Computer Science
UNIVERSITY OF TORONTO

lecture 1:
introduction to modeling & UML

csc302h
winter 2014

§

Computer Science
UNIVERSITY OF TORONTO

CUSEC 2014

W%“

Computer Science . o .
UNIVERSITY OF TORONTO administrative

+ assignment #1 out by tuesday
» form groups today
* sign up on piazza asap!

— any problems?

— everyone familiar with piazza?

§

Computer Science
UNIVERSITY OF TORONTO

recap from last time

* engineering large software systems is
difficult!

— Sbn wasted annually on botched projects

— it isn’t just the big ones that go awry
(see boyd’s toast), but they tend to with a
greater probability

 for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and is likely to be used
by someone other than the developer

Computer Science
UNIVERSITY OF TORONTO

recap from last time (2)

« work will be done in teams of 6-7

— initial groups will be formed today in the
tutorial hour.

» we will be working on a large open source
project
— project(s) selection will be finalized on tuesday
when al goes out.

Computer Science
UNIVERSITY OF TORONTO

modeling

» one thing that we as software developers/
engineers can do to better understand
software is by using models

* many choices when building models
— multiple modeling “languages”

— graphical/Textual

— diagrams — ER diagrams for data, class and
object diagrams in OOP.

— ad-hoc
« for this course we’ll use UML (more or less)

Computer Science
UNIVERSITY OF TORONTO

modeling (2)

« uml as defined by wikipedia:

“UML is a standardized general-purpose modeling
language in the field of object-oriented software
engineering. The UML includes a set of graphic notation
techniques to create visual models of object-oriented
software-intensive systems.”

» caveat: how often do | use (strict) uml?

“...in his eighteen years as a professional programmer,

Wilson had only ever worked with one programmer who
actually used it voluntarily .” — Two Solitudes lllustrated,
Greg Wilson & Jorge Aranda, 2012

* but you gotta love software models...l do

s

Department of Computer Science

Why build models?

- Modelling can guide your exploration:
% It can help you figure out what questions to ask
% It can help to reveal key design decisions
% It can help you to uncover problems

g University of Toronto

- Modelling can help us check our understanding

% Reason about the model to understand its consequences
» Does it have the properties we expect?

% Animate the model to help us visualize/validate software behaviour

- Modelling can help us communicate
% Provides useful abstractions that focus on the point you want to make...
% ...without overwhelming people with detail

- Throw-away modelling?
% The exercise of modelling is more important than the model itself
% Time spent perfecting the models might be time wasted...

“!51 ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

s University of Toronto Department of Computer Science

Maps as Abstractions

g University of Toronto Department of Computer Science

A, &

m © 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

o University of Toronto Department of Computer Science

Dealing with problem complexity

- Abstraction
% Ignore detail to see the big picture
% Treat objects as the same by ignoring certain differences
% (beware: every abstraction involves choice over what is important)

- Decomposition
% Partition a problem into independent pieces, to study separately
% (beware: the parts are rarely independent really)

- Projection
% Separate different concerns (views) and describe them separately
% Different from decomposition as it does not partition the problem space
% (beware: different views will be inconsistent most of the time)

- Modularization

% Choose structures that are stable over time, to localize change
% (beware: any structure will make some changes easier and others harder)

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

bl University of Toronto

¥ the Unified Modelling Language (UML)

- Third generation OO method

% Booch, Rumbaugh & Jacobson are principal authors
» Still evolving (currently version 2.0)
» Attempt to standardize the proliferation of OO variants
% Is purely a notation
» No modelling method associated with it!
» Was intended as a design notation
% Has become an industry standard
» But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

Department of Computer Science

- Has a standardized meta-model
% Use case diagrams
% Class diagrams
% Message sequence charts
% Activity diagrams
& State Diagrams
% Module Diagrams
% Platform diagrams
%o

[©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

University of Toronto Department of Computer Science

Modeling Notations

L.

UML Class Diagrams Use Cases
information structure % % i user’s view
relationships between | |

data items b Lists functions

modular structure for
the system

visual overview of the
main requirements

UML Package Diagrams (UML) Statecharts

Overall architecture responses to events

Dependencies
between components

dynamic behavior

event ordering,
reachability,
deadlock, etc

UML Sequence Diagrams Activity diagrams

individual scenario business processes;

PS Y o B
nl i interactions between concurrency and
| | users and system synchronization;
'I Sequence of dependencies
ﬁ_,u messages . @ between tasks;
L@ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

L.

University of Toronto

Department of Computer Science

Intro: Object Classes in UML

Source: Adapted from Davis, 1990, p67-68
Generalization Aggregation
(an abstraction hierarchy) (a partitioning hierarchy)
:patient
:patient Name
Date of Birth
Name ' physician
Da’le_o_f Birth history
physician
history
0..10..1 [0..1
1 1.2 0.2
sin-patient soutpationt :heart :kidney :eyes
Room pastyist Natural/artit. | | Naturavartit. | | Natural/arti.
Bed next V',S", Orig/implant Orig/implant Vision
Treatments prescriptions normal bpm number colour
food prefs
@ j ©2012 Steve This is available free for non-commercial use with atribution under a creative commons license. 10

79 University of Toronto Department of Computer Science
:eye
Class name aggregation Colour
Diameter
0..2 ©
Correction
o multiplicities
:Patien :
. 0..1 :kidney
attributes N (<> ‘4 -
ane Operational?
\. Date of Birth 0.1
Height o
. Weight 1.2
services 0..1
> :heart
. m— Normal bpm
generalization 1 | Biood type
:In-patient :Out-patient
Room Last visit :organ
Bed next visit Natural/artif.
Physician physician Orig/implant
donor
! @ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

- -

University of Toronto

Department of Computer Science

-

What are classes?

- A class describes a group of objects with

% similar properties (attributes),
% common behaviour (operations),

% common relationships to

other objects,

% and common meaning (“semantics”).

Examples

% employee: has a name, employee# and department; an employee is hired, and fired; an
employee works in one or more projects

:employee --.... .

Aftributes
(optional) ™"

...name
~employee#
{department

hire()
fire()
assignproject()

Name (mandatory)

wOperations

(optional)

e

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license.

12

A &

*9 University of Toronto
The full notation...
Attribute
type Name of the class
Attribute »
name .
‘ Student Other Properties
L+ name: string [1] = “Anon” {readOnly}
o + registeredin: Course [*]
Visibility: ™ Default value
+, -, #, ... ster (6: C)
+ register (c: Course ST
+ isRegistered (c:* Course) : Boglean Multlphcny
Operation
name Return value
Parameters

Department of Computer Science

13

O © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

‘79 University of Toronto

Department of Computer Science

Objects vs. Classes

- The instances of a class are called objects.
% Objects are represented as:

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234

Department: Marketing

% Two different objects may have identical attribute values (like two people with
identical name and address)

- Objects have associations with other objects
% E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
% But we will capture these relationships at the class level (why?)
% Note: Make sure attributes are associated with the right class
» E.g. you don’t want both managerName and manager# as attributes of Project!
(...Why??)
14

mmg; © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Department of Computer Science

8 University of Toronto

¥ G lizati
o enera Izatlo n StaffMember
{abstract}
Grade | ™" <« alocated 0.* [staffName
| staffNo «€---- A superclass
gradeName | - staffStartDate
e // calculate Bonus ()
,/ assignNew Staff Grade ()
a getStaffDetails ()
//,
-
Superclass Two

associations are . X“blc""“‘“

inherited by /

subclasses ;

- /

& v

AdminStaff CreativeStaff
calculateBonus () qualification
alcy 0

assignStaffContact ()

- Notes:
% Subclasses inherit attributes, associations, & operations from the superclass

% A subclass may override an inherited aspect
» e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
% Superclasses may be declared {abstract}, meaning they have no instances

» Implies that the subclasses cover all possibilities

» e.g. there are no other staff than AdminStaff and CreativeStaff

oo Sen] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license

Department of Computer Science

rfe University of Toronto

v Aggregation and Composition

- Aggregation
% This is the “Has-a” or “Whole/part” relationship

- Composition
&, Strong form of aggregation that implies ownership:
» if the whole is removed from the model, so is the part.
» the whole is responsible for the disposition of its parts

:Engine

-

composition

:Car “1—

:Locomotive

Bk

°"1W

0..1 X
Person |o.+ 0.1
I . driver 1 passengers
aggregation
(<) j ©2012 Steve This is available free for non-commercial use with attribution under a creative commons license. 16

8 University of Toronto

Department of Computer Science

Aggregation / Composition (Refresher)

aggregation
Club / Member
% What does
* * this mean??
composition
Polygon {ordered} Point centre Circle
3.7 1
Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both
! © © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

*9 University of Toronto

Associations

- Objects do not exist in isolation from one another
% A relationship represents a connection among things.
% In UML, there are different types of relationships:
» Association
» Aggregation and Composition
» Generalization
» Dependency
» Realization

Department of Computer Science

- Class diagrams show classes and their relationships

<<entity>> ‘

Client <<entity>>
companyAddress Campaign [<<entity>>
companyName 1 0.* |title 1 0.* | Advert
company;'elephone campaignStartDate :
companyFax ianFini
comgaanmail places campaignFinishDate conducted by | setCompleted()

- getCampaignAdverts() | createNewAdvert()

getClientCampaigns() addNewAdvert()
getClients()
e ©2012 Steve This tion is available free for non-commercial use with attribution under a creative commons license. 18

A &

8 University of Toronto

Department of Computer Science

Association Multiplicity

- Ask questions about the associations:

% Can a campaign exist without a member of staff to manage it?
» If yes, then the association is optional at the Staff end - zero or more (0..*)
» If no, then it is not optional - one or more (1..%)
» If it must be managed by one and only one member of staff - exactly one (1)
% What about the other end of the association?
» Does every member of staff have to manage exactly one campaign?
» No. So the correct multiplicity is zero or more.

- Some examples of specifying multiplicity:
% Optional (0 or 1) 0.1

% Exactly one 1 =1.1
&, Zero or more 0.* =*

% One or more 1.2

% A range of values 2.6

g © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license.

19

‘,9 University of Toronto Department of Computer Science

R Class associations
Multiplicit Multiplicit
A client has A staff member has
exactly one staffmember zero or more clients on
as a contact person Name His/her clientList
of the
association -
:Client
-StaffMember
companyAddress
staffName 1 s . 0..* | companyEmail
staff# liaises with - — companyFax
staffStartDate | contact > ClientList companyName
person /‘ companyTelephone
Direction
The "“liaises with"”
association should be
read in this direction
Role
The staffmember's Role
role in this association The clients' role
Is as a contfact person in this association
is as a clientList
© 1 ©2012 Steve E _ This is available free for non-commercial use with attribution under a creative commons license 20

A &

S University of Toronto Department of Computer Science

More Examples

A &

a University of Toronto Department of Computer Science

Navigability / Visibility

Campaign ; conducted by o Advert Order
+ dateReceived: Date [0..1]
> + isPrepaid: Boolean [1]
+ lineltems: OrderLine [*] {ordered}
Grade allocated to StaffMember
N staffName
gradeName staffNo
1.0 < 0.7 | staffStartDate 0.1 " 1
Date - Order - - Boolean
+dateReceived +isPrepaid
1
Hand contains Card
* | +lineltems {ordered}
> 1.7
0.1 - OrderLine
i Sen] ©2012 Steve Easterbrook. This presentation s available free for non-commercial use with attribution under a creative commons license 21 _m ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license. 22
‘79 University of Toronto Department of Computer Science 7? University of Toronto Department of Computer Science
i Bidirectional Associations e Dependencies
0.1 . Model
Person Car
View ViewController
————> Layout
- Example Dependency types:
Person Car % <<call>>
% <<use>>
+ carsOwned: Car [*] + Owner: Person [0..1] % <<create>>
% <<derive>>
% <<instantiate>>
% <<permit>>
% <<realize>>
Hard to implement correctly! % <<refine>>
% <<substitute>>
% <<parameter>>
-m ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23 © 1 ©2012 Steve E . This is available free for non-commercial use with attribution under a creative commons license. 24

g University of Toronto

Department of Computer Science

v Interfaces

<<interface>>
Collection

equals

add

Order —<requires=> <<interface>> <<implements>> ArrayList
,,,,,,,,,, List CEEE——— get
Lineltems [*] get add
Collection
List
Order -)
- (& ArrayList
Lineltems [*]

Il g || © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

25

‘79 University of Toronto Department of Computer Science

A 4 Annotations

- Comments
% -- can be used to add comments within a class description

Date Range
{length = start - end} - _ Start: Date
“~~._ | End: Date

~~| /length: integer

- Notes

- Constraint Rules
& Any further constraints {in curly braces}
% e.g. {time limit: length must not be more than three months}

D @ .| ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 26

fQ University of Toronto

Department of Computer Science

¥ What UML class diagrams can show

- Division of Responsibility
% Operations that objects are responsible for providing

- Subclassing
% Inheritance, generalization
- Navigability / Visibility
% When objects need to know about other objects to call their operations

- Aggregation / Composition
% When objects are part of other objects

- Dependencies
% When changing the design of a class will affect other classes

- Interfaces
% Used to reduce coupling between objects

.l ©] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

27

Computer Science
UNIVERSITY OF TORONTO

static vs. dynamic modeling

« static captures fixed code-level relationships
class (and package) diagrams
object diagrams

— component diagrams
— deployment diagrams
* behavioral diagrams capture dynamic
execution
— use case diagrams
— sequence and interaction diagrams

collaboration diagrams
statechart diagrams

activity diagrams

Computer Science Computer Science

@UNIVBRSITY OF TORONTO summary @UNIVBRSITY OF TORONTO

* summary on modeling
— important to use modeling during design

— modeling can be helpful to discover design and short break, then
’ LX)

architecture (al) .
group selection!

— as with most things, it can be taken too far

— the model should provide an easier to consume
abstraction

— strict uml is good when publishing designs for

external consumption even if you don’t use it
yourself

