Computer Science
UNIVERSITY OF TORONTO

lecture 2:
software architecture

csc302h
winter 2014

J Computer Science e o .
UNIVERSITY OF TORONTO admmlstr ative

assignment 1 out this week
(initial) groups posted to website

— still without a group? see me at the end

— see paper on “hitchhikers”

anyone with prerequisite issues please see me at
the end of today’s lecture.

anyone not officially enrolled please see me

&

Computer Science

UNIVERSITY OF TORONTO recap from last time

« we build models to help:
— during design
— to analyze existing systems (reverse engineer)
— to help us communicate

* models are abstractions

— help us focus on important aspects, not blinded
by the details

— decomposition, modularization, association
Introduced some um

modeling: we do it all the time...sometimes
too much of a good thing

Computer Science
UNIVERSITY OF TORONTO today

software architecture

s

¥ Unuversity of Toronto Department of Computer Science

Showing the architecture

- Coupling and Cohesion
- UML Package Diagrams

- Software Architectural Styles:
% Layered Architectures
% Pipe-and-filter
% Object Oriented Architecture
% Implicit Invocation
% Repositories

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

s

= University of Toronto Department of Computer Science

Coupling and Cohesion

Architectural Building blocks:

+ connector + ‘

module module

A good architecture:

Minimizes coupling between modules:
Goal: modules don’t need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module

Goal: the contents of each module are strongly inter-related
High cohesion means the subcomponents really do belong together

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

University of Toronto Department of Computer Science

%

Conway’s Law

“The structure of a software system
reflects the structure of the organisation
that built it”

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

g University of Toronto Department of Computer Science

Socio-Technical Congruence

People

Modules - ﬂ

See: Valetto. et al.. 2007.

L I:l | ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

i University of Toronto Department of Computer Science

Socio-Technical Congruence

People

Modules B m

See: Valetto. et al.. 2007.

L l:) _J ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

h

s

"L University of Toronto Department of Computer Science

Software Architecture

A software architecture defines:

The components of the software system
How the components use each other’s functionality and data
How control is managed between the components

An example: client-server

Servers provide some kind of service; clients request and use services
Reduced coupling: servers don’t need to know what clients are out there

method

invocation method

invocation

method
invocation

JIAJIG

.

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

»

:[;ﬂlJ)

University of Toronto

Department of Computer Science

Example: 3-layer architecture

Presentation Layer

[]
J|ava |Application
‘S Views
AWT =
Application Logic /",
[v []
Control PR 5 Business
Objects Logic
Storage Layer .~
— m—
Query --------------- File
Engine | Managemt
Y DBMS

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

l_% University of Toronto Department of Computer Science

v UML Packages

We need to represent our architectures

UML elements can be grouped together in packages

Elements of a package may be:
» other packages (representing subsystems or modules);
» classes;
» models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

Each element of a UML model is owned by a single package

Criteria for decomposing a system into packages:

Different owners

who is responsible for working on which diagrams?
Different applications

each problem has its own obvious partitions;

Clusters of classes with strong cohesion
e.g., course, course description, instructor, student,...

Or: use an architectural pattern to help find a suitable decomposition...

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

‘_Q University of Toronto Department of Computer Science

v Package notation
util util
: Date Date
util
named package package with list package containing
of contained classes a class diagram
java
java::util util
Date Date java::util::Date
package with package with
qualified name nested packages fully qualified name

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

University of Toronto

Department of Computer Science

a

Towards component-based design

control

Button <<interface>>
“““““““ > OnOff

turnOn()
Check box| __.--- 7, turnOff()

Furnace::Heater Lighting::Light

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

»

ﬂ»})

University of Toronto

Department of Computer Science

Or use Component Diagrams...

Till

=il

Sales Server =
sales
Anessage transactiofj t =
3 | o accounting
A\ T processor S driver
message L
queue %
8]
accounting
system

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

Computer Science

uNIvErsITY oF Toronto UMl 1.0 component diagram

DataAccess i
acilities
R~
Fw"ﬁ":z——zg i
e ~
%< 3 N Encryption
P i X \ ~ Security
. -~ 2
Seminar ~ DataAccess NS idess C\(\J <<infrastructure>>
Management (Student e — — -
s<application>> " Student ~ \ &
N ™~ Newot™ o
N ~ P
/ AN 5N /
W a7 i AN
~ \
\ DMC‘”S‘ Sy P R Persistence
N/ _’ =i, ; <<infrastructure>>
7\ /Spm ﬁ /7 “PQSEE~
b PG i # -
AR /\:/ / el = |
P \ A ~
Student 4% DalaAceess loen™ \\
Administration ¥ Schedule -
<<application>> - édle e |
University DB _é JDBC

! <<database>>

Computer Science

UNIVERSITY OF TORONTO

uml 2.0 component diagram

DataAccess

£]

O Facilities
Facilitieso
o
. e
Seminar Q ~ DataAccess @
Management O— Studcat
<<UI>> T m——
TN —~Stude
N #o
b T
o g
Dammo— Seminar
Student a \ Semin
Administration |— — — = MO
<<]>>
\ <<component>>
DalaAoo&o_
Schedule
Schedule

Encryption
O—
Security
Access Control | <<infrastructure>>
A5
Persistence
Persistence | <<infrastructure>>
G |
\
\
<<requires>>
3 \
- \
University DB
<<database>> JDBC

»

Department of Computer Science

_? University of Toronto

«client»

Sub-system A

«servem

Sub-system B

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

Dependency cycles (to be avoided)

«peern

Sub-system C

__--______--___39

(GO ——

«peer»

Sub-system D

Each peer sub-system depends on
the other and each is affected by
changes in the other’s interface.

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

A &

ﬁ? University of Toronto

Department of Computer Science

E.g. 3 layer
architecture:

Presentation Layer Package

1

Application
— ,/' Windows
Java AWT £

Architectural Patterns

Presentation
Layer

Application
Logic Layer

Storage
Layer

|

| Application Logic Layer Package
N 1

N
~

" Control
Objects \
\\\
;, Business
Objects

Storage Layer Package
1 1

JDBC Relational

Object to ¢-

o Java SQL

-
-
-
-
-

-
-
-
-
-

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

_9 University of Toronto

Department of Computer Science

A &

E.g. 3 layer
architecture:

Presentation
Layer
Application
Logic Layer

Storage
Layer

Or to show the interfaces...

|

Presentation Layer Package

B8]

’Appllcatlon

— ,-~| Windows
Java AWT £

o Java SQL

@ Application Logic Layer Package
Contro%:|
Objects
T > Business
Objects
|
Storage Layer Package
| 7] S
JDBC K------1 Object to (P
Relational
\\\\ —l

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14

A &

_9 University of Toronto Department of Computer Science

Layered Systems

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

Gpplication laye
utilities

users

Examples
Operating Systems
communication protocols

Interesting properties

Support increasing levels of abstraction during design
Support enhancement (add functionality) and re-use
can define standard layer interfaces

Disadvantages
May not be able to identify (clean) layers

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

»

4]

= Unmniversity of Toronto

Department of Computer Science

closed architecture
Each layer only uses services of the layer
immediately below;

Minimizes dependencies between layers and
reduces the impact of a change.

open architecture

A layer can use services from any lower layer.

More compact code, as the services of lower
layers can be accessed directly

Breaks the encapsulation of layers, so increase
dependencies between layers

Open vs. Closed Layered Architecture

Layer N -
Layer N-1

u

- Layer 2
Layer 1

Layer N
Layer N-1] 4

L

Layer 2 l
Layer 1

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with aftribution under a creative commons license.

16

s

= University of Toronto

Department of Computer Science

application layer
database layer
e.g. simple client-server model

separate out the business logic

helps to make both user interface and
database layers modifiable

Separates applications from the domain
entities that they use:
boundary classes in presentation layer
control classes in application layer
entity classes in domain layer

identify separate applications

How many layers?

2-1aYErS: e >

Application (client)

Database (server)

Presentation layer (user interface)

B-layers: s >

Business Logic

Database

Presentation layer (user interface)

a-layers: >

Applications

Domain Entities

Database

Ui uUl2 uI3

ul4

Partitioned 4-layers . >

I
App1 | App2 App3

App4

Domain Entities

Database

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

i University of Toronto Department of Computer Science

L Pipe-and-filter

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

Lexical Analysis -> parsing -> semantic analysis -> code generation
Signal Processing

Interesting properties:

filters can be implemented in parallel

fiter 3 —@ filter £ %
pipe pipe flter & —@% filter = —O
pipe pipe
fiter 1 | —O) > fiter®) —O)—

pipe pipe

Examples:
UNIX shell commands

Compilers:

filters don’t need to know anything about what they are connected to

behaviour of the system is the composition of behaviour of the filters
specialized analysis such as throughput and deadlock analysis is possible

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

ﬁ@ University of Toronto Department of Computer Science

»

Object Oriented Architectures

Source: Adapted from Shaw & Garlan 1996, p22-3.

method hod
- invocation .meT :.
nvocation
;.

method
invocation

Examples: This
abstract data types 18
] _ not
Interestlng propertles UML!

data hiding (internal data representations are not visible to clients)
can decompose problems into sets of interacting agents
can be multi-threaded or single thread

Disadvantages
objects must know the identity of objects they wish to interact with

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

A &

_9 University of Toronto

Department of Computer Science

Variant: Object Brokers

Interesting properties

Adds a broker between the clients and servers
Clients no longer need to know which server they are using
Can have many brokers, many servers.

Disadvantages

Broker can become a bottleneck
Degraded performance

not
UML!

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

TR

20

’_9 University of Toronto Department of Computer Science

v Event based (implicit invocation)

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

announce

isten for
event

broadcast
medium

announce This
event event)
Examples 13
debugging systems (listen for particular breakpoints) not
database management systems (for data integrity checking) UML)

graphical user interfaces

Interesting properties

announcers of events don’t need to know who will handle the event
Supports re-use, and evolution of systems (add new agents easily)

Disadvantages
Components have no control over ordering of computations

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

’_9 University of Toronto Department of Computer Science

v Repositories

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Viiet, 1999, p280

blackboard

(shared
data)
agent ‘l agent
Examples
databases

blackboard expert systems
programming environments

Interesting properties

can choose where the locus of control is (agents, blackboard, both)
reduce the need to duplicate complex data

Disadvantages
blackboard becomes a bottleneck

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SR

22

University of Toronto Department of Computer Science

ﬂl‘)

Variant: Model-View-Controller

s.] < H
0 2 opagate propagate - g :
access\ access
{ S {5
1 3 H { _ b 3
.= o
“; [0 ‘?
O 3 S
update B = update
Properties

One central model, many views (viewers)

Each view has an associated controller

The controller handles updates from the user of the view
Changes to the model are propagated to all the views

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

&

Computer Science

UNIVERSITY OF TORONTO summary

* avoid unnecessary coupling & cohesion

e if alayered approach, what are the layers?
what goes in each

— following a pattern like MVC, MVP?

* modularize for reusability (well designed public
interface)

 uml diagrams for discussing architecture
— adherence to uml syntax is not the point

— clearly communicating the architecture is the
point

Computer Science
UNIVERSITY OF TORONTO summary (2)

"I| semble que la perfection soit atteinte non quand il
n'y a plus rien a ajouter, mais quand il n'y a plus rien a
retrancher.”— Antoine de Saint Exupéry, Terre des
Hommes, 1939

(my) translation: “perfection is finally attained not
when there is no longer anything to add, but when
there is no longer anything to take away"

Computer Science
UNIVERSITY OF TORONTO summary (3)

e tons of uml stuff online, but for those that
still like paper books | recommend:

Computer Science
UNIVERSITY OF TORONTO

group selection — round 2

