
lecture'1:'
introduc.on'to'modeling'&'UML'

csc302h

winter 2014

CUSEC'2014'

january 16 – 18, montreal
http://2014.cusec.net

canadian university software
engineering conference

administra.ve'

•  assignment #1 out by tuesday
•  form groups today
•  sign up on piazza asap!

–  any$problems?$

–  everyone$familiar$with$piazza?$

recap'from'last'.me'

•  engineering large software systems is
difficult!
–  bnwasted$annually$on$botched$projects$
–  it$isn’t$justthebig$ones$thatgoawry$$$$$$$$$$$$$$
(see$boyd’s$toast),butthey$tend$to$with$a$

greater$probability$

•  for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and is likely to be used
by someone other than the developer

recap'from'last'.me'(2)'

•  work will be done in teams of 6-7

–  ini?al$groups$willbeformed$today$inthe

tutorial$hour.$

•  we will be working on a large open source
project
–  project(s)$selec?on$willbefinalizedontuesday$
when$a1$goes$out.$

modeling'

•  one thing that we as software developers/
engineers can do to better understand
software is by using models

•  many choices when building models
– mul?ple$modeling$“languages”$

–  graphical/Textual$
–  diagrams$–$ER$diagrams$for$data,$classand

object$diagrams$in$OOP.$

–  adMhoc$$
•  for this course we’ll use UML (more or less)

modeling'(2)'

•  uml as defined by wikipedia:

•  caveat: how often do I use (strict) uml?

•  but you gotta love software models…I do

“UML is a standardized general-purpose modeling
language in the field of object-oriented software
engineering. The UML includes a set of graphic notation
techniques to create visual models of object-oriented
software-intensive systems.”

“…in his eighteen years as a professional programmer,
Wilson had only ever worked with one programmer who
actually used it voluntarily .” – Two Solitudes Illustrated,
Greg Wilson & Jorge Aranda, 2012

sta.c'vs.'dynamic'modeling'

•  static captures fixed code-level relationships
–  class$(and$package)$diagrams$

–  object$diagrams$

–  component$diagrams$

–  deployment$diagrams$

•  behavioral diagrams capture dynamic
execution
–  use$case$diagrams$

–  sequenceandinterac?on$diagrams$

–  collabora?on$diagrams$

–  statechart$diagrams$

–  ac?vity$diagrams$

summary'

•  summary on modeling
–  importanttouse$modeling$during$design$

– modelingcanbe$helpful$to$discover$designand

architecture$(a1)$

–  as$with$most$things,$itcanbe$taken$toofar

–  the$model$should$provide$an$easier$to$consume$

abstrac?on$

–  strictumlis$good$when$publishing$designsfor

external$consump?on$evenifyou$don’t$useit

yourself$

short'break,'then…'

group'selec.on!'

