1.4 contains formal definitions of these
common object types.

Let Common2 denote the set of all commutative or overwriting RMW types with consensus
number more than 1. We know from [Her91] that all types in Common2 have consensus number
exactly 2. For example, Test&Set, Fetch&Add, Fetch&Increment and Swap are all in Common2.
We say that an object O of type T is 2-ported if only two processes are allowed to apply operations
to it. In practice, distributed systems might provide only 2-ported objects of some particular type.

Chapter 1. Introduction 4

Afek et al. showed in [AWW93] that for every object O of some type T in Common2 and every
type T ′ of consensus number 2, there exists an implementation of O from 2-ported objects of type
T ′ and Registers. Hence, every type T in Common2 can be implemented from any type T ′ of
consensus number 2 and Register.

Let Basic2 denote the set of types of consensus number 2 which can be implemented from some
type in Common2 and Registers. Hence, all types in Common2 are also in Basic2. It is not known
if Basic2 consists of all types of consensus number 2. In this thesis, we investigate the question
whether the Queue object type is in Basic2. Since the Queue object type is strongly connected,
and given the results in [AWW93], the Queue type is in Basic2 if and only if there exists a wait-free
linearizable implementation of an initially empty oblivious n-Queue object from Fetch&Add objects
and Registers, for all n.

Jayanti and Toueg showed in [JT92] that for any n, there exist types which have consensus
number n. They introduce an object type, n-Bounded Peek-Queue, which is a queue with at most
n values supporting a Peek operation instead of a Dequeue operation, and this type is shown to have
consensus number n. McCrickard proves in [McC94] that the 2-Bounded Peek-Queue, which is not
a read-modify-write type, can be implemented from the Test&Set and Register types, and therefore,
that 2-Bounded Peek-Queue is in Basic2. Hence, Common2 is strictly contained in Basic2.

In [HW90], Herlihy and Wing presented an implementation for an oblivious n-Limited-Queue
object from Fetch&Add and Swap objects. The Limited-Queue object type is similar to the Queue
object type with the exception that Dequeue operations are not defined when the queue is in the
empty state. However, Herlihy and Wing use a weaker progress condition instead of wait-freedom:
an implementation is non-blocking if as long as a process is infinitely delayed, other processes
complete infinitely many simulated operations. The implementation in [HW90] is linearizable and
non-blocking, but not wait-free.

In [Li01], Li modifies the implementation in [HW90] and obtains a non-blocking linearizable
implementation of an oblivious n-Queue object from Common2 objects and Registers. Further-
more, Li observes that the original implementation in [HW90] is wait-free if only one process can
perform Dequeue operations. In [Her91], Herlihy showed that in a system of n processes, any
object can be implemented from objects of type n-Consensus and Registers. Using ideas from Her-
lihy’s construction, Li modifies the implementation in [HW90] and obtains a wait-free linearizable
implementation of a Queue object from Common2 objects and Registers, as long as at most two
processes can perform Dequeue operations. The bound on the number of steps performed during a
dequeue operation in the latter implementation varies with the number of enqueue processes.

The following two Conjectures made by Li are relevant to this thesis:

Conjecture 1.1 ([Li01], Conjecture 5.1). There is no wait-free linearizable implementation of a
Queue object from Common2 objects and Registers if more than two processes can perform dequeue
operations.

In this thesis, we refute the above conjecture, by providing, in Chapter 2, a wait-free linearizable
implementation of a Queue object from Common2 objects and Registers, when only one process
can perform enqueue operations, and any number of processes can perform dequeue operations.

Conjecture 1.2 ([Li01], Conjecture 5.3). There is no wait-free linearizable implementation of an
oblivious n-Queue object from Common2 objects and Registers, for any n > 2.

The work in Chapters 3 and 4 of this thesis is directed toward a proof of this Conjecture.
Although our objective was not achieved, we hope that the results in Chapters 3 and 4 will prove
useful in completing the proof of this Conjecture.

Chapter 1. Introduction 5

1.2 Mathematical Notation

For any set E, let E∗ denote the set of all finite sequences of elements in E. Throughout the
entire thesis, λ will denote the empty sequence. For σ ∈ E∗, let σ[i] denote the i-th element in the
sequence σ, and let |σ| denote the number of elements in σ. For σ ∈ E∗ and x ∈ E, let σ · x denote
the finite sequence which is equal to σ but has one more element, x, at its end. Let count(σ, x)
denote the number of occurrences of x in σ. For k ≤ |σ|, let prefix(σ, k) denote the prefix of σ of
length k. In this thesis, whenever σ is a sequence and we mention σ[i], we implicitly assume that
σ contains an i-th element. Any sequence σ begins with index 1, σ[1], unless we explicitly say it
begins at index 0. We write X = (y1, y2, . . .) when X is the sequence defined by X[i] = yi.

Let N denote the set of positive integers {1, 2, . . .}, and let Z denote the set of all integers. For
any a, b ∈ Z let [a, b] denote the set {a, . . . , b} when a ≤ b, and ∅ otherwise. For any set E, any
σ ∈ E∗ and any A ⊆ [1, |σ|], define σ|A to be the subsequence of σ determined by the elements at
positions in A. Let Sn denote the set of permutations of n elements. For a permutation π ∈ S|σ|,
let π(σ) be the sequence obtained by permuting the elements in σ according to π. Formally, for

any i ∈ [1, |σ|], π(σ)[i]
def
= σ(π[i]). For two sequences σ, σ′ ∈ E∗, we say that σ′ is a permutation of

σ if there exists π ∈ S|σ| such that σ′ = π(σ).

1.3 System Model Definitions

The system we consider is an asynchronous shared-memory distributed system. It consists of N
concurrent processes, and a collection of shared objects. Processes execute sequential programs
and communicate by accessing shared objects. During a step, a process performs an operation on
a certain shared object and receives a response from that object.

Object Types The type of an object specifies how that object reacts to the operations applied on
it by the processes in the system. Formally, an object type T is a tuple (QT , OPT , REST , δT) where
QT is a set of states, OPT is a set of operations, REST is a set of responses, and δT : QT ×OPT →
QT × REST is a state transition function. If δT (q, op) = (q′, res), then whenever an object O of
type T is in state q and operation op is applied to it, the object moves to state q′ and res will be
returned as response to the operation. In this thesis, we are only considering deterministic object
types and that is why, in contrast to definitions elsewhere, we have chosen δ to be a function. We
sometimes parametrize the definition of an object type T using a given set of values V , and write
T 〈V 〉.

To illustrate the definition, we give here the specification of the Fetch&Add and Register object
types. The object type Fetch&Add is defined by QF&A = Z, OPF&A = {Fetch&Add(x) : x ∈ Z},
RESF&A = Z and for all x, y ∈ Z, δF&A(x, Fetch&Add(y)) = (x + y, x). The Register〈V 〉 type
has QREG〈V 〉 = V , OPREG〈V 〉 = {Read} ∪ {Write(x) : x ∈ V }, RESREG〈V 〉 = V ∪ {OK}, for all
x ∈ V , δREG〈V 〉(x,Read) = (x, x) and for all x, y ∈ V , δREG〈V 〉(x,Write(y)) = (y,OK).

Objects An object is an automaton which moves from state to state according to a transition
function as operations are applied to it. Each shared object has a name, e.g.. O, and the definition
of an object (O,T, qO, bO) includes its type T , its initial state qO (which is an element of the set
of states of its object type) and its binding function bO. The latter specifies what operations each
process in the system is allowed to perform on this object. Formally, for an object O of type T ,
the function bO maps each process Pi in the system, to a set of operations bO(Pi) ⊆ OPT which Pi

is allowed to perform on O.
An object is oblivious if any process may perform on this object any operation that is permitted

by its type. In other words, object O of type T is oblivious if for all processes Pi, bO(Pi) = OPT .
An object which is not oblivious is non-oblivious.

Chapter 1. Introduction 6

We illustrate this terminology by defining two objects. Consider a system of two processes, P1

and P2, and a given set of values V . An oblivious Fetch&Add object O for this system has the
Fetch&Add object type defined above, an initial state qO ∈ Z and bindings bO(P1) = bO(P2) =
OPF&A. Now consider a system of five processes, P1, . . . , P5, and a given set of values V . For
this system, a (non-oblivious) Single-Reader Single-Writer (SRSW) Register〈V 〉 object O′ which
allows P1 to read it and P4 to write it has the Register〈V 〉 object type defined above, an initial
state qO′ ∈ QREG〈V 〉 and bindings bO′(P1) = {Read}, bO′(P4) = {Write(x) : x ∈ V } and bO′(P2) =
bO′(P3) = bO′(P5) = ∅.

In general, the distributed system provides a collection B of shared objects. In this thesis, we
always assume that a system provides at most countably infinitely many shared objects, so that
we can index their names by positive integers, B = {O1, O2, . . .}. Whenever we say that a system
provides objects of certain object types, we mean that the system provides a finite or countably
infinite collection of shared objects, each of which has one of the listed object types.

Whenever we say that a system provides objects of object type T , with no explicit reference
to the bindings of those objects, we assume that any object of type T will have a default set of
bindings. This default set of bindings is specific to the object type T and, in most cases, these
bindings are as unrestrictive as possible (i.e. the objects of that type are oblivious). However, some
of the object types defined in this thesis have a more restrictive set of default bindings, and these
will be introduced along with the definitions of those object types.

Whenever we say that a system provides objects of type T with no explicit reference to the
set of values parametrizing T , we mean that an algorithm for this system can use objects of type
T 〈V 〉, for any finite or countably infinite set V .

To illustrate this terminology, when we say that a system provides Fetch&Add objects and
Multi-Reader Single-Writer (MRSW) Registers, we mean that the system provides a (finite or)
countably infinite collection of shared objects, each of those objects has either the Fetch&Add or
the Register〈V 〉 object type for some finite or countably infinite set V , each Fetch&Add object
is oblivious, and each Register object has bindings which allow one process to perform Write
operations and any process to perform Read operations.

Processes A system contains finitely many processes. Throughout this thesis, N will denote the
number of processes in our distributed system. We might talk about distributed systems providing
different collections of shared objects, but the number of processes in any of these systems will
always be N . The processes in our system have names, P1, . . . , PN .

A process Pi is a deterministic sequential thread of control which starts from a fixed initial state
and interacts with other processes by means of the shared memory. Processes perform local compu-
tation and access the shared objects. An atomic operation, called a step, is a tuple (Pi, O, op, res)
and signifies that process Pi atomically applies operation op to a shared object O and receives a
response res to that operation. The process then updates its internal state based on res. Processes
can be more formally modeled as I/O automata which interact with objects via input and output
events [Lyn96]. However, we feel that extensive formalism is not necessary for the purposes of this
thesis.

Processes take steps one at a time, according to the order specified by a scheduler. In this
thesis, we impose no fairness or other restrictions on the scheduler. Within this setting, the crash
of some process can be modeled by having the scheduler not allocate any more steps to that process.
Between steps, a process can perform an arbitrary amount of local computation. This assumption
captures the fact that process Pi cannot get any information about the computation of process Pi′

except for what is conveyed by the operations Pi′ performs on shared objects.

Configurations, Steps, System History A configuration of the system consists of the state of
each process and the state of each shared object. The initial configuration of the system has every

Chapter 1. Introduction 7

process and every object in its initial state. If the system is in configuration C and process Pi is
scheduled to take a step, then a step of the form s = (Pi, O, op, res) occurs. Let the type of object
O be T , let the state of object O in C be q, and let δT (q, op) = (q′, res′). We say the step s is legal
from C if op ∈ bO(Pi) and res = res′, that is, Pi is allowed to perform operation op on O and the
response Pi gets to the operation is consistent with the state transition function of type T . Let
C ′ = C · s denote the unique configuration the system enters after step s is applied from C. C ′ can
only differ from C in the internal state of process Pi and in the state of object O, which is now q′.

A system history is a finite sequence of steps. We inductively define when system history S is
legal from configuration C, as well as the meaning of C · S. A system history S of length 1 is legal
from C if the unique step S[1] in S is legal from C. In this case, we define C · S to be C · S[1]. For
a system history S of length i > 1, let S′ be S without its last step s. So S′ has length i − 1 ≥ 1.
Now S is legal from C if S′ is legal from C and s is legal from C · S′. We also define C · S to be
(C · S′) · s. A system history is legal if it is legal from the initial configuration of the system.

Object Histories A history of an object O of type T is a finite sequence of pairs H ∈ (OPT ×
REST)∗. The history H = ((op1, res1), (op2, res2), . . .) of object O is legal if there exists a sequence
Q = (q0, q1, . . .) ∈ Q∗

T of states of O, such that q0 = qO (the initial state of O) and for i ≥
1, δT (qi−1, opi) = (qi, resi). Notice that a sequence of states Q starts with Q[0] instead of Q[1].
Any system history S determines a history H(S,O) for every shared object O available in the
system. From the definitions, an easy inductive argument shows that if S is legal then H(S,O) is
legal.

Implementations Suppose that our system provides a certain collection B of shared objects,
referred to as base objects. Furthermore, suppose that we have an algorithm which was written for
some other distributed system, using some object O /∈ B not available in our system. Notice that
our system might provide objects of the same object type as O, but with incompatible bindings.
As an example, we might want to use a Multi-Reader Multi-Writer Register when our system only
provides Single-Reader Single-Writer Registers. In order to be able to use the original algorithm,
we will need to implement the object O in our system. Informally, an implementation is a way for
our system to simulate the object O using only available objects from B.

Let (O,T, qO, bO) be an object of type T = (QT , OPT , REST , δT), with initial state qO ∈ QT

and bindings bO. An implementation of O from base objects in B is specified by giving, for each
process Pi in the system and each operation op ∈ bO(Pi), an access procedure Pi : op consisting of
local computation and accesses to shared objects in B, respecting the bindings of those objects,
and returning a value res ∈ REST .

Consider the situation when Pi needs to apply op ∈ bO(Pi) on O. In a system which provides the
object O, Pi will apply it atomically in a step of the form (Pi, O, op, res), obtaining the result res.
In a system which does not directly provide O but in which an implementation of O is available,
Pi will execute the access procedure Pi : op, which returns res ∈ REST and is taken by Pi to be
the response of O to its operation.

Access procedures on the implemented object consist of local computation and accesses to
shared objects in B, that is, steps. One access procedure may require the process performing it to
take two or more steps before returning. Since our system only provides for the atomicity of steps,
executions of access procedures for O may overlap with one another, because their steps may be
interleaved. We say that a step is part of the execution of an access procedure Pi : op when Pi

performs that step while executing Pi :op.

Runs A system history can only capture the correctness of individual steps taken by processes
in the system. However, in order for an implementation to be useful, we would like to argue about

Chapter 1. Introduction 8

what happens when processes take their steps while executing access procedures. To do that, we
define a run R of the implementation of O to be a pair (ψ, S) where:

• ψ maps each process Pi to a finite sequence of operations ψ(Pi) ∈ (bO(Pi))
∗ applied by Pi on

the implemented object O in run R.

• S = (s1, s2, . . .) is a legal system history, in which each process Pi starts from its initial
state and sequentially executes access procedures of the form Pi : op in the same order the
operations op appear in ψ(Pi). In particular, Pi will complete the execution of one access
procedure before starting the next access procedure.

• Every process Pi completes the execution of every access procedure corresponding to every
operation in ψ(Pi) except possibly the last one and, furthermore, Pi executes at least one
step from the access procedure corresponding to the last operation in ψ(Pi). Notice that Pi

may or may not complete the execution of the access procedure corresponding to the last
operation in ψ(Pi).

Procedure Instances Given a run R = (ψ, S), one can partition the subsequence of steps in
S taken by any process Pi into contiguous blocks, such that each block contains the steps that
Pi is taking while executing some access procedure Pi : op. We define an instance of the access
procedure Pi :op in R to be the set of indices in S of the steps in one such block. Although formally
defined as a set of indices of steps, we prefer to think of a procedure instance in terms of the steps
it contains. We say that a procedure instance α contains the i-th step si in S if i ∈ α. The first
step of instance α is smin(α) and its last step is smax(α). Let Instances(R) denote the set of all
procedure instances in the run R. Notice that there is one procedure instance in Instances(R) for
every occurrence of an operation in any of the sequences ψ(Pi). Let process(α) denote the process
executing the procedure instance α and let operation(α) denote the operation being applied by the
access procedure instance α. With this notation, whenever α is an instance of the access procedure
Pi :op, we have process(α) = Pi and operation(α) = op.

Notice that two different instances of the same access procedure need not contain the same
number of steps. We say that an instance α of the access procedure Pi :op is complete if, after Pi

executes the last step smax(α) of this instance, the access procedure contains only local computation
before returning a result res to operation op. Otherwise, the procedure instance is incomplete.
Notice that if α is incomplete, smax(α) is not the last step that access procedure would execute
if it were complete, but simply the last step of α appearing in the system history S. In a run,
only the last instance of an access procedure executed by Pi in R can be incomplete. For any
complete procedure instance, R determines what result it returns. Let Complete(R) denote the set
of procedure instances which are complete in R. For α ∈ Complete(R), let result(α) denote the
result returned by α in R.

The run R induces a partial order ≤R on the procedure instances it contains: for two procedure
instances α,α′ ∈ Instances(R), we write α <R α′ whenever α is complete and max(α) < min(α′),
that is, the last step of α precedes the first step of α′. We say that two different procedure instances
are concurrent in R if neither α <R α′ nor α′ <R α. Since processes act sequentially, two procedure
instances can only be concurrent if they are performed by different processes.

Let step(α, i) denote the index in S of the i-th step of instance α. We will only use this notation
when α contains at least i steps. As an example, we always have step(α, 1) = min(α).

Linearizability In order for an implementation to be useful, we need to impose some restrictions
on what responses the access procedures may return. The only correctness condition we consider
in this thesis is linearizability [HW90]. Informally, this condition states that whenever Pi executes
the access procedure Pi :op, no matter how the steps in the execution of Pi :op are interleaved with

Chapter 1. Introduction 9

those in the executions of other access procedures by other processes, the execution of Pi : op has
to appear to be atomic, occurring at some moment between its first and last steps. We formalize
this notion below.

Definition 1.1. A run R of the implementation of O is linearizable if there exist:

• a set Occur(R) of procedure instances such that Complete(R) ⊆ Occur(R) ⊆ Instances(R);

• a linear order ≺ on the procedure instances in Occur(R), so that α1 ≺ α2 ≺ . . . and in
general, αi is the i-th procedure instance in Occur(R) with respect to �; and

• a history H = ((op1, res1), (op2, res2), . . .) of object O

satisfying the following requirements, for all i and j:

1. opi = operation(αi);

2. if αi ∈ Complete(R), then resi = result(αi);

3. if αi <R αj (that is, max(αi) < min(αj) and αi ∈ Complete(R)), then i < j; and

4. H is legal.

The implementation of an object is linearizable if all its runs are linearizable.

Wait-freedom In addition to requiring the access procedures to return consistent values, we
would also like to know that there is some progress in the system: under certain assumptions, some
access procedures are eventually completed. The only progress condition we consider in this thesis
is wait-freedom [Her91].

An implementation is said to be wait-free if, for every process Pi, every operation op ∈ bO(Pi)
and every run R in which Pi completed all its operations, if Pi starts executing the access procedure
Pi :op from the system configuration at the end of run R, Pi will eventually complete the execution
of this access procedure within finitely many steps, regardless of the steps performed by other
processes in the system. In our formal definitions we only allow for finite runs. Hence, we will
consider the following equivalent condition:

Proposition 1.1. An implementation of an object O is not wait-free if and only if there exists a
process Pi and an infinite family R1, R2, . . . of runs of this implementation, where Rk = (ψk, Sk),
satisfying the following conditions, for all k ≥ 1:

• Rk+1 is an extension of Rk, that is, Sk is a prefix of Sk+1 and for all processes Pj , ψk(Pj) is
a prefix of ψk+1(Pj);

• Sk+1 contains more steps by process Pi than Sk; and

• ψk+1(Pi) = ψk(Pi).

We know that in any run, the steps that Pi is taking have to be part of the execution of an
access procedure on the implemented object. Hence, the condition in the Proposition implies that
there is no bound on the number of steps that Pi is taking in order to complete the execution of
its last access procedure.

An implementation is b-bounded wait-free if, in any run, no instance of an access procedure
can include more than b steps. Notice that bounded wait-freedom is a stronger condition than
wait-freedom.

Chapter 1. Introduction 10

Implementation of a Collection of Objects Let A = {A1, A2, . . .} be a (finite or) countably
infinite collection of shared objects. For all Ai ∈ A, let Ti be the object type of Ai, qAi

be the
initial state of Ai and bAi

be the function giving the bindings of Ai. We define the shared object
type Type(A) to be the Cartesian product of the object types T1, T2, . . .:

• QType(A)
def
= QT1

×QT2
× . . .;

• OPType(A)
def
= {〈Ai, op〉 : Ai ∈ A and op ∈ OPTi

};

• RESType(A)
def
= REST1

∪REST2
∪ . . .; and

• for all q = (q1, . . . , qi−1, qi, qi+1, . . .) ∈ QType(A), and 〈Ai, op〉 ∈ OPType(A), we have

δType(A)(q, 〈Ai, op〉)
def
= (q′, res)

where q′ = (q1, . . . , qi−1, q
′
i, qi+1, . . .) and δTi

(qi, op) = (q′i, res).

We then define Object(A) to be the shared object with:

• object type Type(A);

• initial state qObject(A)
def
= (qA1

, qA2
, . . .); and

• bindings bObject(A)(Pj)
def
= {〈Ai, op〉 ∈ OPType(A) : Ai ∈ A and op ∈ bAi

(Pj)}, for all processes
Pj .

Let A be a collection of shared objects, let S1 be a distributed system of N processes providing
the objects in A and let S2 be a distributed system of N processes providing only one object,
Object(A). Let Pj be a process, let Ai ∈ A be a shared object, and let op ∈ OPTi

be an operation
allowed by the type of Ai. Whenever Pj applies op on Ai in S1, the same result can be achieved
in S2 by having Pj apply 〈Ai, op〉 on Object(A). From the definition of Object(A), it is easy to
see that any legal system history in S1 has a corresponding legal system history in S2, where every
step of the form (Pj , Ai, op, res) is replaced by (Pj , Object(A), 〈Ai, op〉, res). Therefore, there exists
an algorithm for some problem in system S1 if and only if there exists an algorithm for the same
problem in system S2. In particular, for any shared object O, there exists a wait-free linearizable
implementation of O from A if and only if there exists a wait-free linearizable implementation of
O from Object(A).

We say that there exists an implementation of a set of objects A from a set of base objects B
if and only if there exists an implementation of Object(A) from B.

Equally Powerful Collections of Objects We say that two collections of shared objects,
A1 and A2 are equally powerful if and only if they can implement each other. That is, there
exists a wait-free linearizable implementation of Object(A1) from A2, and there exists a wait-free
linearizable implementation of Object(A2) form A1.

1.4 Shared Object Types

The following object types will be used in this thesis:

Chapter 1. Introduction 11

Register For any set of values V , the Register〈V 〉 object type is defined by:

• QREG〈V 〉 = V ;

• OPREG〈V 〉 = {Read} ∪ {Write(x) : x ∈ V };

• RESREG〈V 〉 = V ∪ {OK} (where OK /∈ V);

• δREG〈V 〉(x,Read) = (x, x), for all x ∈ V ; and

• δREG〈V 〉(x,Write(y)) = (y,OK), for all x, y ∈ V .

The possible bindings for objects of this type are SRSW (Single-Reader Single-Writer), MRSW
(Multi-Reader Single-Writer) and MRMW (Multi-Reader Multi-Writer). The attribute Single
means that only one process can apply that kind of operation(s), while the attribute Multi means
that all processes can apply that kind of operation(s). Unless specified otherwise, any object of
this type is oblivious, that is, MRMW.

Append-Register For any set of values V , the Append-Register〈V 〉 object type is defined by:

• QAP−REG〈V 〉 = V ∗;

• OPAP−REG〈V 〉 = {Read} ∪ {Append(x) : x ∈ V };

• RESAP−REG〈V 〉 = V ∗ ∪ {OK};

• δAP−REG〈V 〉(σ,Read) = (σ, σ), for all σ ∈ V ∗; and

• δAP−REG〈V 〉(σ,Append(x)) = (σ · x,OK), for all σ ∈ V ∗ and x ∈ V .

In this thesis, any object of this type will have initial state λ (the empty sequence) and MRSW
bindings.

Fetch&Add The Fetch&Add object type is defined by:

• QF&A = Z;

• OPF&A = {Fetch&Add(x) : x ∈ Z};

• RESF&A = Z; and

• δF&A(x,Fetch&Add(y)) = (x+ y, x), for all x, y ∈ Z.

Unless explicitly stated otherwise, every object of this type will have initial state 0 and will be
oblivious.

Fetch&Increment The Fetch&Increment object type is defined by:

• QF&I = Z;

• OPF&I = {Fetch&Increment};

• RESF&I = Z; and

• δF&I(x,Fetch&Increment) = (x+ 1, x), for all x ∈ Z.

Unless explicitly stated otherwise, every object of this type will have initial state 0 and will be
oblivious.

Chapter 1. Introduction 12

Swap For any set of values V , the Swap〈V 〉 object type is defined by:

• QSWAP 〈V 〉 = V ;

• OPSWAP 〈V 〉 = {Swap(x) : x ∈ V };

• RESSWAP 〈V 〉 = V ; and

• δSWAP 〈V 〉(x,Swap(y)) = (y, x), for all x, y ∈ V .

Unless explicitly stated otherwise, every object of this type will be oblivious.

Compare&Swap For any set of values V , the Compare&Swap〈V 〉 object type is defined by:

• QC&S〈V 〉 = V ;

• OPC&S〈V 〉 = {Compare&Swap(x, y) : x, y ∈ V };

• RESC&S〈V 〉 = V ;

• δC&S〈V 〉(x,Compare&Swap(x, y)) = (y, x), for all x, y ∈ V ; and

• δC&S〈V 〉(v,Compare&Swap(x, y)) = (v, v), for all x, y, v ∈ V with x 6= v.

This type is provided for reference purposes only.

Test&Set The Test&Set object type is defined by:

• QT&S = {0, 1};

• OPT&S = {Test&Set, Reset};

• REST&S = {0, 1, OK};

• δT&S(x,Test&Set) = (1, x), for all x ∈ {0, 1}; and

• δT&S(x,Reset) = (0, OK), for all x ∈ {0, 1}.

Unless explicitly stated otherwise, any object of this type will be oblivious.

Queue For any set of values V , the Queue〈V 〉 object type is defined by:

• QQUEUE = V ∗;

• OPQUEUE = {Enqueue(x) : x ∈ V } ∪ {Dequeue};

• RESQUEUE = V ∪ {ε,OK} (where OK, ε /∈ V);

• δQUEUE(σ,Enqueue(x)) = (σ · x,OK), for all x ∈ V and σ ∈ V ∗;

• δQUEUE(λ,Dequeue) = (λ, ε); and

• δQUEUE(x · σ,Dequeue) = (σ, x), for all x ∈ V and σ ∈ V ∗.

In this thesis, any object of the Queue type will have initial state λ, corresponding to an empty
queue, unless explicitly stated otherwise. For any non-negative integers m,n, p, an (m,n, p)-Queue
object for a system of N = m+ n+ p processes has bindings which allow m processes to perform
only enqueue operations, n other processes to perform only dequeue operations and the remaining
p processes to perform both kinds of operations. We write N -Queue for a (0, 0,N)-Queue object,
which is, in fact, an oblivious Queue object in a system of N processes. We write (m,n)-Queue for
an (m,n, 0)-Queue object.

Chapter 2

A (1, n)-Queue implementation

Li conjectures in his thesis that there is no wait-free linearizable implementation of a n-Queue
object from Common2 objects and Registers whenever n ≥ 3 [Li01, Conjecture 5.3]. In an attempt
to narrow down the difficulty of the problem, Li proposes another conjecture, stating that there is
no wait-free linearizable implementation of a (1,3)-Queue from Common2 objects [Li01, Conjecture
5.1]. This would imply that three concurrent dequeue operations are impossible to synchronize in
a wait-free manner using Common2 objects, and the former conjecture would follow. As we will
see below, the latter conjecture does not hold.

In this chapter, we prove the following:

Theorem 2.1. Let V be a finite or countably infinite set. For any n, there exists a wait-free
linearizable implementation of a (1, n)-Queue〈V 〉 object from Common2 objects and Registers.

We achieve this by presenting Algorithm 1 in section 2.1, which is a 3-bounded wait-free lineariz-
able implementation of a (1, n)-Queue〈V 〉 object from Common2 objects and Registers. Section 2.2
contains the proof of correctness of this algorithm.

2.1 The algorithm

Algorithm 1 implements a (1, n)-Queue〈V 〉 from Basic2 objects and Registers. Let us denote the
process performing enqueue operations by E and the n processes performing dequeue operations by
D1, . . . ,Dn. We are using a one dimensional array HEAD of Fetch&Increment objects and a two
dimensional array ITEMS of Swap objects together with one Multi-Reader Single-Writer Register
ROW . Both arrays, ROW and ITEMS, are infinite.

Informally, the algorithm works as follows. The cells in the two dimensional array ITEMS are
initialized to a default value, ⊥ /∈ V . Whenever they are accessed during an enqueue procedure,
their value is updated to contain the respective element to be enqueued. Whenever they are
accessed by a dequeue procedure, their value is updated to contain ⊤ /∈ V . By design, each cell
in the array ITEMS will be used at most once by an enqueue operation, and at most once by a
dequeue operation.

In order to perform a dequeue operation, process Di reads from ROW the value of the active
row in the two-dimensional array ITEMS. This is the row which was last used to enqueue a
value by an enqueue procedure which has already finished. Having obtained the value of this row
in its local variable deq row, process Di selects the column head of a cell to query on this row
using the Fetch&Increment object HEAD[deq row]. It then proceeds to query the Swap object
ITEMS[deq row, head] and update its value to ⊤. If the value retrieved is not ⊥, then some value
to be enqueued was written in this location and process Di dequeues that value. Otherwise, this
location was never used by an enqueue operation, and in this case Di finds an empty queue.

13

Chapter 2. A (1, n)-Queue implementation 14

Algorithm 1. A 3-bounded wait-free linearizable implementation of a (1, n)-Queue〈V 〉 ob-
ject from Registers, Fetch&Add and Swap objects. Process E performs enqueue operations
and processes D1, . . . Dn perform dequeue operations.

Shared objects:

ROW is an integer Register, initialized to 0.

HEAD [0 . . .∞] is an array of Fetch&Increment objects, each initialized to 0.

ITEMS [0 . . .∞, 0 . . .∞] is a two-dimensional array of Swap objects, each initialized to ⊥.
The set of values allowed in any of these Swap objects is V ∪{⊥,⊤}, where the latter
two symbols are not in V .

Process E:

• Persistent local variables:

tail, enq row are integers initialized to 0.

• Access procedure E :Enq(x), for all x ∈ V :

1. (step 1) val ←− Swap(ITEMS[enq row, tail], x)

2. if val = ⊤
then

3. increment(enq row)

4. tail ←− 0

5. (step 2) Swap(ITEMS[enq row, tail], x)

6. (step 3) Write(ROW, enq row)

end if

7. increment(tail)

8. return OK

Process Di, for 1 ≤ i ≤ n:

• Access procedure Di :Deq:

1. (step 1) deq row ←− Read(ROW)

2. (step 2) head ←− Fetch&Increment(HEAD[deq row])

3. (step 3) val ←− Swap(ITEMS[deq row, head], ⊤)

4. if val = ⊥
then

5. return ε
else

6. return val

end if

Chapter 2. A (1, n)-Queue implementation 15

0

0

2

HEAD ITEMS

ROW

enq_row

tail4

0

0

0

2

Figure 2.1: A possible state of the shared variables in this implementation.

1 0

1

0

3

4 5 6

2

HEAD ITEMS

ROW

enq_row

tail

1

4

4

Figure 2.2: Another possible state, extending the previous one.

The process E performing enqueue operations has two local persistent variables, enq row and
tail. They are persistent in the sense that their values are not lost from one enqueue procedure to
the next. The value of the variable enq row mirrors the value of the shared register ROW , while
tail contains the smallest index of a Swap object not already used by an enqueue procedure on row
row enq of the array ITEMS.

In order to perform an enqueue operation, process E writes the value to be enqueued in the
array location ITEMS[enq row, tail] and retrieves the latter’s value. If this value was ⊤, then
some dequeue operation has already accessed this cell before E had a chance to write to it. In this
case the enqueue procedure will abandon the current row and start using the next row for storing
the values in the queue.

The access procedures above consist of local computation and accesses to shared objects, that
is, steps. A complete execution of the enqueue procedure can consist of at most three steps, in
lines 1, 5 and 6. A complete execution of the dequeue procedure always consists of three steps, in
its first three lines.

For example, figure 2.1 presents a possible state of the shared variables in this implementation.
In it, exactly 2 enqueue procedures with arguments 1 and 2 were started, both were completed, and
neither of them executed the contents of the if statement in lines 3 through 6. Exactly 4 dequeue
procedures were started and executed at least their first two steps. All 4 of them obtained the result
0 in their first step, and they obtained the results 0, 1, 2, 3 in their second steps, respectively. The
dequeue procedures with (deq row = 0, head = 0) and (deq row = 0, head = 2) were completed
and output the values 1 and λ, respectively. The dequeue procedures with (deq row = 0, head = 1)
and (deq row = 0, head = 3) only executed their first two steps, and if either was allowed to take
another step, they would output 2 and λ, respectively. Notice that if a new enqueue procedure
with argument 3 were started at this point, it would apply a Swap operation with argument 3 to
the cell ITEMS[0, 2], and it would obtain the result ⊤ to that step. In this situation, a dequeue
procedure accessed that cell before the enqueue procedure, so the latter would then execute the
contents of the if statement in lines 3 through 6.

Chapter 2. A (1, n)-Queue implementation 16

The state in figure 2.2 is an extension of the one in figure 2.1. In here, 4 more enqueue
procedures with arguments 3, 4, 5, 6 were started, and all of them were completed. The only enqueue
procedure to execute the contents of the if statement in lines 3 through 6 was the one with
argument 3. One more dequeue procedure was started and executed its first two steps, obtaining
(deq row = 1, head = 0). This dequeue procedure was completed, and it output 3. Furthermore,
one of the two incomplete dequeue procedures from the state in figure 2.1 was completed, the one
with (deq row = 0, head = 3), and it output λ.

2.2 Proof of Correctness

We now prove that the implementation in Algorithm 1 is 3-bounded wait-free and linearizable.
Since in any run, any enqueue or dequeue instance has at most three steps, the implementation is
clearly 3-bounded wait-free. In the reminder of this section, we prove the remaining part of our
claim:

Theorem 2.2. Algorithm 1 is linearizable.

To this end, we begin by fixing an arbitrary run R of the implementation and we show that
R is linearizable. We first build the set Occur(R) of procedure instances which will be linearized,
so that Complete(R) ⊆ Occur(R) ⊆ Instances(R). Next, we specify a linear order on the set
Occur(R). We then construct a Queue history H which satisfies the first three requirements for
the linearizability of R in Definition 1.1. Finally, we show that H is legal and we conclude that R
is linearizable.

Notation and Definitions Before we tackle the proof, we need to introduce some notation.
For π an enqueue instance in R, let enq rowπ and tailπ denote the values of the local variables

enq row and tail, respectively, at the beginning of the execution of π. Let valπ denote the result
of the first step of π (line 1).

For φ a dequeue instance in R, let deq rowφ denote the result of the first step of φ (line 1). If φ
has at least two steps, let headφ denote the result of its second step (line 2). If φ is complete, that
is, if it contains three steps, let valφ denote the result of its third step (line 3).

Let C0 denote the initial configuration of the system, and for i ≥ 1, let Ci denote the configura-
tion of the system after the steps s1, . . . , si in the system history S of run R have been performed.
For i ≥ 0, let ITEMSi, HEADi and ROWi denote the values of the respective shared variables in
the system configuration Ci, that is, immediately after step si is performed.

For example, for φ a dequeue instance containing at least two steps, we have

headφ = HEADstep(φ,2)[deq rowφ]− 1 = HEADstep(φ,2)−1[deq rowφ]

Let t(i) be the first column of a cell on row ROWi of ITEMSi that hasn’t been accessed in
steps up to and including si during an enqueue procedure instance. If t(i) ≤ HEADi[ROWi], let

state(i) be the empty queue state, state(i)
def
= λ. If, on the other hand, HEADi[ROWi] < t(i), let

state(i) denote the queue state which has the elements in the queue ordered from head to tail in
columns HEADi[ROWi], . . . , t(i)− 1 on row ROWi of array ITEMSi. Formally,

state(i)
def
= (ITEMSi[ROWi,HEADi[ROWi]], . . . , ITEMSi[ROWi, t(i)− 1])

We prove in Lemma 2.8 that none of those cells can contain the values ⊥ or ⊤. Notice that
from the definitions above, t(0) = 0 and state(0) = λ.

Chapter 2. A (1, n)-Queue implementation 17

Enqueue Instances All enqueue instances are of one of these two types:

regular We say that an enqueue instance π is a regular enqueue instance if valπ 6= ⊤, so E does
not execute the body of the if statement during π. A complete regular enqueue instance
consists of only one step.

jump We say that π is a jump enqueue instance if valπ = ⊤, referring to the fact that it “jumps”
to the next row of the array ITEMS. A complete jump enqueue instance consists of three
steps.

Since all enqueue instances in R are executed sequentially by the same process E, no two enqueue
instances are concurrent. Furthermore, only the last enqueue instance in R can be incomplete,
because in a run R, a process must finish the execution of an access procedure before starting the
next one. We give several consequences of these definitions, which will be useful in our proof.

Lemma 2.3. Let π and π′ be two enqueue instances such that π is a jump enqueue instance and
π <R π′. Then enq rowπ′ > enq rowπ.

Proof. Since π <R π′ and enqueue instances are executed sequentially by E, π is complete. There-
fore E executes line 3 in π, incrementing the local variable enq row from enq rowπ to enq rowπ +1.
That variable is never decremented, so enq rowπ′ ≥ enq rowπ + 1 > enq rowπ.

Lemma 2.4. At the beginning of the execution of any enqueue instance π in R, the value of the
shared variable ROW is equal to the value of the local variable enq row. Formally, ROWstep(π,1)−1 =
enq rowπ.

Proof. Notice that the shared variable ROW is only modified by line 6 (step 3) of the enqueue
procedure, and the local variable enq row is only modified by line 3 of the enqueue procedure. In
the initial configuration of the system, both variables are 0.

The proof is by induction on the number of enqueue instances in R. If π is the first enqueue
instance in R, then enq rowπ = HEADstep(π,1)−1 = 0 and our claim holds. Otherwise let π′ be the
enqueue instance preceding π in R. We know π′ is complete. If π′ is a regular instance, then neither
ROW nor enq row are modified in it, so they are still equal at the beginning of π. Otherwise π′ is
a complete jump instance, and E executes line 6 (step 3) in π′, which sets ROW to equal enq row.
Then they are still equal at the beginning of π.

Corollary 2.5. Each time line 6 (step 3) of some enqueue instance is executed, the value of the
shared variable ROW is incremented.

Proof. Let π be some enqueue instance which has three steps in R. By Lemma 2.4, the values of
enq row and ROW are equal at the beginning of π. During π, E executes line 3, incrementing
enq row, before it gets to line 6 (step 3). Therefore, when it executes the latter, it increments the
value of ROW .

Lemma 2.6. The cells on a given row of ITEMS are accessed in increasing order of columns by
enqueue instances in R, starting at column 0. Formally, if ITEMS[r, c] is accessed in step si′,
where i′ ∈ π′ for some enqueue instance π′ and c > 0, then π′ is not the first enqueue instance in
R and there exists i < i′ such that ITEMS[r, c− 1] is accessed in step si and i ∈ π, where π is the
enqueue instance preceding π′ in R.

Proof. Let π′ be an enqueue instance accessing the cell ITEMS[r, c] in step si′ of S, with c > 0.
Since the access in line 5 (step 2) always involves the cell at column 0 of some row, we conclude
that si′ is the first step of π′ and that c = tailπ′ . Furthermore, π′ cannot be the first enqueue
instance in R, because in that case tailπ′ = 0, so c = 0. Since π is the enqueue instance preceding

Chapter 2. A (1, n)-Queue implementation 18

π′ in R, π is complete. Therefore, E executes line 7 during π, incrementing tail from c − 1 to c,
before line 1 (step 1) in π′. Then π accesses the cell ITEMS[r, c − 1], either in line 1 (step 1) or
in line 5 (step 2).

Lemma 2.7. The cells in ITEMS are accessed by enqueue instances in increasing lexicographical
order. Formally, if π and π′ are two, not necessarily distinct, enqueue instances in R, i ∈ π, i′ ∈ π′,
i < i′, si contains an access to ITEMS[r, c] and si′ contains an access to ITEMS[r′, c′], then (r, c)
is lexicographically smaller than (r′, c′), that is, either r < r′ or r = r′ and c < c′.

Proof. Let π be an enqueue instance in R. Let i ∈ π such that si contains an access to ITEMS[r, c].
Let i′ be the index of the first step following si in S in which some enqueue instance π′ accesses
some cell ITEMS[r′, c′]. Then either π = π′, or π <R π′. In the former case, (r′, c′) = (r + 1, 0).
In the latter, π <R π′ so si is the last step of π. Then si is either step 1 of a regular enqueue
instance, or step 3 of a jump enqueue instance. In any case, between steps si and si′ , neither ROW
nor enq row are modified. Furthermore, line 7 is executed in π before the first step of π′. Hence,
(r′, c′) = (r, c + 1). The claim in the Lemma follows by transitivity.

We are now able to prove the following Lemma, which is required by the definition of state(i):

Lemma 2.8. For any i ≥ 0, if HEADi[ROWi] < t(i), then no cell on row ROWi of ITEMSi at
a column in {HEADi[ROWi], . . . , t(i) − 1} can contain the values ⊥ or ⊤.

Proof. Fix i ≥ 0 and assume that HEADi[ROWi] < t(i).
First suppose that ⊤ appears on ROWi of ITEMSi. The value ⊤ can only appear there as

a result of step 3 of some dequeue instance φ, for which deq rowφ = ROWi and step(φ, 3) ≤ i.
Then step(φ, 2) < i. Notice that HEAD[ROW] is incremented on each access, hence headφ <
HEADi[ROWi] and φ accesses a cell on a column less than HEADi[ROWi]. Therefore ⊤ cannot
appear in a column greater than or equal to HEADi[ROWi] on row ROWi of ITEMSi.

Now suppose that ITEMSi[ROWi, k] = ⊥ for some k such that HEADi[ROWi] ≤ k < t(i).
Since t(i) > HEADi[ROWi] ≥ 0, t(i)− 1 ≥ 0. A cell in the array ITEMS can only have the value
⊥ if it was never accessed by either enqueue or dequeue instances. By definition of t(i), the cell
at column t(i)− 1 was accessed during an enqueue instance, so ITEMSi[ROWi, t(i)− 1] 6= ⊥ and
k < t(i)−1. However, by Lemma 2.6, cells on a given row of ITEMS are accessed consecutively in
increasing order of columns by enqueue instances, so the cell at column k of row ROWi must have
been accessed before the one at column t(i) − 1 > k on the same row. Hence ITEMSi[ROWi, k]
cannot contain ⊥.

Association between Enqueue Instances and Dequeue Instances For a dequeue instance
φ with at least two steps, we say that φ reserves the cell at row deq rowφ and column headφ of
ITEMS. We establish a relation between dequeue instances and enqueue instances as follows. Let
φ be a dequeue instance with at least two steps. If there exists an enqueue instance π such that:

• π accesses the cell in ITEMS reserved by φ, and

• if φ has three steps, then π accesses that cell before the third step of φ,

then we define ρ(φ)
def
= π. By Lemma 2.7, if π exists, then π is unique, so this definition is sound.

If no such enqueue instance exists, we leave ρ(φ) undefined. In Lemma 2.11, we will establish the
fact that ρ is injective where it is defined, and that it is a correspondence between the subset of all
dequeue instances containing at least two steps and a subset of all complete enqueue instances.

In the following Lemma we would like to say that any cell of the array ITEMS is accessed
at most once in instances of the dequeue procedure. However, it turns out that in the proof of
linearizability we will need a stronger statement, in order to deal with incomplete dequeue instances.

Chapter 2. A (1, n)-Queue implementation 19

Lemma 2.9. Any cell in the array ITEMS is reserved by at most one dequeue instance in R.

Proof. Suppose two dequeue instances φ1 and φ2 reserve cells on the same row r of ITEMS. Then
deq rowφ1

= deq rowφ2
= r, so both φ1 and φ2 contain, in their respective steps 2, Fetch&Increment

operations on the same shared object, HEAD[r]. However, HEAD[r] is incremented each time it
is accessed, so headφ1

6= headφ2
. Then φ1 and φ2 cannot reserve the same cell of ITEMS.

Lemma 2.10. Let φ be a dequeue instance such that ρ(φ) is defined, and suppose that π = ρ(φ) is
a jump enqueue instance. Then the second step of π (and not its first) contains the access to the
cell that φ reserves. Furthermore, π is complete.

Proof. Suppose that φ reserves the cell which is accessed in line 1 (step 1) of π. The initial value of
that cell is ⊥. Since π is a jump enqueue instance, in step 1 of π the value ⊤ is read from that cell,
and that value can only appear there as a result of an access by a dequeue instance. By Lemma 2.9,
no dequeue instance other than φ accesses that cell, so φ must access the cell before π does. But
then, the third step of φ occurs before the first step of π, which contradicts the second part of the
condition that π = ρ(φ). Therefore, if π = ρ(φ), then π has at least two steps, and its second step
contains the access to the cell that φ reserves.

We further claim that π is complete in R, containing three steps. If it were not complete,
then π would be the last enqueue instance in R, and the maximum value of ROW during the
entire execution would be enq rowπ. In particular, deq rowφ ≤ enq rowπ. However, the cell that
π accesses in step 2 is on row enq rowπ + 1 hence φ would not reserve that cell.

Corollary 2.11. Let φ and φ′ be two distinct dequeue instances such that ρ(φ) and ρ(φ′) are
defined. Then ρ(φ) 6= ρ(φ′).

Proof. Assume that ρ(φ) = ρ(φ′) = π. By Lemma 2.9, φ and φ′ reserve different cells. Only a
jump enqueue can access two different cells in ITEMS, so π is a jump enqueue instance. However,
by Lemma 2.10, both φ and φ′ reserve the cell that π accesses in its second step. This is a
contradiction.

The following Lemma shows that the result returned by a dequeue instance φ is related to the
enqueue instance ρ(φ).

Lemma 2.12. Let φ be a complete dequeue instance in R. If result(φ) = ε, then ρ(φ) is not
defined. If result(φ) 6= ε, then ρ(φ) = π is defined and π is enqueuing result(φ).

Proof. Let φ be a complete dequeue instance with result(φ) = ε. Since ε is not a value that can
appear in a cell of the array ITEMS, it must be that φ executes line 5, so φ retrieves valφ = ⊥ in
its step 3 from the cell it reserves. Then no procedure instance, in particular no enqueue instance,
contains an access to that cell before step(φ, 3). In order for ρ(φ) to be defined, some enqueue
instance π would have to access the cell reserved by φ before step(φ, 3), hence ρ(φ) is not defined.

Now let φ be a complete dequeue instance with result(φ) 6= ε. Then in its step 3, φ retrieves a
value other than ⊥ from the cell it reserves. By Lemma 2.9, that value is the result of an access to
that cell by some enqueue instance π. By Lemma 2.7, π is unique. By definition, π = ρ(φ). Notice
that whenever π accesses a cell from ITEMS, the value that π is enqueuing is written to that cell.
Hence, the value retrieved and output by φ is the value enqueued by π.

Dequeue Instances We define three types of dequeue instances:

type I A dequeue instance φ consisting of at least two steps is a type I dequeue instance if ρ(φ) = π
is defined, and the step in which π accesses the cell reserved by φ occurs after step 2 of φ.
By definition of ρ, the step in which π accesses that cell has to precede the third step of φ,
should the latter exist in R. We prove in Lemma 2.13 that π is a regular enqueue instance.

Chapter 2. A (1, n)-Queue implementation 20

Informally, a complete type I dequeue instance φ will return a value other than ε, but when
φ reserves a cell (in step 2), the value is not yet in the cell.

type II A dequeue instance φ consisting of at least two steps is a type II dequeue instance if there
exists a complete jump enqueue instance π′ such that enq rowπ′ = deq rowφ and step(π′, 3) <
step(φ, 2). We prove in Lemma 2.14 that π′ is unique, and in Lemma 2.15 that ρ(φ) is not
defined, hence φ cannot also be a type I dequeue instance. Informally, between step 1 and
step 2 of a type II dequeue instance, a jump enqueue instance has incremented ROW . If
complete, φ will return ε.

type III A dequeue instance φ consisting of at least two steps is a type III dequeue instance if it
is neither type I nor type II. Informally, we cannot say anything about the return value of a
type III dequeue instance: it may return ε or not.

Lemma 2.13. Let φ be a type I dequeue instance and let π = ρ(φ). Then π is a regular enqueue
instance.

Proof. Suppose π were a jump enqueue instance. By Lemma 2.10, π is complete and the access of
π to the cell reserved by φ occurs in step 2 of π, so this cell is on row enq rowπ + 1 of ITEMS.
Furthermore, by definition of type I dequeue instance, step(φ, 2) < step(π, 2).

By Corollary 2.5, the value of ROW prior to step 3 of π is strictly less than enq rowπ + 1. φ
reserves a cell on the row deq rowφ which is the value of ROW at step 1 of φ. So, in order for φ
to reserve a cell on row enq rowπ + 1, it must be the case that step(π, 3) < step(φ, 1). But then
step(π, 2) < step(φ, 2). This is a contradiction.

Lemma 2.14. The complete jump enqueue instance mentioned in the definition of a type II dequeue
instance is unique.

Proof. Let φ be a type II dequeue instance in R, and let π′ and π′′ be two complete jump enqueue
instances satisfying the requirements in the definition of a type II dequeue instance. In particular,
enq rowπ′ = enq rowπ′′ = deq rowφ.

If π′ 6= π′′, then, without loss of generality, suppose that π′ <R π′′. But then, by Lemma 2.3,
enq rowπ′′ ≥ enq rowπ′ + 1. This is a contradiction.

Lemma 2.15. Let φ be a type II dequeue instance. Then ρ(φ) is not defined.

Proof. Let π′ be a complete jump enqueue instance with enq rowπ′ = deq rowφ and step(π′, 3) <R

step(φ, 2). Suppose π = ρ(φ) for some enqueue instance π. Enqueue instances are completely
ordered in R, so either π = π′ or π′ <R π or π <R π′.

If π = π′, then, by Lemma 2.10, deq rowφ = enq rowπ′ + 1. This is a contradiction.
If π′ <R π, by Lemma 2.3, enq rowπ ≥ enq rowπ′ +1. Since π = ρ(φ), deq rowφ ≥ enq rowπ ≥

enq rowπ′ + 1. This is also a contradiction
Finally, it might be the case that π <R π′. In its step 1, π′ reads the value ⊤ from the cell at

(enq rowπ′ , tailπ′). This value cannot occur there unless some dequeue instance φ′ accesses that
cell before π′. By Lemma 2.9, there is a unique dequeue instance φ′ such that (enq rowπ′ , tailπ′) =
(deq rowφ′ , headφ′). Since dequeue instance only access the array ITEMS in their third steps,
step(φ′, 3) < step(π′, 1). We have

step(φ′, 2) < step(φ′, 3) < step(π′, 1) < step(π′, 3) < step(φ, 2).

By definition of π′, deq rowφ = enq rowπ′ . By definition of φ′, deq rowφ′ = enq rowπ′ . Hence
both φ and φ′ perform a Fetch&Increment operation on HEAD[enq rowπ′] in their second steps,
and that shared variable is incremented at each access, so headφ′ < headφ.

Chapter 2. A (1, n)-Queue implementation 21

Suppose π is a regular enqueue instance. Since π = ρ(φ), enq rowπ = deq rowφ = enq rowπ′ ,
and furthermore, tailπ = headφ. By Lemma 2.7, tailπ < tailπ′ . By definition of φ′, headφ′ = tailπ′ .
Hence headφ < headφ′ . This is a contradiction.

Now suppose π is a jump enqueue instance. By Lemma 2.10, headφ = 0. This is impossible
because headφ′ < headφ and headφ′ is a non-negative integer.

This completes the case analysis and shows that ρ(φ) is not defined.

Lemma 2.16. Let φ be a dequeue instance containing at least two steps, such that ROWstep(φ,2) 6=
deq rowφ. Then φ is a type II dequeue instance.

Proof. Note that ROWstep(φ,2) = ROWstep(φ,2)−1 as the second step of φ does not modify ROW .
By the algorithm, deq rowφ = ROWstep(φ,1). Let i be the index of the first step following step(φ, 1)
such that ROWi 6= deq rowφ. So step(φ, 1) < i < step(φ, 2).

The only line modifying the value of ROW is line 6 (step 3) of an enqueue instance. By
Corollary 2.5, ROWi = deq rowφ+1 and there exists an enqueue instance π′ such that enq rowπ′ =
deq rowφ and i = step(π′, 3). But then, by definition, φ is a type II dequeue instance.

Construction of Occur(R) We can now constructOccur(R) so that Complete(R) ⊆ Occur(R) ⊆
Instances(R). Let Occur(R) be the set of all complete enqueue instances in R, together with all
dequeue instances containing at least two steps in R. We will define a linear order ≺ on the pro-
cedure instances in Occur(R). To do that, we first define an occurrence point for each of these
instances.

Occurrence Points For α ∈ Occur(R), the occurrence point occ(α) is defined to be the index
of some step in S, at or after the first step of α, and also at or before the last step of α, in case α
is complete. Formally, step(α, 1) = min(α) ≤ occ(α), and if α is complete, occ(α) ≤ max(α). The
occurrence step of procedure instance α is socc(α). Notice that the occurrence step of a procedure
instance need not be part of that instance. Intuitively, a procedure instance seems to be performed
atomically at its occurrence step.

Occurrence points are defined as follows:

• For a complete regular enqueue instance π ∈ Occur(R), let occ(π) = step(π, 1). Since
max(π) = step(π, 1) = min(π), we have min(π) ≤ occ(π) ≤ max(π).

• For a complete jump enqueue instance π ∈ Occur(R), let occ(π) = step(π, 3). Since max(π) =
step(π, 3), we have min(π) ≤ occ(π) ≤ max(π).

• For a type I dequeue instance φ ∈ Occur(R) with π = ρ(φ), let occ(φ) = step(π, 1). By
Lemma 2.13, π is a regular enqueue instance. By definition of type I, step(φ, 2) < step(π, 1).
Hence min(φ) ≤ occ(φ). If φ is complete, then by the second condition in the definition of ρ,
step(π, 1) < step(φ, 3) = max(φ). Hence occ(φ) ≤ max(φ).

• For a type II dequeue instance φ ∈ Occur(R), let π′ be a complete jump enqueue instance
such that enq rowπ′ = deq rowφ and step(π′, 3) < step(φ, 2). By Lemma 2.14, there is a
unique such π′. In this case, let occ(φ) = step(π′, 3). By Lemma 2.5, the value of ROW after
step 3 of π′ is at least as large as enq rowπ′+1. So in order for φ to read enq rowπ′ from ROW
in its first step, we must have step(φ, 1) < step(π′, 3). Hence step(φ, 1) = min(φ) ≤ occ(φ).
Furthermore,

occ(φ) ≤ step(φ, 2) ≤ max(φ).

• For a type III dequeue instance φ ∈ Occur(R), let occ(φ) = step(φ, 2). Clearly min(φ) ≤
occ(φ) ≤ max(φ).

Chapter 2. A (1, n)-Queue implementation 22

Linear Order on Occur(R) Occurrence points are positive integers, and they give us a partial
order on the set of procedure instances inOccur(R). We will complete this order to get a linear order
≺ on Occur(R). To do this, we linearly order the procedure instances with the same occurrence
step. There are only three types of occurrence steps:

• Step 1 of a regular enqueue instance π. Apart from π itself, only type I dequeue instances
can have this as their occurrence step. However, a dequeue instance φ has step 1 of π as its
occurrence step only if φ is type I and π = ρ(φ). By Corollary 2.11, at most one such φ exists,
so at most one dequeue instance can have step 1 of π as its occurrence step. If there is indeed
one such type I dequeue instance φ, we put π before φ in the total order on Occur(R).

• Step 3 of a jump enqueue instance π. Apart from π itself, only type II dequeue instances can
have this as their occurrence step. Let Dπ denote the set of those type II dequeue instances
having step 3 of π as their occurrence step. In contrast to the case above, the cardinality of
Dπ can be greater than 1. In the total order on Occur(R), we put π after all type II dequeue
instances in Dπ, and we order the dequeue instances in Dπ arbitrarily.

• Step 2 of a type III dequeue instance φ. Only φ can have this step as its occurrence step.

We have now obtained a linear order ≺ on Occur(R). Let us denote with αi the i-th instance
in Occur(R) with respect to ≺, so that α1 ≺ α2 ≺ Notice that, when αi <R αj (that is,
max(αi) < min(αj) and αi is complete), we have

occ(αi) ≤ max(αi) < min(αj) ≤ occ(αj).

Hence occ(αi) < occ(αj), so i < j.

Object History H We now build a Queue history H = ((op1, res1), (op2, res2), . . .) as follows:

for all i, we let opi
def
= operation(αi). If αi is complete, resi

def
= result(αi). This covers case

when αi is an enqueue instance or a complete dequeue instance. Now let φ = αi be an incomplete
dequeue instance. Then φ contains exactly two steps out of three. If ρ(φ) is defined and π = ρ(φ)
is enqueuing x, let resi = x. If ρ(φ) is not defined, let resi = ε.

Notice that, with this definitions, the first three conditions for the linearizability of the run R
are satisfied, and all that it remains to prove is that H is legal.

State Sequence In order to prove that H is legal, we construct a state sequence Q = (q0, q1, . . .)

and we prove that for all i ≥ 1, δQUEUE(qi−1, opi) = (qi, resi). Let q0
def
= λ denote the state where

the queue is empty. For i ≥ 1, we define qi as follows:

• If among all procedure instances with the same occurrence step sj as αi, αi is the last in

the total order on Occur(R), let qi
def
= state(j). This covers the cases where αi is a regular

enqueue instance and there is no type I dequeue instance φ with ρ(φ) = αi, a jump enqueue
instance, a type III dequeue instance, or a type I dequeue instance.

• If αi is a regular enqueue instance and there exists a type I dequeue instance φ such that
ρ(φ) = αi, we define qi to be the state in which the queue consists of only one element, the
one being enqueued by αi.

• If αi is a type II dequeue instance, we define qi
def
= λ.

Before we tackle the proof that the sequence of states Q we have constructed is consistent with
the operations in the history H, we need several Lemmas.

Chapter 2. A (1, n)-Queue implementation 23

Lemma 2.17. Let i ≥ 1 such that no procedure instance in Occur(R) has i as its occurrence point.
Then state(i) = state(i− 1).

Proof. The step si is not the occurrence step of any procedure instance if and only if si is one of:
step 1 of some dequeue instance, step 2 of some type I or type II dequeue instance, step 3 of some
dequeue instance, and step 1 or step 2 of some jump enqueue instance. Below, we analyze all these
cases:

• If si is step 1 of some dequeue instance (executing a Read operation on ROW), no shared
variable is modified by si. Hence state(i) = state(i− 1).

• If si is step 2 of some type I dequeue instance φ (executing a Fetch&Increment operation on
HEAD[deq row]), ROWi = ROWi−1 and ITEMSi = ITEMSi−1. Since t(i) is defined only
as function of ROWi, ITEMSi and steps of enqueue instances in R, t(i) = t(i− 1).

By Lemma 2.16, deq rowφ = ROWi. Hence φ performs a Fetch&Increment operation on
HEAD[ROWi] in step si, so

headφ = HEADi[ROWi]− 1 = HEADi−1[ROWi−1]

Let π = ρ(φ). By Lemma 2.13, π is a regular enqueue instance, so tailπ = headφ. By
definition of type I dequeue instances, i < step(π, 1). By Lemma 2.6, no cell in a column
greater than or equal to tailπ on row ROWi could have been accessed by an enqueue instance
before step step(π, 1), hence before step i. Then

t(i) ≤ tailπ = headφ < HEADi[ROWi],

so state(i) = λ. Furthermore,

t(i− 1) = t(i) ≤ headφ = HEADi−1[ROWi−1],

so state(i− 1) = state(i) = λ.

• If si is step 2 of some type II dequeue instance φ, let π′ be the complete jump enqueue instance
mentioned in the definition of a type II dequeue instance and in Lemma 2.14. Then occ(φ) is
defined to be step(π′, 3), and we have seen that min(φ) = step(φ, 1) ≤ occ(φ) = step(π′, 3).
By definition of type II dequeue instances, we have step(π′, 3) < step(φ, 2). So we have

step(φ, 1) < step(π′, 3) < step(φ, 2) = i.

By Corollary 2.5, the value of ROW is incremented in step(π′, 3) and never decreases, so the
value that φ reads in its step 1 must be strictly less thanROWi: deq rowφ < ROWi. Therefore
φ does not modify HEAD[ROWi] in si. Then ROWi = ROWi−1, ITEMSi = ITEMSi−1,
t(i) = t(i− 1) and HEADi[ROWi] = HEADi−1[ROWi−1], hence state(i) = state(i− 1).

• If si is step 3 of some dequeue instance φ (executing a Swap operation on the variable on
row deq rowφ and column headφ of ITEMS, with argument ⊤), then ROWi = ROWi−1 and
HEADi = HEADi−1. Since t(i) is only defined in terms of the cells in ITEMS accessed
during enqueue instances, we get t(i) = t(i− 1), therefore state(i) = state(i− 1).

• If si is step 1 of some jump enqueue instance π, enq rowπ = ROWi = ROWi−1 (by
Lemma 2.4), HEADi = HEADi−1, t(i − 1) = tailπ (by Lemma 2.6) and t(i) = tailπ + 1.
In si, π retrieves the value ⊤ from ITEMS[ROWi, tailπ] which means a dequeue instance
reserved and accessed that cell before si. The shared variable HEAD[ROWi] is incremented
at each access, so

HEADi[ROWi] = HEADi−1[ROWi−1] ≥ tailπ + 1 = t(i) > tailπ = t(i− 1),

hence state(i) = state(i− 1) = λ.

Chapter 2. A (1, n)-Queue implementation 24

• If si is step 2 of some jump enqueue instance π (executing a Swap operation on the variable at
row enq rowπ+1 and column 0 of ITEMS, with argument x), enq rowπ = ROWi = ROWi−1

and HEADi = HEADi−1. Note that π writes to row ROWi +1 of ITEMS in si, not to row
ROWi. So t(i) = t(i− 1) and therefore state(i) = state(i− 1).

This completes the case analysis, showing that whenever no instance has i as its occurrence
point, state(i) = state(i− 1).

Corollary 2.18. Let i ≥ 1 be such that αi is the first instance in the total order on Occur(R) to
have j as its occurrence point. Then qi−1 = state(j − 1).

Proof. When i > 1, αi−1 is the last instance in the total order on Occur(R) to have k < j as its
occurrence point, so by definition, qi−1 = state(k). When i = 1, let k = 0 to get qi−1 = state(k) = λ.
In either case, no instance has its occurrence point between k+1 and j−1, inclusively, so an inductive
argument using the Lemma 2.17 yields the desired result.

Lemma 2.19. Let i ≥ 1 be such that si is step 1 of a regular enqueue instance π and suppose that
there exists a type I dequeue instance φ such that ρ(φ) = π. Then state(i) = state(i− 1) = λ.

Proof. By the algorithm, ROWi = ROWi−1 andHEADi = HEADi−1. Since π = ρ(φ), enq rowπ =
deq rowφ and headφ = tailπ. By Lemma 2.4, ROWi−1 = enq rowπ. So si contains an access by
π to the cell in column tailπ of row ROWi, and by Lemma 2.6, we have t(i − 1) = tailπ and
t(i) = tailπ + 1.

By definition of type I dequeue instances, φ performs its second step reserving the cell at column
headφ before si. Since HEAD[ROWi] is incremented at each access,

HEADi[ROWi] = HEADi−1[ROWi−1] ≥ headφ + 1 = tailπ + 1 = t(i) > tailπ = t(i− 1),

hence state(i) = state(i− 1) = λ.

Lemma 2.20. Let i ≥ 1 be such that si is step 3 of some jump enqueue instance π. Then
state(i− 1) = λ and state(i) is the state in which the queue contains only the element enqueued by
π.

Proof. The third step of a jump enqueue instance increments the shared variable ROW from
ROWi−1 to ROWi. No dequeue instance read the value ROWi in its first step prior to this
increment, so HEADi[ROWi] = 0, the initial value of that Fetch&Increment shared object. The
only access by an enqueue instance to a cell on row ROWi of ITEMS is the one which occurs in si.
Hence, t(i) = 1 and ITEMSi[ROWi, 0] contains the value enqueued by π. Therefore, in state(i),
the queue contains only the element enqueued by π.

Now let us prove that state(i − 1) = λ. By Corollary 2.5, enq rowπ = ROWi−1 = ROWi − 1.
In its step 1, π accesses the cell ITEMS[ROWi−1, tailπ] so by Lemma 2.6, t(i − 1) = tailπ + 1.
However, π retrieves the value ⊤ in its step 1, so that cell must have been reserved and accessed
by a dequeue instance before step 1 of π. The variable HEAD[ROWi−1] is incremented at each
access, therefore HEADi−1[ROWi−1] ≥ tailπ + 1 = t(i− 1). Hence state(i− 1) = λ.

We are finally ready to prove:

Theorem 2.21. The queue history H is legal.

Proof. We show that for all i ≥ 1, δQUEUE(qi−1, opi) = (qi, resi). To this end, fix i and consider
all possibilities for αi:

Chapter 2. A (1, n)-Queue implementation 25

• π = αi is a regular enqueue instance and there is no type I dequeue instance φ such that
ρ(φ) = π. We have opi = Enq(x) for some x and resi = OK. Let j = step(π, 1) be the
occurrence point of π. We know that

δQUEUE(qi−1, Enq(x)) = (qi−1 · x,OK),

so all we have to show is that qi = qi−1 · x.

Since π is the only instance with occurrence point j, by definition, qi = state(j), and by
Corollary 2.18, qi−1 = state(j − 1). Clearly ROWj = ROWj−1, HEADj = HEADj−1. By
Lemma 2.4, ROWj−1 = enq rowπ. By Lemma 2.6, t(j − 1) = tailπ and t(j) = tailπ + 1.
Notice that t(j) ≥ 1. The value x is put in the array ITEMS at (ROWj, t(j) − 1). Since
HEADj [ROWj] = HEADj−1[ROWj−1] and t(j) = t(j − 1) + 1, in order to show that
qi = qi−1 · x, it is enough to prove that qi 6= λ, that is, HEADj [ROWj] < t(j).

Suppose that 1 ≤ t(j) ≤ HEADj [ROWj]. Since HEAD[ROWj] is only changed by step 2
of a dequeue instance which increments it, and its initial value is 0, there exists a dequeue
instance φ′ such that deq rowφ′ = ROWj, headφ′ = t(j) − 1 ≥ 0 and step(φ′, 2) < j. Then
headφ′ = tailπ, hence φ′ reserves the cell that π accesses. Given that π is a regular instance,
the value retrieved from that cell by π in its step 1 is not ⊤, therefore, if φ′ is complete,
j < step(φ′, 3). But then ρ(φ′) = π, and furthermore, φ′ is a type I dequeue instance. We
assumed no such dequeue instance exists. This contradiction shows that HEADj [ROWj] <
t(j).

• π = αi is a regular enqueue instance and there exists a type I dequeue instance φ such that
ρ(φ) = π. We have opi = Enq(x) for some x and resi = OK. Let j = step(π, 1) be the
occurrence point of π. The only procedure instances to have their occurrence point at j are
π and φ. By definition, π ≺ φ, so by Corollary 2.18, qi−1 = state(j − 1). By Lemma 2.19,
state(j − 1) = λ. By definition, qi = (x). Our conclusion follows from the fact that

δQUEUE(λ,Enq(x)) = ((x), OK)

• π = αi is a jump enqueue instance. We have opi = Enq(x) for some x and resi = OK. Let
j = step(π, 3) be the occurrence point of π. The only procedure instances to have j as their
occurrence point are π and possibly some type II dequeue instances collected in the set Dπ.
By definition, π comes after any dequeue instances in Dπ in ≺, so, by definition, qi = state(j).
By Lemma 2.20, state(j − 1) = λ and in state(j), the queue contains only the element x.

If there are no dequeue instances with occurrence point j, then π is also the first instance
occurring at j, and by Corollary 2.18, qi−1 = state(j − 1) = λ. Otherwise, there are type II
dequeue instances with occurrence point j. Then αi−1 is one of them, and by definition,
qi−1 = λ. Hence, in either case, qi−1 = λ. Our conclusion again follows from the fact that

δQUEUE(λ,Enq(x)) = ((x), OK)

• φ = αi is a type I dequeue instance, and ρ(φ) = π is defined. So opi = Deq and by
Lemma 2.13, π is a regular enqueue instance. Let x be the element enqueued by π and let
j = step(π, 1) be the occurrence of point of both π and φ. Only these two instances have
occurrence point j, and π ≺ φ. Then αi−1 = π, and by definition, qi−1 = (x). Since φ is the
last instance with occurrence point j, by definition, qi = state(j). By Lemma 2.19, state(j) =
λ. If φ is complete, by Lemma 2.12, result(φ) = x, and by definition, resi = result(φ). If φ
is incomplete, by definition, resi = x. Our conclusion follows from the fact that

δQUEUE((x),Deq) = (λ, x)

Chapter 2. A (1, n)-Queue implementation 26

• φ = αi is a type II dequeue instance. So opi = Deq. Let π′ be the complete jump enqueue
mentioned in the definition of a type II dequeue instance. By Lemma 2.14, π′ is unique. Let
j = step(π′, 3) be the occurrence point of both π′ and φ. The procedure instances which have
j as their occurrence point are π′ and some type II dequeue instances (including φ) collected
in the set Dπ′ . By definition, qi = λ.

If i > 1 and αi−1 ∈ Dπ′ , then αi−1 is a type II dequeue instance and, by definition, qi−1 = λ.
If i > 1 and αi−1 /∈ Dπ′ , by Corollary 2.18, qi−1 = state(j − 1), and by Lemma 2.20,
state(j − 1) = λ. If i = 1, by definition, qi−1 = q0 = λ. Hence, in any case, qi−1 = λ.

By Lemma 2.15, ρ(φ) is not defined. If φ is complete, by definition resi = result(φ), and by
Lemma 2.12, result(φ) = ε. If φ is incomplete, by definition resi = ε. Hence, in any case,
resi = ε. Our conclusion follows from the fact that

δQUEUE(λ,Deq) = (λ, ε)

• φ = αi is a type III dequeue instance, ρ(φ) is defined and π = ρ(φ) is enqueuing x. So
opi = Deq. Let j be the occurrence point of φ, which is, by definition, step(φ, 2). No other
procedure instance has its occurrence point there, hence, by definition, qi = state(j), and by
Corollary 2.18, qi−1 = state(j − 1).

If φ is complete, by definition, resi = result(φ), and by Lemma 2.12, result(φ) = x. If φ is
incomplete, by definition, resi = x. Hence, in any case, resi = x. So in order to show that

δQUEUE(qi−1,Deq) = (qi, x),

it is enough to show that qi−1 = x · qi.

Since sj contains a Fetch&Increment operation, ROWj = ROWj−1, ITEMSj = ITEMSj−1

and t(j) = t(j − 1). By Lemma 2.16, ROWj = deq rowφ, so

headφ = HEADj−1[ROWj−1] = HEADj [ROWj]− 1.

Since φ is not a type I dequeue instance, π has accessed the cell reserved by φ before step
sj, so ITEMSj−1[ROWj−1, headφ] = x and by Lemma 2.6, t(j − 1) ≥ headφ + 1. Since
headφ = HEADj−1[ROWj−1], state(j − 1) 6= λ, and in state(j − 1), the element at the head
of the queue is

ITEMSj−1[ROWj−1,HEADj−1[ROWj−1]] = x.

In state(j), the queue contains the same elements as in state(j − 1), except that the head
of the queue is now HEADj [ROWj] = HEADj−1[ROWj−1] + 1, so state(j − 1) = qi−1 =
x · state(j) = x · qi.

• φ = αi is a type III dequeue instance and ρ(φ) is not defined. So opi = Deq. Let j be
the occurrence point of φ, which is, by definition, step(φ, 2). No other procedure instance
has its occurrence point there, hence, by definition, qi = state(j), and by Corollary 2.18,
qi−1 = state(j − 1).

If φ is complete, by definition, resi = result(φ), and by Lemma 2.12, result(φ) = ε. If φ is
incomplete, by definition, resi = ε. Hence, in any case, resi = ε. So in order to show that

δQUEUE(qi−1,Deq) = (qi, ε),

it is enough to show that qi−1 = qi = λ.

Since sj contains a Fetch&Increment operation, ROWj = ROWj−1, ITEMSj = ITEMSj−1

and t(j) = t(j − 1). By Lemma 2.16, ROWj = deq rowφ, so

headφ = HEADj−1[ROWj−1] = HEADj [ROWj]− 1.

Chapter 2. A (1, n)-Queue implementation 27

Suppose that headφ < t(j − 1). By Lemma 2.6, there exists an enqueue instance π which
accesses the cell at (ROWj−1, headφ) before step(φ, 2) = j. But then π = ρ(φ), and
this contradicts the assumption that ρ(φ) is not defined. Therefore t(j − 1) ≤ headφ =
HEADj−1[ROWj−1] < HEADj [ROWj], and thus state(j − 1) = qi−1 = state(j) = qi = λ.

This completes the case analysis, and show that for all i ≥ 1, δQUEUE(qi−1, opi) = (qi, resi).
Therefore the queue history H is legal.

Chapter 3

Simulating a System with One Object

One of the established ways to attempt proving Conjecture 1.2 is to consider any wait-free imple-
mentation of a 3-Queue〈Z〉 object and use an adversarial argument to construct either a “bad” run
violating the linearizability assumption, or a family of “bad” runs violating the wait-freedom as-
sumption. Adversarial arguments often consider simpler models, even if somewhat more powerful,
in order to simplify the description of that argument. A main difficulty in analyzing the interac-
tions between the various processes in a system of Fetch&Add objects and Registers comes from
the multitude of shared objects we have to deal with — in general, an algorithm for this system
(in particular a Queue object implementation) can use countably infinitely many shared objects.
In this framework, there arises an issue about the flow of information between processes: if in some
configuration of the system, P1 and P2 are about to apply two operations on two different shared
objects, how long will it take, or under what circumstances, will either of them become aware of
the other’s action? Ideally, we would like to both simplify and quantify the flow of information in
the system. To do this, we introduce in this chapter a new shared object type, BH&AR, which has
the following two important characteristics:

• On the one hand, a system with one BH&AR object is simple: we can exactly quantify the
information that a process gets each time it applies an operation on O.

• On the other hand, a system with one BH&AR object is as powerful as one providing a
countably infinite collection of Fetch&Add objects and Registers. Therefore, there exists a
wait-free linearizable Queue implementation from Fetch&Add objects and Registers if and
only if there exists a similar implementation from only one BH&AR object.

We begin by formally defining the BH&AR and B-History object types in section 3.1, and
describing the information each process gets as a result of an operation on one such object. The
results in this chapter are summarized by the following theorem:

Theorem 3.1. The following collections of shared objects are equally powerful:

(i) a countably infinite collection of Fetch&Add objects and Registers;

(ii) one B-History object and N MRSW Registers, one written by each process in the system;

(iii) one BH&AR object.

In section 3.2, we prove that a B-History object can be implemented from one Fetch&Add
object, implying that (ii) can be implemented from (i). In section 3.3, we argue that (iii) can be
implemented from (ii). In section 3.4, we prove that a countably infinite collection of Fetch&Add
objects and MRSW Registers can be implemented from (iii). We know from [Jay95] that a MRMW
Register can be implemented from MRSW Registers, therefore by transitivity, (i) can be imple-
mented from (iii).

28

Chapter 3. Simulating a System with One Object 29

3.1 The B-History and BH&AR Object Types

We begin this section by informally describing, in subsection 1, the B-History and BH&AR object
types. In subsection 2, we introduce a notion of indistinguishability over the set of possible states
of a BH&AR object. Subsection 3 contains the formal object type definitions.

3.1.1 An Informal Description of the B-History and BH&AR Types

Consider a distributed system of N processes, providing Registers and Fetch&Add objects. One
of the difficulties in trying to prove Conjecture 1.2 is to quantify what “information” a process P
can have about the steps taken by other processes, as P is executing an access procedure of the
implemented Queue object. Our goal is to show that even if every process has the “maximum
possible information allowed by this system”, there still exists a run of this implementation which
is not linearizable. The B-History object type is introduced in an attempt to capture the intuition
behind the phrase “maximum possible information”. It is primarily intended to be of theoretical
interest, in proving an impossibility result.

We would like to design an object which functions as a signature log. Each process Pi can apply
only one type of operation on this object, Sign(i), which consists of signing the log. The object
keeps, by means of its internal state, a complete ordered list of the signatures in the log. As process
Pi signs the log, i is added at the end of this ordered list, and Pi retrieves the list of signatures up
to, but not including, the one being applied by its current operation.

Consider the History object type defined by: QHISTORY = RESHISTORY
def
= N

∗, OPHISTORY
def
=

{Sign(i) : i ∈ N}, and transition function δHISTORY (σ, Sign(i))
def
= (σ · i, σ). Let O be an object of

this type with initial state λ and bindings which allow each process Pi to apply operation Sign(i)
on O. It is not difficult to see that O could be used to solve the Consensus problem among the
N processes in the system, no matter how large N actually is. The consensus number of O is
thus ∞, and results by Herlihy [Her91] show that one could not implement O from Registers and
Fetch&Add objects in a system of 3 or more processes.

Informally, a B-History (short for Blurred History) object works as much like a History object
as possible, under the restriction that a B-History object (with the same binding as above) can
be implemented from Registers and Fetch&Add objects. The B-History object type has the same
states and the same operations as the History object type, and it only differs from the latter in the
results that are returned to the signing operations.

In order to restrict the power of the History object type, we will introduce a notion of indis-
tinguishability with respect to i (∼i) between two finite sequences of signatures. As Pi signs the
log in a B-History object, it retrieves not the exact sequence σ of signing operations applied thus
far, but instead, the equivalence class [σ]∼i

of sequences indistinguishable from σ with respect to
i. Before we give its formal definition, let us provide the intuition behind this indistinguishability
notion. Given a finite sequence of integers, label each element with a superscript that indicates
the number of elements with the same value occurring at or before that element. For example,
the labeled version of the sequence (1, 3, 2, 3, 1, 4) is (11, 31, 21, 32, 12, 41). We say that two finite
sequences σ and σ′ are indistinguishable with respect to i when the set of elements of both labeled
sequences is the same, and every labeled element of the form jk has the same position in the two
labeled sequences, except possibly when i 6= j and this is the last occurrence of j (i.e., j occurs
exactly k times in σ and σ′).

The BH&AR object type is a generalization of the B-History object type. The acronym stands
for B-History & Append-Registers, as an object O of this type encapsulates one B-History object
B and a set of MRSW Append-Registers Ai, one for every process Pi in the system. The process
Pi is allowed to perform operations of the form Sign&Append(i, x) on O. Each atomic operation
Sign&Append(i, x) performed by Pi on O consists of three parts: the value x is appended to

Chapter 3. Simulating a System with One Object 30

Ai, a Sign(i) operation is performed on B, and finally, the result of the Sign(i) operation and the
values of all Append-Registers A1, . . . , AN are returned as the result of the current (Sign&Append)
operation.

3.1.2 Notion of Indistinguishability

In the formal definitions which follow, N is the set of possible process indices and V is a finite or
countably infinite set of possible values to be used in the Append-Registers inside a BH&AR object.
The notion of indistinguishability with respect to i that we introduce is between two sequences over
N× V , rather than over N, in order to capture the generality of the BH&AR object type.

Let σ ∈ (N × V)∗ and i ∈ N. We define last(σ) ⊂ N to be the set of indices in σ of the last
occurrences of any first coordinate in σ, and we define last(σ, i) ⊂ N to be the set last(σ) excluding
the index of the last occurrence of first coordinate i in σ, if any. In the definitions below, notice
that σ[k] is a pair, and (σ[k])[1] is the first coordinate of σ[k].

last(σ)
def
= {k ∈ [1, |σ|] : ∀k′, k < k′ ≤ |σ| ⇒ (σ[k])[1] 6= (σ[k′])[1]}

last(σ, i)
def
= {k ∈ last(σ) : (σ[k])[1] 6= i}

To exemplify these definitions, let σ = ((1, a), (2, b), (4, b), (3, a), (1, b), (3, a)). We then have last(σ) =
{2, 3, 5, 6}, last(σ, 1) = {2, 3, 6}, last(σ, 2) = {3, 5, 6} and last(σ, i) = {2, 3, 5, 6} for any i > 4.

For any finite set U ⊂ N, we define MaxConsec(U) to be the set of maximal subsets of
consecutive elements in U . Formally,

MaxConsec(U)
def
= {[a, b] : [a, b] ⊆ U, a− 1 /∈ U, and b+ 1 /∈ U}.

As an example, for σ as above, we haveMaxConsec(last(σ, 1)) = {{2, 3}, {6}} andMaxConsec(last(σ, i)) =
{{2, 3}, {5, 6}} for any i > 4.

Definition 3.1. Let σ, σ′ ∈ (N × V)∗ and let i ∈ N. We say σ and σ′ are indistinguishable with
respect to i and we write σ ∼i σ

′ if and only if the following three conditions hold:

1. |σ′| = |σ|; and

2. for all k ∈ [1, |σ|], if k /∈ last(σ, i), then σ′[k] = σ[k]; and

3. for all A ∈MaxConsec(last(σ, i)), σ′|A is a permutation of σ|A.

To illustrate the definitions, with σ as before, we have

σ ∼i ((1, a), (2, b), (4, b), (3, a), (3, a), (1, b)), for all i /∈ {1, 3},

σ ∼i ((1, a), (4, b), (2, b), (3, a), (1, b), (3, a)), for all i /∈ {2, 4},

σ ∼i ((1, a), (4, b), (2, b), (3, a), (3, a), (1, b)), for all i > 4.

We prove in Lemma 3.5 that ∼i is an equivalence relation. Before we do that, Lemma 3.2
establishes the fact that two sequences which are indistinguishable with respect to some i must
be a permutation of one another. Lemmas 3.3 and 3.4 contain the results needed to establish
Lemma 3.5.

Lemma 3.2. Let σ, σ′ ∈ (N×V)∗. If there exists i ∈ N such that σ ∼i σ
′, then σ′ is a permutation

of σ.

Proof. A permutation which transforms σ in σ′ can be obtained by composing the individual
permutations mentioned by condition 3 of Definition 3.1 with the identity permutation on the set
[1, |σ|] \ last(σ, i).

Chapter 3. Simulating a System with One Object 31

Lemma 3.3. Let σ, σ′ ∈ (N×V)∗ and i ∈ N and suppose that σ ∼i σ
′. Then for any k, (σ[k])[1] = i

if and only if (σ′[k])[1] = i. Informally, the value i occurs as first coordinate in the same positions
in σ and in σ′.

Proof. If (σ[k])[1] = i, then k /∈ last(σ, i), so by condition 2 in Definition 3.1, we have σ′[k] = σ[k],
so (σ′[k])[1] = i.

Now suppose that (σ′[k])[1] = i and (σ[k])[1] 6= i. By condition 2 in Definition 3.1, if σ[k] 6= σ′[k],
then k ∈ last(σ, i). By condition 3 in Definition 3.1, there exist A ∈ MaxConsec(last(σ, i)) and
j ∈ A such that k ∈ A and σ′[k] = σ[j]. But then (σ[j])[1] = i, so j /∈ last(σ, i). This is a
contradiction, because j ∈ A ⊆ last(σ, i). Therefore, if (σ′[k])[1] = i, then (σ[k])[1] = i.

Lemma 3.4. Let σ, σ′ ∈ (N× V)∗ and i ∈ N and suppose that σ ∼i σ
′. Then last(σ) = last(σ′).

Proof. Let k ∈ last(σ).
If (σ[k])[1] = i, then k is the index of the last occurrence of first coordinate i in σ. By

Lemma 3.3, i occurs as first coordinate in the same positions in σ and σ′, so k is also the index of
the last occurrence of first coordinate i in σ′. Therefore k ∈ last(σ′).

Now assume that (σ[k])[1] 6= i, so k ∈ last(σ, i). We want to prove that k ∈ last(σ′).
By condition 3 in Definition 3.1, there exist A ∈ MaxConsec(last(σ, i)) and j ∈ A such that

k ∈ A and σ[j] = σ′[k]. Let p = (σ[j])[1] 6= i. Since j ∈ A, we know that j is the index of the last
occurrence of first coordinate p in σ. Let B be the set of indices of occurrences of first coordinate
p in σ other than its last (at index j). Then B ∩ last(σ, i) = ∅. Since A is a maximal subset of
consecutive indices in last(σ, i), j ∈ A and j is greater than the elements in B, any element of
B is less than any element of A. By condition 2 in Definition 3.1, p occurs as first coordinate in
σ′ at every index in B. Furthermore, p occurs as first coordinate in σ′ at index k ∈ A, and k is
greater than any element in B. By Lemma 3.2, σ and σ′ contain the same number of occurrences
of first coordinate p, therefore the last occurrence of first coordinate p in σ′ is at index k. Hence,
k ∈ last(σ′).

This proves that last(σ) ⊆ last(σ′). Using a similar argument, last(σ′) ⊆ last(σ).

The next result follows easily from Lemma 3.4:

Lemma 3.5. For any i, ∼i is an equivalence relation on (N× V)∗.

Proof. Reflexivity is trivial, using the identity permutation in the third condition of Definition 3.1.
For symmetry, suppose that σ ∼i σ

′. Condition 1 for σ′ ∼i σ is the same as for σ ∼i σ
′. By

Lemma 3.4, condition 2 in the definition of σ′ ∼i σ is the same as condition 2 in the definition of
σ ∼i σ

′. By using the inverse permutation from condition 3 for σ ∼i σ
′, we obtain condition 3 for

σ′ ∼i σ.
For transitivity, suppose that σ ∼i σ

′ and σ′ ∼i σ
′′. Condition 1 for σ ∼i σ

′′ is satisfied. We
use Lemma 3.4 to obtain condition 2 for σ ∼i σ

′′. To get condition 3 for σ ∼i σ
′′, we compose the

permutations from condition 3 for the two hypotheses.

For any σ ∈ (N × V)∗ and a ∈ N, let SubseqV al(σ, a) ∈ V ∗ be the sequence of values which
occur in σ in pairs whose first coordinate is a. The following Lemma will also be useful later:

Lemma 3.6. Let σ, σ′ ∈ (N × V)∗ and let i ∈ N. Suppose that σ ∼i σ
′. Then for any a ∈ N,

SubseqV al(σ, a) = SubseqV al(σ′, a).

Proof. Let B be the set of indices of pairs in σ whose first coordinate is a, and B′ be the similar
set of indices in σ′. So SubseqV al(σ, a) is the sequence of second coordinates of pairs in σ|B . To
prove this Lemma, we show that σ|B = σ′|B′ . By Lemma 3.2, |B| = |B′|.

If |B| = 0, then no pair in either σ or σ′ has first coordinate a, so SubseqV al(σ, a) =
SubseqV al(σ′, a) = λ.

Chapter 3. Simulating a System with One Object 32

Now assume that |B| ≥ 1. Let k = max(B) be the index in σ of the last occurrence of a pair
with first coordinate a. We know |B′| = |B| ≥ 1, so we can let k′ = max(B′) be the similar index
in σ′. By Lemmas 3.3 and 3.4, last(σ, i) = last(σ′, i). For any j ∈ B \ {k}, j /∈ last(σ, i), so by
condition 2 in Definition 3.1, σ′[j] = σ[j]. For any j′ ∈ B′ \ {k′}, j′ /∈ last(σ′, i) = last(σ, i), so by
the same condition, σ′[j′] = σ[j′]. Therefore σ|B\{k} = σ′|B′\{k′}.

By condition 3 in Definition 3.1, there exists A ∈ MaxConsec(last(σ, i)) and j ∈ A such that
σ′[j] = σ[k]. But then j ∈ last(σ, i) = last(σ′, i) and σ′[j] has first coordinate a, therefore j = k′.
So σ′[k′] = σ[k], and hence, σ|B = σ′|B′ .

The idea behind the next technical Lemma is that whenever Pi applies a Sign&Write operation
to a BH&AR object which is in state σ, it retrieves enough information to compute the result
obtained by some (possibly other) process Pi′ in its l-th step preceding that of Pi, provided that
either i = i′ or l is not the last step by Pi′ in σ.

Lemma 3.7. Let V be a finite or countably infinite set. Let σ, σ′ ∈ (N × V)∗ and i ∈ N be such
that σ ∼i σ

′. Let j ∈ [1, |σ′|] \ last(σ′, i). Let i′ be the first coordinate of σ′[j]. Then the prefixes of
length j − 1 of σ and σ′ are indistinguishable with respect to i′.

Proof. Notice that by condition 1 in Definition 3.1, |σ′| = |σ|, and by Lemma 3.4, last(σ′, i) =
last(σ, i). Therefore, j ∈ [1, |σ|] \ last(σ, i), and by condition 2 from the same definition, we get
σ′[j] = σ[j]. Let τ and τ ′ denote the prefixes of length j − 1 of σ and σ′, respectively. Notice that
|τ ′| = |τ | = j − 1, so condition 1 in Definition 3.1 of τ ∼i′ τ

′ holds.
We now prove that condition 2 in the definition of τ ∼i′ τ

′ holds. Let k ∈ [1, |τ |] \ last(τ, i′)
and let a = (τ [k])[1]. We claim that k /∈ last(σ). To see why, consider two possible cases. If a 6= i′

then k /∈ last(τ), and since τ is a prefix of σ, k /∈ last(σ). Otherwise, a = i′, and now a occurs as
first coordinate in σ at indices k and j, with k < j, therefore k /∈ last(σ). Hence, in either case,
k /∈ last(σ), so k /∈ last(σ, i). Then, by condition 2 in the definition of σ ∼i σ

′, we have σ′[k] = σ[k]
and therefore, τ ′[k] = τ [k]. This shows that condition 2 in the definition of τ ∼i′ τ

′ holds.
To complete the proof of this Lemma, it is enough to show that condition 3 in the definition

of τ ∼i′ τ
′ holds. To do this, we first claim that last(σ, i) ∩ [1, j − 1] ⊆ last(τ, i′). Let k ∈

last(σ, i)∩ [1, j− 1] and let a = (σ[k])[1]. So k is the index of the last occurrence of first coordinate
a 6= i in σ. Since τ is a prefix of σ, k is also the index of the last occurrence of first coordinate a
in τ . Therefore, k ∈ last(τ). Furthermore, since i′ occurs as first coordinate at index j > k in σ,
we have a 6= i′. Hence, k ∈ last(τ, i′) as claimed.

Next, we claim that for all A ∈MaxConsec(last(τ, i′)), the family of subsets {B ∈MaxConsec(last(σ, i)) :
B∩A 6= ∅} partitions A∩last(σ, i). To prove this, first notice that the sets inMaxConsec(last(σ, i))
are mutually disjoint. Next, for all k ∈ A ∩ last(σ, i), there exists a B ∈ MaxConsec(last(σ, i))
such that k ∈ B and therefore, B ∩A 6= ∅. Hence,

A ⊆ ∪{B ∈MaxConsec(last(σ, i)) : B ∩A 6= ∅}.

In order to prove the other direction of this set inclusion, let B ∈MaxConsec(last(σ, i)) such that
B ∩ A 6= ∅. We want to show that B ⊆ A. Let k ∈ B ∩ A (we know k exists). Since k ∈ A and
A ⊆ last(τ, i′) ⊆ [1, j−1], we have k < j. But, by definition, j /∈ last(σ′, i) = last(σ, i). Since B is a
maximal subset of consecutive elements in last(σ, i), B contains the element k < j and j /∈ last(σ, i),
we can conclude that B ⊆ [1, j − 1]. Now, for any element k′ ∈ B, k′ ∈ last(σ, i) ∩ [1, j − 1], so
by the previous claim, k′ ∈ last(τ, i′). Therefore B is a subset of consecutive indices in last(τ, i′),
but not necessarily maximal. But A itself is a maximal subset of consecutive indices in last(τ, i′).
Hence, if B ∩A 6= ∅, then B ⊆ A.

Finally, we are able to prove condition 3 from the definition of τ ∼i′ τ
′. Let A ∈MaxConsec(last(τ, i′)).

Since {A \ last(σ, i), A ∩ last(σ, i)} is a partition of A, by the previous claim, the following family
of subsets also partitions A:

{{k} : k ∈ A \ last(σ, i)} ∪ {B ∈MaxConsec(last(σ, i)) : B ∩A 6= ∅}.

Chapter 3. Simulating a System with One Object 33

By condition 2 in the definition of σ ∼i σ
′, σ′[k] = σ[k] for all k /∈ last(σ, i), in particular for

all k ∈ A \ last(σ, i). By condition 3 in the same definition, σ′|B is a permutation of σ|B for all
B ∈MaxConsec(last(σ, i)), in particular for those B such that B ∩ A 6= ∅. Hence, a permutation
which transforms σ|A = τ |A into σ′|A = τ ′|A can be obtained by composing the identity permutation
on the singleton sets {k} for k ∈ A \ last(σ, i) with the permutation given by condition 3 of σ ∼i σ

′

on the sets B ∈MaxConsec(last(σ, i)) such that B ∩A 6= ∅.

3.1.3 Formal Object Type Definitions

For σ ∈ (N × V)∗ and i ∈ N, let [σ]∼i
denote the equivalence class of σ with respect to the

equivalence relation ∼i. We are now ready to define the BH&AR〈V 〉 object type:

• QBH&AR〈V 〉
def
= (N× V)∗;

• OPBH&AR〈V 〉
def
= {Sign&Append(i, x) : i ∈ N and x ∈ V };

• RESBH&AR〈V 〉
def
= {[σ]∼i

: σ ∈ (N× V)∗ and i ∈ N}; and

• for all σ ∈ QBH&AR〈V 〉 and for all Sign&Append(i, x) ∈ OPBH&AR〈V 〉, we have

δBH&AR〈V 〉(σ, Sign&Append(i, x))
def
= (σ · (i, x), [σ]∼i

)

In this thesis, any object O of the BH&AR〈V 〉 type has initial state qO = λ and bindings
bO(Pi) = {Sign&Append(i, x) : x ∈ V }. Notice that with these bindings, in a distributed system
with N processes, an object of the BH&AR〈V 〉 type can only reach states q such that q ∈ ([1,N]×
V)∗.

For any σ ∈ N
∗, let σ × ⊥ be the sequence in (N × {⊥})∗ defined by (σ × ⊥)[i] = (σ[i],⊥),

for all i ∈ [1, |σ|]. We can now extend the definition of ∼i over sequences of positive integers: for
any σ, σ′ ∈ N

∗, σ ∼i σ
′ if and only if (σ × ⊥) ∼i (σ′ × ⊥). It should be clear that ∼i is also an

equivalence relation on N
∗, so that we can write [σ]∼i

for the equivalence class of σ ∈ N
∗ with

respect to the equivalence relation ∼i.
The formal definition of the B-History object type is as follows:

• QB−HISTORY
def
= N

∗;

• OPB−HISTORY
def
= {Sign(i) : i ∈ N};

• RESB−HISTORY
def
= {[σ]∼i

: σ ∈ N
∗, i ∈ N}; and

• For all σ ∈ QB−HISTORY and i ∈ N, δB−HISTORY (σ, Sign(i))
def
= (σ · i, [σ]∼i

).

In this thesis, any object O of the B-History type will have initial state qO = λ and bindings
rO(Pi) = {Sign(i)}. Notice that with these bindings, in a distributed system with N processes, an
object of the B-History type can only reach states q such that q ∈ [1,N]∗.

An explanation is in order with respect to the relationship between the B-History and BH&AR
object types. Notice that, formally, the B-History object type is almost identical to the BH&AR〈V 〉
object type, for any V containing a single element. The acronym BH&AR stands for B-History &
Append-Registers, because any object O of the BH&AR object type can be seen as encapsulating
one B-History object B, and several MRSW Append-Registers Ai, one for each process Pi in
the system. With these formal definitions, the B-History object B encapsulated in state σ of
O is represented by the sequence of first coordinates of pairs in σ. The value of the MRSW
Append-Register object Ai corresponding to Pi, encapsulated in the state σ of O, is the sequence
SubseqV al(σ, i). The newest value appended to that register is the last value in the latter sequence.

Chapter 3. Simulating a System with One Object 34

3.2 Implementing a B-History Object

In this section, we prove:

Theorem 3.8. There exists a 1-bounded wait-free linearizable implementation of a B-History object
from one Fetch&Add object.

In order to present the implementation, we will need some notation.

Mapping of Tuples to Non-Negative Integers Let Z be the set of integers and let N be the
set of positive integers. Throughout this section, let γ denote a bijective mapping from Z

N+1 into
N ∪ {0} which exists, since Z

N+1 is countably infinite (recall that N is the number of processes
in our distributed system). Let γ−1 be the inverse of γ. The function γ determines a natural
bijection γ between finite subsets of Z

N+1 and non-negative integers. For any finite A ⊂ Z
N+1,

the sequence of bits in the binary representation of the non-negative integer γ(A) (starting from
its least significant bit) represents the characteristic function of A. Formally,

γ(A)
def
=

∑

x∈A

2γ(x)

and in particular, γ(∅) = 0. Let γ−1 denote the inverse of γ.
As an example, let a0, a1, . . . be an enumeration of Z

N+1 (that is, ai = γ−1(i)). Then the
positive integer 11 = 23 + 21 + 20 encodes the finite subset γ−1(11) = {a0, a1, a3} ⊂ Z

N+1.
Notice that for any finite A,B ⊂ Z

N+1,

A ∩B = ∅ =⇒ γ(A ∪B) = γ(A) + γ(B)

Tuples In the following definitions, let σ ∈ N
∗. We will associate a series of tuples with σ, whose

purpose is to describe σ. The relation between the tuples associated with σ and the equivalence
class of σ will become apparent in Lemma 3.12.

For k ∈ [1, |σ|], we define tup(σ, k) to be the (N + 1)-tuple (σ[k], t1, . . . , tN) such that for all

j ∈ [1, N], tj
def
= count(σ|[1,k−1], j) is the number of occurrences of j strictly before index k in σ.

Notice that k = 1 +
∑N

j=1 tj.
For k ∈ [1, |σ|], we define pre tup(σ, k) as follows. If k is the index of the first occurrence of σ[k]

in σ, then we give pre tup(σ, k) a dummy value, pre tup(σ, k)
def
= (σ[k],−1, . . . ,−1). Otherwise, let

k′ < k be the index of the previous occurrence of σ[k] in σ, and let pre tup(σ, k)
def
= tup(σ, k′).

We define Tuples(σ) and Tuples(σ, i) to be the following finite subsets of Z
N+1:

Tuples(σ)
def
= {pre tup(σ, k) : 1 ≤ k ≤ |σ|}

and
Tuples(σ, i)

def
= Tuples(σ) ∪ {tup(σ, k) : σ[k] = i and k ∈ last(σ)}

Notice that there is at most one k such that σ[k] = i and k ∈ last(σ), so Tuples(σ, i) has at most
one more element than Tuples(σ). With these definitions, Tuples(λ) = Tuples(λ, i) = ∅, for any i.

The following Lemma establishes some basic facts about the tuples in Tuples(σ):

Lemma 3.9. Let σ ∈ [1, N]∗ and let i ∈ [1,N]. Then:

• for any k 6= k′, tup(σ, k) 6= tup(σ, k′);

• for any k 6= k′, pre tup(σ, k) 6= pre tup(σ, k′);

Chapter 3. Simulating a System with One Object 35

• for any a, |{τ ∈ Tuples(σ) : τ [1] = x}| = count(σ, x);

• |Tuples(σ)| = |σ|.

Proof. Fix σ and i. Let k, k′ ∈ [1, len(σ)] be such that k 6= k′.
Let tup(σ, k) = (a, t1, . . . , tN) and let tup(σ, k′) = (a′, t′1, . . . , t

′
N). Since k = 1 +

∑N
j=1 tj ,

k′ = 1 +
∑N

j=1 t
′
j and k 6= k′, we have tup(σ, k) 6= tup(σ, k′).

We now want to prove that pre tup(σ, k) 6= pre tup(σ, k′). If σ[k] 6= σ[k′], the two tuples differ
in their first coordinate. Now assume that σ[k] = σ[k′]. Without loss of generality, assume that
k < k′. Let j′ be the index of the last occurrence of σ[k′] before index k′. Since σ[k′] = σ[k] and
k < k′, we know that k ≤ j′ < k′. By definition, pre tup(σ, k′) = tup(σ, j′).

If σ[k] occurs in σ before index k, let j be its last occurrence before index k. Then j < k ≤ j′,
so j 6= j′. By definition, pre tup(σ, k) = tup(σ, j), and by the previous assertion in the Lemma,
tup(σ, j) 6= tup(σ, j′), therefore pre tup(σ, k) 6= pre tup(σ, k′).

If, on the other hand, σ[k] does not occur in σ before index k, then pre tup(σ, k) has the dummy
value with negative coordinates, while pre tup(σ, k′) = tup(σ, j′) has non-negative coordinates.

Hence, in all cases, pre tup(σ, k) 6= pre tup(σ, k′), as required.
For the third assertion, notice that, for any j, the first coordinate of pre tup(σ, j) is σ[j]. By

the second part of this Lemma, pre tup(σ, j) 6= pre tup(σ, j′) whenever j 6= j′. Then, by definition
of Tuples(σ), the number of tuples in Tuples(σ) which have their first coordinate x is equal to the
number of times x occurs in σ, count(σ, x), for any x.

Now for the last assertion, Tuples(σ) is defined as {pre tup(σ, k) : 1 ≤ k ≤ |σ|}. By the second
assertion, pre tup(σ, k) 6= pre tup(σ, k′) when k 6= k′. Therefore |Tuples(σ)| = |σ|.

The following Lemma provides a connection between the two sets Tuples(σ, i) and last(σ, i),
and its Corollary will be essential in proving Lemma 3.12.

Lemma 3.10. Let σ ∈ [1, N]∗ and let i ∈ [1,N]. Let t1, . . . , tN be N non-negative integers and let
k = 1 +

∑N
b=1 tb. Let a be a positive integer, and let τ = (a, t1, . . . , tN). Then τ ∈ Tuples(σ, i) if

and only if τ = tup(σ, k) and k /∈ last(σ, i).

Proof. τ ∈ Tuples(σ, i) if and only if either τ ∈ Tuples(σ) or there exists j such that τ = tup(σ, j)
and j is the index of the last occurrence of i in σ.

Furthermore, τ ∈ Tuples(σ) if and only if there exists j′ such that τ = pre tup(σ, j′). Since τ has
non-negative coordinates, τ = pre tup(σ, j′) if and only if there exists j < j′ such that τ = tup(σ, j)
and σ[j′] = σ[j]. Hence τ ∈ Tuples(σ) if and only if there exists j such that τ = tup(σ, j) and
j /∈ last(σ).

Notice that j /∈ last(σ, i) if and only if either j /∈ last(σ) or j is the last occurrence of i in σ.
Combining the equivalences, τ ∈ Tuples(σ, i) if and only if there exists j such that τ = tup(σ, j)

and either j /∈ last(σ) or j is the index of the last occurrence of i in σ, if and only if there exists j
such that τ = tup(σ, j) and j /∈ last(σ, i).

But if τ = tup(σ, j), then j = k = 1 +
∑N

b=1 tb. So there exists j such that τ = tup(σ, j) and
j /∈ last(σ, i) if and only if τ = tup(σ, k) and k /∈ last(σ, i).

Corollary 3.11. Let σ, σ′ ∈ N
∗, let i be a positive integer and let k /∈ last(σ, i). If tup(σ, k) ∈

Tuples(σ′, i), then σ′[k] = σ[k] and σ′|[1,k−1] is a permutation of σ|[1,k−1].

Proof. Let τ = (a, t1, . . . , tN) = tup(σ, k). By definition of tup(σ, k), we have k = 1 +
∑N

b=1 ti,
a = σ[k] and t1, . . . , tN are non-negative integers. Since τ ∈ Tuples(σ′, i) and all variables in this
Corollary fit the description in Lemma 3.10, by this Lemma, τ = tup(σ′, k). Hence σ′[k] = a = σ[k].
Furthermore, for any j ∈ [1, N], the number of occurrences of j strictly before index k is exactly tj
in both σ and σ′. Therefore, the prefix of σ′ of length k − 1 is a permutation of the similar prefix
of σ.

Chapter 3. Simulating a System with One Object 36

The next Lemma will be used to compute the equivalence class [σ]∼i
when only Tuples(σ, i) is

provided, and not σ itself.

Lemma 3.12. Let σ ∈ [1, N]∗ and let i ∈ [1,N]. For any σ′ ∈ [1,N]∗, if Tuples(σ′, i) =
Tuples(σ, i), then σ ∼i σ

′.

Proof. We prove the contrapositive. Fix σ, σ′ ∈ [1,N]∗ and i ∈ [1,N] such that σ ≁i σ
′. We want

to prove that Tuples(σ′, i) 6= Tuples(σ, i).
If i occurs in σ, but not in σ′, then Tuples(σ) contains at least one tuple with first coordinate

i, while Tuples(σ′) contains none. Furthermore, Tuples(σ, i) contains at least two tuples with first
coordinate i, and Tuples(σ′, i) still contains none. Then Tuples(σ, i) 6= Tuples(σ′, i). From now
on, assume that i occurs in either both or none of σ and σ′.

Assume that |σ| 6= |σ′|. If i occurs in both, |Tuples(σ, i)| = |Tuples(σ)| + 1, by Lemma 3.9,
|Tuples(σ)| = |σ|, so |Tuples(σ, i)| = |σ|+1 and similarly |Tuples(σ′, i)| = |σ′|+1. Since |σ| 6= |σ′|,
we get Tuples(σ, i) 6= Tuples(σ′, i). If i occurs in neither, |Tuples(σ, i)| = |Tuples(σ)| = |σ| and
|Tuples(σ′, i)| = |σ′|. Since |σ| 6= |σ′|, we get Tuples(σ, i) 6= Tuples(σ′, i). From now on, assume
that |σ| = |σ′|, so the first condition in the definition of σ ∼i σ

′ holds.
Now assume that the second condition in the definition of σ ∼i σ

′ does not hold. Specifically,
assume that there exists k such that k /∈ last(σ, i) and σ′[k] 6= σ[k]. By Lemma 3.10, tup(σ, k) ∈
Tuples(σ, i). Since σ′[k] 6= σ[k], by the contrapositive of Corollary 3.11, tup(σ, k) /∈ Tuples(σ′, i)
and hence Tuples(σ, i) 6= Tuples(σ′, i). From now on, assume that the second condition in the
definition of σ ∼i σ

′ holds.
Now suppose that last(σ, i) 6= last(σ′, i). Without loss of generality, there exists k /∈ last(σ, i)

such that k ∈ last(σ′, i). Let τ = (a, t1, . . . , tN) = tup(σ, k). By Lemma 3.10, τ ∈ Tuples(σ, i).
To obtain a contradiction, suppose that τ ∈ Tuples(σ′, i). By the same Lemma, 1 +

∑N
b=1 tb /∈

last(σ′, i). But k = 1 +
∑N

b=1 tb, so k /∈ last(σ′, i). This is a contradiction, hence Tuples(σ, i) 6=
Tuples(σ′, i). From now on, assume that last(σ, i) = last(σ′, i).

Since σ ≁i σ
′, the only scenario we still have to analyze is as follows: the first two conditions

of σ ∼i σ
′ hold, last(σ, i) = last(σ′, i), and the third (and last) condition of σ ∼i σ

′ does not
hold. Specifically, without loss of generality, there exists A ∈ MaxConsec(last(σ, i)) such that
σ|A is not a permutation of σ′|A. Since A contains indices of the last occurrences in σ of various
positive integers, σ|A contains distinct integers. Since last(σ, i) = last(σ′, i), σ′|A also contains
distinct integers. Then σ′|A is not a permutation of σ|A if and only if there exists k ∈ A such that
σ[k] /∈ {σ′[j] : j ∈ A}. Since k ∈ A ⊆ last(σ, i), we have σ[k] 6= i. Let a = σ[k].

By Lemma 3.9, the number of tuples in Tuples(σ) which have their first coordinate x is equal
to the number of times x occurs in σ, for any x. Furthermore, Tuples(σ, i) may contain only one
additional tuple, whose first coordinate is i. Therefore, the number of tuples in Tuples(σ, i) whose
first coordinate is a 6= i is equal to count(σ, a). In what follows, we prove that count(σ′, a) 6=
count(σ, a). Then, as a consequence, Tuples(σ, i) 6= Tuples(σ′, i).

We know k is the index of the last occurrence of a in σ. Let k′ be the index of the last occurrence
of a in σ′. Then k′ ∈ last(σ′, i) = last(σ, i), and there exists A′ ∈MaxConsec(last(σ, i)) such that
k′ ∈ A′. By choice of k, we have k ∈ A and σ[k] /∈ {σ′[j] : j ∈ A}. Since σ′[k′] = σ[k] = a, we
have k′ /∈ A. The sets in MaxConsec(last(σ, i)) partition the set last(σ, i), so A 6= A′ and in fact
A∩A′ = ∅. Both A and A′ are maximal subsets of consecutive indices in last(σ, i), so without loss
generality, there exists j /∈ last(σ, i) such that all elements in A are less than j and all elements in
A′ are greater than j. In particular, k < j < k′.

By Lemma 3.10, tup(σ, j) ∈ Tuples(σ, i). If tup(σ, j) /∈ Tuples(σ′, i), Tuples(σ, i) 6= Tuples(σ′, i).
So assume that tup(σ, j) ∈ Tuples(σ′, i). By Corollary 3.11, σ′|[1,j−1] is a permutation of σ|[1,j−1],
therefore count(σ′|[1,j−1], a) = count(σ|[1,j−1], a). By definition of k, all occurrences of a in σ are
strictly before index j > k, therefore count(σ, a) = count(σ[1,j−1], a). By definition of k′, a occurs
in σ′ at index k′ > j, so count(σ′, a) > count(σ′|[1,j−1], a). Therefore count(σ′, a) 6= count(σ, a),
and by the argument above, Tuples(σ, i) 6= Tuples(σ′, i).

Chapter 3. Simulating a System with One Object 37

The Implementation Informally, the implementation works as follows. Let V be the integer
value of the shared Fetch&Add object. Throughout the execution of the implementation, we
maintain the invariant that after the sequence σ of operations have been performed, γ−1(V) =
Tuples(σ). At the beginning of the execution of each access procedure Pi :Sign(i), the local variable
τ is a new (N + 1)-tuple to be added to the set γ−1(V). Pi adds τ to this set by performing one
Fetch&Add operation on V . The value retrieved in the Fetch&Add operation encodes Tuples(σ),
and Pi can now compute Tuples(σ, i). By Lemma 3.12, any σ′ such that Tuples(σ′, i) = Tuples(σ, i)
satisfies σ′ ∼i σ, so [σ′]∼i

= [σ]∼i
.

The implementation of a B-History object O from one Fetch&Add object is presented in Algo-
rithm 2. To analyze it, we introduce some notation.

Notation Fix R = (ψ, S) to be an arbitrary run of this implementation. Since each process
Pi is only bound to the operation Sign(i), ψ(Pi) is actually a sequence containing only Sign(i)
operations. Procedure instances in R consist of only one step, hence any procedure instance in
R is complete. So Instances(R) = Complete(R) and result(α) is defined for any operation α ∈
Instances(R). Furthermore, the partial order <R on procedure instances in R (defined by α <R α′

if and only if α is complete and max(α) < min(α′)) is now a total order. Let αk be the k-th
procedure instance in Occur(R) with respect to the linear order <R. Since each instance has one
step, notice that for any k, min(αk) = max(αk) = k. Let α(i, j) be the j-th instance of the access
procedure Pi :Sign(i) in Occur(R) with respect to <R.

We define a sequence of B-History states qk ∈ [1,N]∗ as follows: let q0
def
= λ, and for k ≥ 1, let

qk
def
= qk−1 · i, with i such that operation(αk) = Sign(i). Notice that |qk| = k. Using this state

sequence, we prove in Lemma 3.14 that the run R is linearizable.
Let τα be the value of the persistent local variable τ at the beginning of the execution of α. Let

vα be the value retrieved in step 1 (line 1) of α. Let Tα be the value of the local variable T when
line 5 is executed during α. Let σα be the value of the local variable σ computed in line 5 of α.
We prove below, in Lemma 3.13, that the process Pi executing α will always be able to find some
σα satisfying the condition in line 5 of α, namely that Tuples(σα, i) = Sα.

Let C0 be the initial configuration of the system, and for k ≥ 1, let Ck
def
= Ck−1 · S[k], that is,

the system configuration immediately after the k-th step occurs in S. For k ≥ 0, let Vk be the value
of the shared Fetch&Add variable V in the system configuration Ck. Notice that for any procedure
instance αk in R, vα = Vmin(αk)−1 = Vk−1.

The following Lemma establishes the invariant for our algorithm.

Lemma 3.13. For any k ≥ 0, we claim that:

• Tuples(qk) = γ−1(Vk);

• if k ≥ 1, then ταk
= pre tup(qk, k);

• if k ≥ 1, then Tαk
= Tuples(qk−1, i), where αk = α(i, j);

• if k ≥ 1, then the computation in line 5 of αk is possible, and σαk
∼i qk−1, where αk = α(i, j).

Proof. The invariant has this form because the sequence of queue states begins at index 0, while
the sequences of procedure instances begins at index 1. To prove it, we use induction on k.

For k = 0, only the first assertion is non-trivial. We have V0 = 0, q0 = λ, and

Tuples(q0) = Tuples(λ) = ∅ = γ−1(0) = γ−1(V0).

Now let k ≥ 1, and assume that for any k′ < k, our invariant holds. In particular, Tuples(qk′) =
γ−1(Vk′). Let i, j be such that αk = α(i, j).

Chapter 3. Simulating a System with One Object 38

Algorithm 2. A 1-bounded wait free, linearizable implementation of a B-History object
from one Fetch&Add object.

Shared object:

V is a Fetch&Add object, initialized to 0.

Process Pi, for 1 ≤ i ≤ N :

• Persistent local variable:

τ is an (N + 1)-tuple, initialized to (i,−1, . . . ,−1).

• Access Procedure Pi :Sign(i):

1. (step 1) v ←− Fetch&Add(V, 2γ(τ))

2. if τ = (i, -1, . . ., -1) then

3. T ←− γ−1(v)

else

4. T ←− γ−1(v) ∪ { τ }
end if

5. find any σ such that Tuples(σ, i) = T

6. for k ←− 1 : N do

7. τ[k + 1] ←− |{ t ∈ γ−1(v) : t[1] = k }|
end for

8. return [σ]∼i

Chapter 3. Simulating a System with One Object 39

We first show that ταk
= pre tup(qk, k). If j = 1, then αk = α(i, j) is the first instance of the

access procedure Pi :Sign(i) in R, so ταk
has its default value, (i,−1, . . . ,−1). Furthermore, i does

not occur in qk−1 and it occurs in qk at its end. So k is the index of the first occurrence of i in qk,
therefore by definition, pre tup(qk, k) = (i,−1, . . . ,−1) = ταk

.
Now suppose that j > 1. Let k′ ≥ 1 be such that α(i, j−1) = α(k′). Since α(i, j−1) <R α(i, j),

we have k′ < k. Instances of the access procedure Pi :Sign(i) are executed sequentially by Pi, so
Pi completed α(i, j − 1) before starting α(i, j). The only modifications to the variable τ local to Pi

come from the for loop in lines 6 and 7 of the access procedure Pi :Sign(i), therefore ταk
= τα(i,j)

is the value computed in the for loop during α(i, j − 1). Specifically, we have τα(i,j)[1] = i, and for
all 1 ≤ b ≤ N ,

τα(i,j)[b+ 1] = |{t ∈ γ−1(vα(i,j−1)) : t[1] = b}|

But
vα(i,j−1) = Vmin(α(i,j−1))−1 = Vmin(αk′)−1 = Vk′−1 = γ(Tuples(qk′−1))

by the induction hypothesis, as 1 ≤ k′ < k. So γ−1(vα(i,j−1)) = Tuples(qk′−1), and τα(i,j)[b+ 1]
is equal to the number of tuples in Tuples(qk′−1) whose first coordinate is b. By Lemma 3.9,
this is exactly the number of times b appears in qk′−1. Notice that, for any l < k, ql = qk|[1,l],
so τα(i,j) = tup(qk, k

′). But k′ is the index of the last occurrence of i strictly before index k in
qk, hence, by definition, pre tup(qk, k) = tup(qk, k

′). Therefore, τα(i,j) = ταk
= pre tup(qk, k), as

required.
Secondly, we want show that Tuples(qk) = γ−1(Vk). By the induction hypothesis, Tuples(qk−1) =

γ−1(Vk−1). The only modification in the value of the shared variable V between configurations
Ck−1 and Ck comes from the Fetch&Add operation performed in step 1 (line 1) of αk. Specif-
ically, we have Vk = Vk−1 + 2γ(ταk

). We also know that qk = qk−1 · i and that |qk| = k, so
Tuples(qk) = Tuples(qk−1) ∪ pre tup(qk, k). We have already seen that ταk

= pre tup(qk, k). By
Lemma 3.9, ταk

= pre tup(qk, k) /∈ Tuples(qk−1). Therefore,

Vk = Vk−1 + 2γ(ταk
) = γ(Tuples(qk−1)) + γ({ταk

}) = γ(Tuples(qk)).

Thirdly, we show that Tαk
= Tuples(qk−1, i). We know that vαk

= Vk−1, and by the induction
hypothesis, Vk−1 = γ(Tuples(qk−1)). We have already showed that ταk

= pre tup(qk, k).
If j = 1, then ταk

= (i,−1, . . . ,−1) and line 3 is executed, so Tαk
= γ−1(Vk−1) = Tuples(qk−1).

In this case i does not occur in qk−1, hence

Tuples(qk−1, i) = Tuples(qk−1) = Tαk
.

If j > 1, then ταk
= pre tup(qk, k) has non-negative coordinates, so line 4 is executed, and

Tαk
= γ−1(vαk

) ∪ {ταk
} = γ−1(Vk−1) ∪ {ταk

} = Tuples(qk−1) ∪ {ταk
}

Let k′ ≥ 1 be such that α(i, j−1) = αk′ . Then k′ is the index of the last occurrence of i in qk before k.
So ταk

= pre tup(qk, k) = tup(qk, k
′). Since qk = qk−1 · i and k′ ≤ k − 1, tup(qk, k

′) = tup(qk−1, k
′).

But k′ is the last occurrence of i in qk−1, so, by definition, Tuples(qk−1, i) = Tuples(qk−1) ∪
{tup(qk−1, k

′)}. Therefore,

Tαk
= Tuples(qk−1) ∪ {ταk

} = Tuples(qk−1) ∪ {tup(qk−1, k
′)} = Tuples(qk−1, i)

Finally, let us explain why the computation in line 5 of αk is possible. We know that |qk−1| ≤
|Tuples(qk−1, i)| = |Tαk

|, so in order to find some σαk
such that Tuples(σαk

, i) = Tαk
, we only need

to inspect sequences over [1, N] of length at most |Tαk
|. Since qk−1 fits this description, Pi will

always be able to find one such sequence σαk
. Now Tuples(σαk

, i) = Tαk
= Tuples(qk−1, i), so by

Lemma 3.12, we have σαk
∼i qk−1.

Chapter 3. Simulating a System with One Object 40

Algorithm 2 is clearly 1-bounded wait-free, as any procedure execution consists of only one step,
in line 1. To complete the proof of Theorem 3.8, we prove below, in Lemma 3.14, that Algorithm 2
is linearizable:

Lemma 3.14. Algorithm 2 is linearizable.

Proof. We have chosen R to be an arbitrary run of this implementation, so it is enough to show
that R is linearizable. For this, we follow Definition 1.1.

Let Occur(R) = Instances(R) and let the linear order on Occur(R) be <R, so that αk is
the k-th procedure instance in Occur(R) with respect to <R. Let H be the object history with

(opk, resk)
def
= (operation(αk), result(αk)) for all k ≥ 1. By definition, H satisfies the first three

requirements for the linearizability of R in Definition 1.1, and all that is left to prove is that H is
legal. To show that H is legal, we prove that for all k ≥ 1, δB−HISTORY (qk−1, opk) = (qk, resk).

Fix k ≥ 1 and let i be such that opk = Sign(i). We know that

δB−HISTORY (qk−1, Sign(i)) = (qk−1 · i, [qk−1]∼i
).

By definition, qk = qk−1 · i. We also know that resk = result(αk) = [σαk
]∼i

. By Lemma 3.13, the
computation in line 5 of αk is possible, and σαk

∼i qk−1. Therefore, resk = [σαk
]∼i

= [qk−1]∼i
.

3.3 Implementing a BH&AR Object

Theorem 3.15. For any finite or countably infinite set of values V , there exists a (N +1)-bounded
wait-free linearizable implementation of a BH&AR〈V 〉 object from one B-History object and N
MRSW Registers.

Proof sketch. A formal proof of this Theorem involves giving an implementation and proving it is
wait-free and linearizable. However, we feel that this result is not complicated enough to justify
that kind of formalism. Rather, we will informally explain how the implementation works.

Let us denote the shared B-History object by BH, and the shared Register associated with Pi

by Ri. The set of values that can be held by Ri is V ∗, which is countably infinite as long as V
is finite or countably infinite. The initial value of Ri is λ. The process Pi has a local persistent
variable, ri, which mirrors the value of Ri. The access procedure Pi : Sign&Write(i, x) works as
follows. First, Pi appends the value x to Ri by writing ri ·x to both Ri and ri. Next, Pi performs a
Sign(i) operation on BH and sets σ ∈ N

∗ to be any representative of the equivalence class retrieved
as a result of that operation. Now Pi performs Read operations on all shared Registers Rj with
j 6= i. A new sequence σ′ ∈ (N× V)∗ is built from σ by attaching the k-th element in the sequence
retrieved from Rj to the k-th occurrence of j in σ, for every k and j. The result of the access
procedure Pi :Sign&Write(i, x) is the equivalence class [σ′]∼i

.
Let R be any run of this implementation. Following Definition 1.1, let Occur(R) be the set

containing those procedure instances which perform the Sign(i) operation on BH in R, and let
the linear order � on Occur(R) be defined by α ≺ α′ if and only if the step in which α accesses
BH occurs before the similar step of α′ in the system history of the run R. From here on, it is
easy to build a BH&AR object history which satisfies all the conditions in Definition 1.1. The
essential ingredient is that, for any instance α of the access procedure Pi : Sign&Write(i, x), if
α ∈ Occur(R), then x was appended to Ri before the Sign(i) operation in α. Hence, for any α′

following α in Occur(R), the sequence held by Ri contains the value x corresponding to α at the
moment when Ri is read in the final part of α′.

Chapter 3. Simulating a System with One Object 41

3.4 Implementing a Collection of Fetch&Add Objects and MRSW

Registers

In this subsection, we prove:

Theorem 3.16. Let V be a finite or countably infinite set of values, and let A be a finite or
countably infinite collection of Fetch&Add and MRSW Register〈V 〉 objects. There exists a 1-bounded
wait-free linearizable implementation of Object(A) from one BH&AR object.

Let A = {A1, A2, . . .}, and for any Aj ∈ A, let Tj be the object type of Aj , let qAj
be the initial

state of Aj and let bAj
be the function giving the bindings of Aj . So Tj is either the Fetch&Add

object type, or the Register〈V 〉 object type. We know that OPF&A = {Fetch&Add(x) : x ∈ Z} and
OPREG〈V 〉 = {Read} ∪ {Write(x) : x ∈ V }. Since both Z and V are at most countably infinite, we
derive that for any j, OPTj

is at most countably infinite. Therefore, OPType(A) = {〈Aj , op〉 : Aj ∈
A and op ∈ OPTj

} is at most countably infinite.
Let B denote the shared BH&AR object used by the implementation. Its object type will be

parametrized by the countably infinite set OPType(A). For every process Pi and every operation
〈Aj , op〉 that Pi is allowed to apply on Object(A), the access procedure Pi : 〈Aj , op〉 starts with
its only step, which consists of applying a Sign&Write(i, 〈Aj , op〉) operation on B. Let σ ∈
(N×OPType(A))

∗ be a representative of the equivalence class obtained as a result of this operation.
There are three possibilities for op:

• op = Write(x) for some x ∈ V . In this case, the access procedure simply returns the result
OK.

• op = Read. If for any y ∈ V , 〈Aj ,Write(y)〉 does not appear in σ as the second coordinate
of a pair in σ, the access procedure returns qAj

, the initial state of object Aj . Otherwise, the
access procedure returns the last value y ∈ V to appear in a second coordinate of the form
〈Aj ,Write(y)〉.

• op = Fetch&Add(x) for some x ∈ Z. In this case, let K be the set of indices in σ of pairs
whose second coordinate is of the form 〈Aj , Fetch&Add(y)〉, for any y ∈ Z. The access
procedure computes and returns the value

qAj
+

∑

k∈K

{

y if (σ[k])[2] = 〈Aj , Fetch&Add(y)〉,
0 otherwise.

This implementation is clearly 1-bounded wait-free, as any access procedure consists of only one
step, the Sign&Write operation on B. The proof that this implementation is linearizable is based
on two simple ideas: on the one hand, every Register is written to by at most one process and the
subsequence of operations by any process is preserved under indistinguishability (by Lemma 3.6);
on the other, the sequence of operations applied on a Fetch&Add object is commutative.

More formally, let R be any run of this implementation. Since any access procedure consists
of only one step, any procedure instance appearing in R is complete. Hence, result(α) is defined
for any α in R and furthermore, the partial order ≤R on procedure instances is now a total
order. Following Definition 1.1, let Occur(R) = Instances(R) and for k ≥ 1, let αk be the k-th
procedure instance in Occur(R) with respect to the linear order ≤R. Let H be the Object(A)

history defined by (opk, resk)
def
= (operation(αk), result(αk)), for all k ≥ 1. By definition, H

satisfies the first three requirements for linearizability in Definition 1.1, and all that is left to prove

is that H is legal. We define a sequence of Type(A) states as follows: q0
def
= qObject(A) and for all

k ≥ 1, qk is the first coordinate of δType(A)(qk−1, operation(αk)). To show that H is legal (and

Chapter 3. Simulating a System with One Object 42

therefore, that R is linearizable) we still have to prove that for any k ≥ 1, the second coordinate of
δType(A)(qk−1, operation(αk)) is result(αk).

For k ≥ 1, let σαk
denote the representative of the equivalence class obtained as a result to the

unique step in the procedure instance αk. For k ≥ 0, let Bk ∈ (N×OPType(A))
∗ denote the state of

the shared BH&AR object B in the system configuration right before the occurrence of the unique
step of αk+1 (so B0 = λ, the initial state of B). Note that (i, 〈Aj , op〉) appears in Bk if and only
if there is some 1 ≤ k′ ≤ k such that αk′ is an instance of Pi : 〈Aj , op〉. By the algorithm, for any
k ≥ 1, σαk

∼i Bk−1, where Pi = process(αk).
Now fix k ≥ 1 and let process(αk) = Pi. We distinguish three possibilities for operation(αk):

• operation(αk) = 〈Aj ,Write(x)〉 for some x ∈ V and some Aj ∈ A. In this case, the second
coordinate of δType(A)(qk−1, operation(αk)) is OK, which is the same as the result returned
by the procedure instance αk.

• operation(αk) = 〈Aj , Read〉 for some Aj ∈ A. In this case, the second coordinate of
δType(A)(qk−1, operation(αk)) is the value of the Register Aj in state qk−1.

If no procedure instances prior to αk wrote to Aj, the latter has its initial value, qAj
. Fur-

thermore, for any y ∈ V , 〈Aj ,Write(y)〉 does not appear as a second coordinate in Bk−1.
Since σαk

∼i Bk−1, by Lemma 3.2, 〈Aj ,Write(y)〉 does not appear in σαk
, for any y. Hence,

the procedure instance returns result(αk) = qAj
, as required.

If Aj was written to in some procedure instances prior to αk, only one process Pi′ could
have written to Aj (recall that Aj is a MRSW Register). The value of Aj in qk−1 is y ∈ V ,
where 〈Aj ,Write(y)〉 is the last element of the form 〈Aj ,Write(y′)〉 in SubseqV al(Bk−1, i

′),
for any y′ ∈ V . Since σαk

∼i Bk−1, by Lemma 3.2, the pair (i′, 〈Aj ,Write(y)〉) occurs
in σαk

. Let z = result(αk). By definition, z is the last value occurring in a second co-
ordinate of the form 〈Aj ,Write(z′)〉, for any z′ ∈ V . This type of second coordinate
only occurs with first coordinate i′ in Bk−1, so by the same Lemma 3.2, it will only oc-
cur with first coordinate i′ in σαk

. Therefore, z is the last value occurring in an element of
the form 〈Aj ,Write(z′)〉 in SubseqV al(σαk

, i′), for any z′ ∈ V . But now, by Lemma 3.6,
SubseqV al(σαk

, i′) = SubseqV al(Bk−1, i
′). Therefore z = y, as required.

• operation(αk) = 〈Aj , Fetch&Add(x)〉 for some integer x and some Aj ∈ A. In this case, the
second coordinate of δType(A)(qk−1, operation(αk)) is the value of the Fetch&Add object Aj

in state qk−1, namely qAj
plus the sum of those integers y which occur in pairs of the form

(i′, 〈Aj , Fetch&Add(y)〉) in Bk−1, for any i′ (counting repetitions). The access procedure
performs a similar computation using σαk

instead of Bk−1, and since σαk
∼i Bk−1, Lemma 3.2

guarantees that the two sums yield the same result.

Chapter 4

A Problem Equivalent to

Implementing a (m,n)-Queue

The work presented in this chapter is aimed toward proving Conjecture 1.2, namely that there is no
wait-free linearizable implementation of an 3-Queue from Fetch&Add objects and Registers. We will
be formulating a new problem, which will be shown to be equivalent to implementing a Queue object
when every process in the system can perform either enqueue or dequeue operations. Although our
objective was not achieved, we believe that the results in this chapter are interesting on their own
and that they might prove useful in completing the proof of the Conjecture. Alternatively, solving
this new problem would refute the Conjecture.

Using the results in the previous chapter, we have seen that a BH&AR object and collection of
Fetch&Add objects and Registers are equally powerful. Therefore, there exists an implementation
of a Queue from Fetch&Add objects and Registers if and only if there exists an implementation of a
Queue from one BH&AR object. In this chapter, we simplify this problem in two ways. On the one
hand, rather than considering a general Queue object, we will focus our attention on a restricted
version of this object type, the Basic-Id-Queue. Informally, a Basic-Id-Queue object works very
much like a Queue object, except that process Pi is enqueuing the sequence (i, 1), (i, 2), (i, 3), . . .
rather than arbitrary elements. On the other hand, we will argue that when implementing a (m,n)-
Basic-Id-Queue from a BH&AR object, we can dispose of the Append Registers inside that object,
and therefore, use only one B-History object.

This chapter is organized as follows. In section 4.1, we give the formal definition of the Basic-Id-
Queue object type. In section 4.2, we show that implementing a Queue from Fetch&Add objects and
Registers is equivalent to implementing a Basic-Id-Queue from Fetch&Add objects and Registers.
In section 4.3, we show that for any object O whose bindings allow each process in the system
to apply at most one type of operation on O (as will be the case with a (m,n)-Basic-Id-Queue
object), implementing O from one BH&AR object is equivalent to implementing O from one B-
History object. The results in these sections are summarized in the following theorem.

Theorem 4.1. Let m,n be two positive integers and let V be a finite or countably infinite set
of values. There exists a wait-free linearizable implementation of a (m,n)-Queue〈V 〉 object from
Fetch&Add objects and Registers if and only if there exists a wait-free linearizable implementation
of a (m,n)-Basic-Id-Queue object from one B-History object.

By analyzing the roles played by various processes in an implementation, the following two
corollaries to Theorem 4.1 should be clear.

Corollary 4.2. Let m,n be two positive integers and let V be a finite or countably infinite set of
values. If there exists an implementation of an oblivious (m+n)-Queue〈V 〉 object from Fetch&Add
objects and Registers, then there exists an implementation of a (m,n)-Basic-Id-Queue object from
a B-History object.

43

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 44

Corollary 4.3. Let m,n be two positive integers and let V be a finite or countably infinite set
of values. If there exists an implementation of a (m,n)-Basic-Id-Queue object from one B-History
object, then there exists an implementation of a min(m,n)-Queue〈V 〉 object from Fetch&Add objects
and Registers.

In particular, proving that there is no (3,3)-Basic-Id-Queue implementation from a B-History
object implies that there is no n-Queue implementation from Fetch&Add objects and Registers, for
any n ≥ 6. Alternatively, proving that there exists an implementation of a (3,3)-Basic-Id-Queue
from a B-History object implies that there exists a 3-Queue implementation from Fetch&Add
objects and Registers, refuting Conjecture 1.2.

In section 4.4, we provide two preliminary results, saying that there exists no (3,3)-Basic-Id-
Queue implementation from a B-History object when either the enqueue procedures or the dequeue
procedures are restricted to taking only one step.

4.1 The Basic-Id-Queue Object Type

A Basic-Id-Queue object works like a Queue object, but each Enqueue process Pi is restricted to
enqueuing the sequence (i, 1), (i, 2), For a sequence σ ∈ (N × N)∗, let countF irst(σ, i) denote
the number of occurrences of i as first coordinate in σ. The Basic-Id-Queue object type is defined
as follows:

• QBIdQ
def
= (N× N)∗;

• OPBIdQ
def
= {EnqId(i) : i ∈ N} ∪ {Deq};

• RESBIdQ
def
= (N× N) ∪ {OK, ε};

• for all σ ∈ QBIdQ and i ∈ N,

δBIdQ(σ,EnqId(i))
def
= (σ · (i, countF irst(σ, i) + 1), OK);

• δBIdQ(λ,Deq)
def
= (λ, ε); and

• for all σ ∈ QBIdQ with σ = (i, j) · σ′, δBIdQ(σ,Deq)
def
= (σ′, (i, j)).

Any Basic-Id-Queue object has the Basic-Id-Queue object type and initial state λ. For any non-
negative integers m,n, p, a (m,n, p)-Basic-Id-Queue object for a system of N = m+n+p processes
has bindings which allow m processes to perform enqueue operations, n other processes to perform
dequeue operations and the remaining p processes to perform both kinds of operations. We write N -
Basic-Id-Queue for a (0, 0, N)-Basic-Id-Queue object, which is in fact an oblivious Basic-Id-Queue
object in a system of N processes. We write (m,n)-Basic-Id-Queue for a (m,n, 0)-Basic-Id-Queue
object.

4.2 Basic-Id-Queue vs. Queue

In this section we establish a relationship between these two object types.

Theorem 4.4. Let m,n, p be three non-negative integers. For any finite or countably infinite set of
values V , there exists a wait-free linearizable implementation of a (m,n, p)-Queue〈V 〉 object from
Fetch&Add objects and Registers if and only if there exists a wait-free linearizable implementation
of a (m,n, p)-Basic-Id-Queue object from Fetch&Add objects and Registers.

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 45

Proof. Let O be a (m,n, p)-Queue〈N × N〉 object, and let O′ be a (m,n, p)-Basic-Id-Queue object
with bindings similar to those of O: Pi is allowed to perform enqueue (respectively, dequeue)
operations on O if and only if Pi is allowed to perform enqueue (respectively, dequeue) operations
on O′.

Suppose there exists a wait-free linearizable implementation of O from Fetch&Add objects and
Registers. For all processes Pi and operations op ∈ bO(Pi), let Pi : (O, op) denote the access
procedure by which Pi applies op on O. The following is a wait-free linearizable implementation of
O′ from Fetch&Add objects and Registers, using the same shared objects as the implementation of
O:

• For all processes Pi allowed to perform enqueue operations, Pi has a local integer variable ci
initialized to 0. The access procedure Pi : (O

′, EnqId(i)) by which Pi applies EnqId(i) on O′

consists of incrementing ci and then executing the access procedure Pi : (O,Enq((i, ci)).

• For all processes Pj allowed to perform dequeue operations, the access procedure Pj : (O′,Deq)
by which Pj applies Deq on O′ is identical to Pj : (O,Deq).

This implementation is wait-free and linearizable, essentially because the enqueue procedure works
as required by the Basic-Id-Queue object type, that is, process Pi is enqueuing the sequence
(i, 1), (i, 2),

Now suppose that there exists a wait-free linearizable implementation of O′ from Fetch&Add
objects and Registers. For all processes Pi and operations op ∈ bO′(Pi), let Pi : (O

′, op) denote the
access procedure by which process Pi applies operation op on O′. We want to show that there exists
a wait-free linearizable implementation of O from Fetch&Add objects and Registers.

Since a MRSW Append-Register object can be easily implemented from a MRSW Register
object, we will assume that we can use Append-Register objects in our implementation of O. To
implement O, we use the same shared objects as in the implementation of O′, plus N MRSW
Append-Register〈V 〉 objects, R1, . . . RN , where for all i, Ri is written by process Pi:

• For all processes Pi allowed to perform enqueue operations and all x ∈ V , the access procedure
Pi : (O,Enq(x)) by which Pi applies Enq(x) on O consists of two parts. First, Pi atomically
appends the value x to Ri. Afterward, Pi executes the access procedure Pi : (O′, EnqId(i)),
which may not be atomic, and returns OK.

• For all processes Pj allowed to perform dequeue operations, the access procedure Pj : (O,Deq)
by which Pj applies Deq on O also consists of two parts. First, Pj executes the access
procedure Pj : (O′,Deq) and saves the result of that operation in some local variable res. If
res is ε, the access procedure itself returns ε. Otherwise, res = (j′, k) for some process id j′

and some positive integer k. In this case, the access procedure atomically reads the shared
Append-Register Rj′ . It then returns the k-th element in the sequence stored in that object.

The reason this implementation is wait-free and linearizable is that by the time some dequeue
instance obtains the value (j′, k) from its Deq operation on O′, the process Pj′ has already written
the k-th enqueued value in the shared Append-Register object Rj′ .

4.3 BH&AR Object vs. B-History Object

Throughout this section, let V be a finite or countably infinite set of values, let B be a BH&AR〈V 〉
object and let B′ be a B-History object. In this section, we prove that whenever a shared object
O satisfies certain conditions, O can be implemented from B if and only if O can be implemented
from B′. The easier direction of this implication is captured by the following Lemma.

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 46

Lemma 4.5. Let O be any shared object. If there exists a wait-free linearizable implementation of
O from one B-History object, then there exists a wait-free linearizable implementation of O from
one BH&AR object.

Proof. Observe that by Theorem 3.16, Theorem 3.8 and transitivity of implementation, a B-History
object can be implemented from a BH&AR object. Therefore, if O can be implemented from a
B-History object, it can also be implemented from a BH&AR object.

In the reminder of this section, we prove a converse of this fact for a class of objects which
includes the (m,n)-Basic-Id-Queue. Specifically, this is the class of objects which allow each process
to apply only one type of operation, and which further satisfy the non-triviality condition that every
access procedure execution contains at least one step.

Theorem 4.6. Let O be a shared object which satisfies the following two conditions:

(i) for all processes Pi in the system, |bO(Pi)| = 1; and

(ii) for any implementation of O from any collection of shared objects B, any execution of any
access procedure on O contains at least one step.

If O can be implemented from one BH&AR object, then O can be implemented from a B-History
object.

Notice that, in particular, a (m,n)-Basic-Id-Queue object satisfies this conditions, in any non-
trivial case when m ≥ 1 and n ≥ 1. We prove this theorem in a constructive manner: we begin
by assuming that a wait-free linearizable implementation of O from B exists, we construct an
implementation of O from B′, and we eventually show that the latter implementation is wait-free
and linearizable.

The same result can be obtained even if we were to relax the restrictions imposed on O and only
require that |bO(Pi)| ≤ 1 for all processes Pi. However, the extra formalism involved in proving
this slightly more general result is not necessary for the rest of this thesis. The main motivation
behind conditions (i) and (ii) is that, if O satisfies both, and if an implementation of O from B
exists, then at any point in a run of this implementation, any process can be scheduled to take a
step. More formally, any sequence γ ∈ [1,N]∗ is a possible schedule of processes in a run R of this
implementation.

So let us assume that, for all processes Pi and operations op ∈ bO(Pi), the access procedures
Pi :B : op specify a wait-free linearizable implementation of O from B. Recall that, since B is a
BH&AR object, Pi can only apply to B operations of the form Sign&Write(i, x), for all x ∈ V .
Hence, the execution of the access procedure Pi :B :op consists, apart from local computation, of a
number of steps and, in each of those, Pi applies one Sign&Write(i, x) operation to B and obtains
a result of the form [σ]∼i

, the class of sequences indistinguishable from σ ∈ ([1,N] × V)∗ with
respect to i. When implementing O from the B-History object B′, the only operation that Pi is
allowed to apply to B′ is Sign(i), and the result of this operation is of the form [γ]≈i

, the class
of sequences indistinguishable from γ ∈ [1,N]∗ with respect to i (in this section we use ∼i for
indistinguishability on sequences of pairs and ≈i for indistinguishability on sequences of integers).

Before we get into the formalism required to prove this result, here are the main steps of our
proof. In order to show that there exists a wait-free linearizable implementation of O from B′,
we will first define a translation function ρ which, given a state of B′ in the sequence γ ∈ [1,N]∗,
computes a state of B in σ = ρ(γ) ∈ ([1,N] × V)∗. Secondly, we will show how to extend
ρ to be defined on subsets of [1, N]∗ in such a way that ρ preserves equivalence classes of the
indistinguishability relation. Thirdly, to implement O from B′, we will define access procedures of
the form Pi :B′ :op. Having obtained an implementation of O from B′, we will finally prove that it
is wait-free and linearizable by showing that, for any run R′ of this implementation, there exists a

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 47

run R of the implementation of O from B, such that every process Pi behaves exactly the same in
R and R′. Our conclusion follows from the fact that the latter implementation is, by assumption,
wait-free and linearizable.

Definition of the Translation Function ρ Let γ be any sequence in [1,N]∗. Since O satisfies
conditions (i) and (ii), there exists a runR of the implementation of O from B in which processes are
scheduled to take steps in the same order as their indices appear in γ. Since all access procedures are
deterministic, in any run, all processes start from their initial states, and any process Pi has exactly
one access procedure available to execute on O, the run R is unique. We define ρ(γ) ∈ ([1,N]×V)∗

to be the state of the shared object B at the end of this run R. Notice that, for any occurrence of
i in γ, Pi takes a step of the form Sign&Write(i, x). This has the effect of adding the pair (i, x)
to the state of B. Therefore, |ρ(γ)| = |γ|, ρ(prefix(γ, k)) = prefix(ρ(γ), k) for all k, and γ is the
sequence of first coordinates in ρ(γ).

Defining ρ on Subsets We now want to extend the definition of ρ to subsets of [1,N]∗ in such a
way that equivalence classes of the indistinguishability relation are preserved. We accomplish this
is as follows: for all positive integers i and every set A ⊂ [1,N]∗, we define ρi(A) = ∪γ∈A[ρ(γ)]∼i

.
We prove below that ρ(γ) ∼i ρ(γ

′) whenever γ ≈i γ
′, implying that ρi([γ]≈i

) = [ρ(γ)]∼i
.

Informally, the main idea behind Lemma 4.7 is the following. In the implementation of O from
B′, whenever B′ is in state γ and Pi applies Sign(i) to B′, Pi can compute the second argument
to every step by every process in run R, where R is the run of the implementation of O from B
in which processes are scheduled as in γ. The reason is that the second argument of the l-th step
by Pi′ in R is completely determined by the results Pi′ got in R to its first l − 1 steps, and by
Lemma 3.7, Pi can compute those results.

Lemma 4.7. Let γ, γ′ ∈ [1, N]∗ and let i ∈ [1,N]. If γ ∼i γ
′, then ρ(γ) ∼i ρ(γ

′).

Proof. Let σ = ρ(γ) and σ′ = ρ(γ′). Clearly, |σ| = |γ| = |γ′| = |σ′|. Let R and R′ be the two runs
of the implementation of O from the BH&AR object B in which processes are scheduled in the
order their indices appear in γ and γ′, respectively.

Since γ is the projection of σ on the first coordinate and since last(σ, i) is only defined as function
of the first coordinates in σ, we get that last(σ, i) = last(γ, i). We know from the definition of γ ∼i

γ′ that for all A ∈MaxConsec(last(γ, i)), there exists a permutation πA such that γ′|A = πA(γ|A).
Let σ′′ ∈ ([1, N] × V)∗ be the unique sequence of the same length as σ, satisfying:

• for any k /∈ last(σ, i), σ′′[k] = σ[k]; and

• for any A ∈MaxConsec(last(σ, i)) = MaxConsec(last(γ, i)), σ′′|A = πA(σ|A).

By construction, σ′′ ∼i σ and γ′ is the projection of σ′′ on the first coordinate. In order to prove
that σ′ ∼i σ, we inductively show that σ′ and σ′′ have the same prefixes and are, therefore, equal.

Trivially, the zero-length prefixes of both σ′ and σ′′ are λ. Now let 0 ≤ k < |σ| and assume that
prefix(σ′, k) = prefix(σ′′, k). In order to show that the prefixes of length k+ 1 are the same, it is
enough to show that σ′[k+ 1] = σ′′[k+ 1]. Since γ′ is the projection on the first coordinate of both
σ′ and σ′′, we get that (σ′[k+1])[1] = (σ′′[k+1])[1]. Let σ′[k+1] = (a, x) and let σ′′[k+1] = (a, y).
To complete the proof of the Lemma, all that is left to show is that x = y. We consider two cases.

First, suppose that k + 1 is the index of the first occurrence of a as first coordinate in σ′. So
the first step by process Pa in run R′ is Sign&Write(a, x). By the inductive hypothesis, k + 1 is
also the index of the first occurrence of a as first coordinate in σ′′. Since σ′′ ∼i σ, by Lemma 3.6,
SubseqV al(σ, a) = SubseqV al(σ′′, a), so (a, y) is the first pair having first coordinate a in σ,
therefore the first step taken by process Pa in R is Sign&Write(a, y). All access procedures are
deterministic, all processes start from the same state in R and R′ and each has only one access

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 48

procedure available to execute, so the first step by Pa has to be the same in both runs. Hence,
x = y.

Now suppose that a occurs as first coordinate in σ′ and σ′′ at b ≥ 1 indices j1, . . . , jb before
index k + 1. Let J = {j1, . . . , jb}. The b results obtained by Pa in run R′ to its first b steps are
[prefix(σ′, j1−1)]∼i

, . . . , [prefix(σ′, jb−1)]∼i
. By definition, a appears as first coordinate at index

k + 1 in σ′′, hence J ∩ last(σ′′, i) = ∅. Since σ′′ ∼i σ, by Lemma 3.4, last(σ, i) = last(σ′′, i), so
J ∩ last(σ, i) = ∅ and J also contains the indices of the first b occurrences of a as first coordinate in
σ. So the b results obtained by Pa in R to its first b steps are [prefix(σ, j1−1)]∼i

, . . . , [prefix(σ, jb−
1)]∼i

. Now for any j ∈ J , since j /∈ last(σ, i), by Lemma 3.7, prefix(σ, j − 1) ∼i prefix(σ
′′, j − 1).

By induction hypothesis, prefix(σ′′, j − 1) = prefix(σ′, j − 1). Therefore, all b results obtained
by Pa to its first b steps in R and R′ are the same. All access procedures are deterministic, all
processes start from the same state in R and R′, each has only one access procedure available to
execute, and Pa obtains the same results to its first b steps in both runs, so the (b+ 1)-st step by
Pa has to be the same in R and R′, hence x = y.

Access Procedures for the New Implementation We are now ready to define an implemen-
tation of O from B′. For all processes Pi and operations op ∈ bO(Pi), the access procedure Pi :B′ :op
is syntactically identical to Pi :B :op, except that each step of the form

res←− Sign&Write(i, x)

is replaced by
res←− ρi(Sign(i)).

Linearizability and Wait-Freedom Let R′ be any run of the implementation of O from B′

that we have just defined. Let γ be the state of the shared B-History object B′ at the end of R′.
Let σ = ρ(γ) and let R be the run of the implementation of O from B in which processes are
scheduled in the same order as in R′ (that is, in the order their indices appear in γ). By definition,
σ is the state of B at the end of R.

We now claim that all procedure instances are identical in R and R′. Furthermore, either they
are complete in both runs or in neither run, and if they are complete, they return the same values
in both runs. Formally, we are claiming that Instances(R) = Instances(R′), Complete(R) =
Complete(R′) and for all α ∈ Complete(R), result(α) is the same in both runs.

To see this, inductively assume that all processes behaved the same in R and R′ in steps up
to and including the k-th. In the (k + 1)-st step of R′, some process Pi applies Sign(i) on B′ and
receives the result [prefix(γ, k)]≈i

. It then applies ρi to this result, obtaining

ρi([prefix(γ, k)]≈i
) = [ρ(prefix(γ, k))]∼i

= [prefix(σ, k)]∼i
,

which is exactly the result of the (k+1)-st step in R. So by induction, all processes behave exactly
the same in R and R′. Since the linearizability and wait-freedom conditions are defined in terms
of the procedure instances in runs of an implementation, and since the implementation of O from
B is by assumption linearizable and wait-free, the implementation of O from B′ is also linearizable
and wait-free.

4.4 Preliminary Negative Results

In the following two subsections we present some preliminary negative results regarding the possi-
bility of implementing a (3,3)-Basic-Id-Queue from one B-History object. In subsection 1, we prove
that there is no such implementation when every dequeue access procedure is restricted to taking

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 49

only one step. In subsection 2, we prove that there is no such implementation when every enqueue
access procedure is restricted to taking only one step.

Before we present any results, let us make an observation. Since a (m,n)-Basic-Id-Queue
object O satisfies conditions (i) and (ii) from Lemma 4.6, all access procedures are deterministic
and process start from the same initial state in any run, there is a unique run of the implementation
of O from a B-History object BH in which processes take steps in the same order their indices
appear in σ. In the following subsections, we will denote this run by run(σ). Since each time Pi

takes a step in this implementation, it applies the operation Sign(i) on BH, it should be clear that
the state of BH at the end of run(σ) is σ and, furthermore, the system history S of run(σ) is of
the form S[k] = (Pi, BH,Sign(i), [prefix(σ, k − 1)]∼i

) for all k.

4.4.1 No Implementation when Dequeue Takes Only One Step

In this subsection we prove:

Theorem 4.8. There is no wait-free linearizable implementation of a (1, 2)-Basic-Id-Queue object
from one B-History object in which all dequeue access procedures are restricted to taking only one
step.

Let O be a (1, 2)-Basic-Id-Queue object. Let us assume, without loss of generality, that process
P1 is the enqueuer and processes P2 and P3 are the two dequeuers. Let BH be a B-History object.
To prove the theorem, we assume that there exists such a restricted implementation of O from
BH and eventually derive a contradiction. Specifically, we build an infinite family of sequences
σ1, σ2, . . . in {1, 2, 3}

∗, such that the associated infinite family of runs run(σ1), run(σ2), . . ., together
with the enqueue process, satisfy the conditions in Proposition 1.1, contradicting the assumption
that the implementation is wait-free. For all k, let dk = 2 when k is odd, and dk = 3 when k is
even. In general, the sequence σk will be of the form

σk = (1j1 · 2 · 1) · (1j2 · 3 · 1) · . . . (1jk · dk · 1)

for some non-negative integers j1, . . . , jk.

Lemma 4.9. Let σ ∈ 1, 2, 3∗ and let d ∈ {2, 3}. If every dequeue instance in run(σ · d) consists of
only one step and outputs ε, then no enqueue instance is complete in run(σ).

Proof. Assume that there were some complete enqueue instance π in run(σ) and that all dequeue
instances in run(σ · d) output ε. The implementation is linearizable and a queue cannot be empty
immediately after an enqueue operation. Hence, if there exists a dequeue instance φ immediately
following π in the linear order on procedure instances, φ must output a value other than ε. Since
the dequeue instance corresponding to the last step by Pd in run(σ ·d) begins after π is completed,
we derive that there indeed exists a dequeue instance φ immediately following π. However, by
assumption, φ outputs ε. This is a contradiction.

We inductively build the family σ0, σ1, . . . of sequences in [1, 3]∗ satisfying the following predicate
I(k), for all k ≥ 0:

• any dequeue instance in run(σk·dk+1) outputs ε (notice that any dequeue instance is complete,
as it contains only one step); and

• if k ≥ 1, then σk−1 is a prefix of σk, and σk contains at least one more occurrence of 1 than
σk−1.

We define σ0 = λ. In this case, I(0) is trivially true: in run(σ0 ·d1) = run(2), the only dequeue
instance, by P2, has to output ǫ because the queue starts from an empty state.

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 50

Now fix k ≥ 0 and assume that we have built σk in such a way that I(k) holds. We build σk+1

such that I(k + 1) holds.
Consider the following experiment. Starting from the configuration at the end of run(σk), we

let P1 takes steps over and over again, until P1 completes some enqueue procedure. By the first
condition in I(k) and Lemma 4.9, there is no complete enqueue instance in run(σk · dk+1). Notice
that P1 might have an incomplete enqueue procedure in run(σk), and in that case we let it take
steps until it completes that access procedure. By wait-freedom, there exists some max z ≥ 1
such that run(σk · 1

max z) contains only one enqueue instance, and this instance is complete. By
I(k), no dequeue instance in run(σk · dk+1) outputs anything other than ε. The same will be true
for run(σk · 1

max z), as the latter contains the same dequeue instances as the former, except for
the last dequeue instance by Pdk+1

. Then, by linearizability of our implementation, if Pdk+1
is

scheduled to take a step in the configuration at the end of run(σk · 1
max z), Pdk+1

has to output
(1, 1), the first element in the queue. Therefore, there exists z, 0 ≤ z ≤ max z, such that the
last dequeue instance by Pdk+1

in run(σk · 1
z · dk+1) outputs a value other than ε. Let min z be

the minimum such z. By the first part of I(k), all dequeue instances in run(σk · dk+1) output ε,
therefore 1 ≤ min z ≤ max z.

We define σk+1 = σk · 1
min z−1 · dk+1 · 1. Notice that, by construction, σk+1 satisfies the second

part of I(k + 1). To complete the proof of I(k + 1), it is enough to prove its first part.
On the one hand, run(σk) contains the same dequeue instances as run(σk · dk+1) except for

the last one, so they all output ε. Furthermore, run(σk+1) = run(σk · 1
min z−1 · dk+1 · 1) contains

the same dequeue instances as run(σk) plus one more instance, the one by Pdk+1
which takes its

step second to last. By definition of min z, that dequeue instance outputs ε, hence all dequeue
instances in run(σk+1) output ε.

On the other hand, by the construction of min z, run(σk · 1
min z · dk+1) contains at most one

enqueue instance, and the last dequeue instance φ by Pdk+1
outputs a value other than ε. By the

first part of I(k), all other dequeue instances output ε, so φ must output the first value available
in the queue, namely (1,1). Therefore, if Pdk+2

is scheduled to take a step after that run, it has to
output ε. So in run(σk · 1

min z · dk+1 · dk+2), the last dequeue instance by Pdk+2
outputs ε. Notice

that, in the run above, the result obtained by Pdk+2
to its only step in the last dequeue procedure

is [σk · 1
min z · dk+1]∼dk+2

. Furthermore, in run(σk · 1
min z−1 · dk+1 · 1 · dk+2) = run(σk+1 · dk+2),

the result obtained by Pdk+2
to its only step in the last dequeue procedure is [σk+1]∼dk+2

. But now,

dk+2 /∈ {1, dk+1}, so

σk · 1
min z · dk+1 ∼dk+2

σk · 1
min z−1 · dk+1 · 1 = σk+1.

Since Pdk+2
obtains the same results to all its steps in both of these runs, it must output the same

value, hence the last dequeue instance by Pdk+2
in run(σk+1 · dk+2) outputs ε. This completes the

proof that I(k + 1) holds.
Finally, we claim that P1 together with the infinite family run(σ1), run(σ2), . . . satisfy the

conditions in Lemma 1.1. Notice that we do not consider σ0, because there are no incomplete
enqueue instances in run(σ0).

Let run(σk) = (ψk, Sk). By the second part of the invariant, σk is a prefix of σk+1, hence Sk

is a prefix of Sk+1. In general, whenever Sk is a prefix of Sk+1 and every process is only bound
to one operation of the implemented object, as is the case with a Basic-Id-Queue object, ψk(Pi)
is a prefix of ψk+1(Pi) for any process Pi, essentially because there is no choice in assigning the
steps of Pi to access procedures. Furthermore, σk+1 contains at least one more occurrence of 1
than σk, so Sk+1 contains at least one more step by P1 than Sk. This completes the proof that
the first two conditions in Lemma 1.1 are satisfied. For the third and last one, we claim that
ψk(P1) = (EnqId(1)) for all k ≥ 1. By the first part of I(k) and Lemma 4.9, no enqueue instance
is complete in σk. Since P1 is taking steps in run(σk) and only the last procedure instance by a

Chapter 4. A Problem Equivalent to Implementing a (m,n)-Queue 51

process in a run can be incomplete, all the steps of P1 in run(σk) are part of the execution of its
first access procedure. Thus ψk(P1) = (EnqId(1)).

This shows that the implementation of O from BH is not wait-free, which is a contradiction.
Hence no such implementation exists.

The following is an obvious Corollary to Theorem 4.8:

Corollary 4.10. There is no wait-free linearizable implementation of a 3-Basic-Id-Queue from one
B-History object in which all dequeue access procedures are restricted to taking only one step.

4.4.2 No Implementation when Enqueue Takes Only One Step

In this subsection we prove the following:

Theorem 4.11. There is no wait-free linearizable implementation of a (2, 1)-Basic-Id-Queue object
from one B-History object in which all enqueue access procedures are restricted to taking only one
step.

Let O be a (2, 1)-Basic-Id-Queue object. Without loss of generality, let P1 and P2 be the
enqueue processes and P3 be the dequeue process. Let BH be a B-History object. To prove the
theorem, we assume that there exists a wait-free linearizable implementation of O from BH and
we eventually derive a contradiction.

Consider a run in which P1 and P2 each take a step, each of them completing an enqueue
procedure. We now schedule P3 to take steps until it completes its first dequeue procedure. By
wait-freedom, there exists some z ≥ 1, such that run(1 · 2 · 3z) contains only one dequeue instance
and that instance is complete. Since the enqueue instance by P1 is completed before the one by P2

begins, the first element enqueued will be (1, 1). The dequeue instance begins after both enqueue
instances are completed, so it must output the first element available in the queue, namely (1, 1).
However, since 3 /∈ {1, 2}, 1 · 2 · 3z ∼3 2 · 1 · 3z. But then, all the results that P3 gets to its steps in
run(2 · 1 · 3z) are the same as in run(1 · 2 · 3z). Hence P3 has to behave the same in both of these
runs, so in run(2 · 1 · 3z), there will be only one dequeue instance, it will be complete, and it will
output (1, 1). However, in the latter run, the first element enqueued is (2, 1) and the first element
dequeued is (1, 1). This contradicts the linearizability of our implementation, therefore no such
implementation exists.

The following is an obvious Corollary to Theorem 4.11:

Corollary 4.12. There is no wait-free linearizable implementation of a 3-Basic-Id-Queue from one
B-History object in which all enqueue access procedures are restricted to taking only one step.

Chapter 5

Conclusions

The main result in this thesis is a wait-free linearizable implementation of a (1, n)-Queue object
from Common2 objects and Registers, for any n. In [Li01], Li provided an (m, 2)-Queue implemen-
tation from Common2 objects and Registers, for any m. The existence of a wait-free linearizable
(m,n)-Queue implementation from Common2 objects and Registers remains open whenever m ≥ 2
and n ≥ 3. Attempts by both Li and the author to implement a 3-Queue〈V 〉 object from Com-
mon2 objects and Registers have failed, so this problem also remains open, even when V contains
only one element (in this case, the Queue is just a non-negative integer counter supporting Incre-
ment and Decrement-If-Positive operations). Li conjectured in [Li01] the impossibility of such an
implementation, a conjecture which we reiterate in this thesis, in Conjecture 1.2.

The work presented in Chapters 3 and 4 of this thesis is aimed at proving Conjecture 1.2.
Although our objective was not achieved, we believe that the results obtained are interesting on
their own and that they might prove useful in completing the proof of the Conjecture.

In Chapter 3, we develop a new shared object type, BH&AR, which has two important char-
acteristics. On the one hand, only one BH&AR object can simulate countably infinitely many
Common2 objects and Registers. On the other hand, we can precisely describe all the information
that a process gets about other processes as a result of applying an operation to a BH&AR ob-
ject. These properties might facilitate the development of an adversarial argument for proving the
impossibility of an N -Queue implementation for some N .

In Chapter 4, we study implementations of non-oblivious Queue objects and show that imple-
menting an (m,n)-Queue object from Common2 objects and Registers is equivalent to implementing
an (m,n)-Basic-Id-Queue object from one B-History object, a simplified version of a BH&AR ob-
ject. Furthermore, we show that in any implementation of a (3, 3)-Basic-Id-Queue object from a
B-History object, neither enqueue procedures nor dequeue procedures can be restricted to one step.
In general, the existence of a (3, 3)-Basic-Id-Queue object from one B-History object remains open,
even when all access procedures are restricted to two steps.

In [Li01], Li obtains an (m, 2)-Queue implementation by modifying an (m, 1)-Queue imple-
mentation using ideas from Herlihy’s universal construction in [Her91]. Specifically, he develops a
mechanism by which the two dequeue processes in his implementation agree on a total order on the
dequeue operations to be performed, and subsequently perform those operations much like they
would in the original (m, 1)-Queue implementation. We have attempted to apply a similar mecha-
nism in order to obtain a (2, n)-Queue implementation from our (1, n)-Queue implementation, but
without success. Informally, the problem appears to lie with the interaction between the enqueue
and dequeue processes: in the (m, 1)-Queue implementation considered in [Li01], the communi-
cation between enqueue processes and dequeue processes is achieved exclusively through Register
objects; while in our (1, n)-Queue implementation in Chapter 2, this communication is achieved
through both the Register object ROW , and the Swap objects in the array ITEMS. Li obtains
a (m, 2)-Queue implementation by (i) having the two dequeue processes agree on a total order on

52

Chapter 5. Conclusions 53

the dequeue operations; (ii) having each dequeue process execute the steps of each of the dequeue
operations, including those initiated by the other dequeue process; and (iii) having the two dequeue
processes agree on the result of each dequeue operation. When trying to extend our (1, n)-Queue
implementation to a (2, n)-Queue implementation, part (iii) is irrelevant (for all enqueue operations
produce the same result, OK) and part (i) can be achieved by having the two enqueue processes
agree on a sequence of enqueue operations. The problem lies with part (ii), specifically with the
fact that we were not able to synchronize two processes both executing the same steps to (together)
perform a single enqueue operation. In Li’s extended implementation, each of the Register objects
used for communication between enqueue and dequeue processes only influences the steps taken by
the two dequeue processes. If we were to apply the same method to our implementation, accesses
to the shared Swap objects in the array ITEMS would influence not only the steps of the two
enqueue processes, but also of one dequeue process. For example, consider the situation in which
enqueue processes E1 and E2 are working together to perform some enqueue operation. Suppose
E1 first applies its Swap operation to the cell ITEMS[r, c], and now the E2 applies its own Swap
operation to the same cell. At that moment, E2 cannot tell if some dequeue process accessed that
cell before E1, so E2 cannot tell if E1 has to jump to the next row of ITEMS or not. This is
merely an informal argument of why Li’s method cannot be straightforwardly applied. In general,
the existence of a (2, n)-Queue implementation from Common2 objects and Registers remains open
when n ≥ 3.

Bibliography

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. In Proceedings of the 12th ACM Symposium on
Principles of Distributed Computing, pages 159–170, 1993.

[FR03] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed comput-
ing. Distributed Computing, 16(2–3):121–163, 2003.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, January 1991.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems, 12(3):495–
504, January 1990.

[Jay93] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the 12th
ACM Symposium on Principles of Distributed Computing, pages 145–158, 1993.

[Jay95] Prasad Jayanti. Wait-free computing. In Proceedings of the 9th Workshop on Distributed
Algorithms, 1995.

[JT92] Prasad Jayanti and Sam Toueg. Some results on the impossibility, universality and
decidability of consensus. In Proceedings of the 6th Workshop on Distributed Algorithms,
1992.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous distributed
shared-memory systems. Master’s thesis, University of Toronto, 2001.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[McC94] Scott D. McCrickard. A study of wait-free hierarchies in concurrent systems. Technical
Report GIT-CC-94-04, Georgia Institute of Technology, 1994.

54

Index

(m,n)-Queue, 12
(m,n, p)-Queue, 12
λ, 5
≤R, 8
run(σ), 49

access procedure, 7

B-History type, 29
Basic-Id-Queue type, 44
Basic2, 4
BH&AR type, 29
binding function, 5

Common2, 3
complete procedure instance, 8
configuration, 6
consensus number, 2
Consensus problem, 1

implementation, 7
initial configuration, 6

jump enqueue instance, 17

legal object history, 7
legal step, 7
legal system history, 7
linearizability, 1, 8

non-blocking, 4

object, 5
object history, 7
object type, 5
oblivious, 2
oblivious object, 5
occurrence point, 21

procedure instance, 8
process, 6

read-modify-write, 3
regular enqueue instance, 17
run, 7

strongly connected, 2
system history, 7

type I dequeue instance, 19
type II dequeue instance, 20
type III dequeue instance, 20

universal type, 2

wait-freedom, 1, 9

55

