§

Computer Science
UNIVERSITY OF TORONTO

Computer Science . o .
UNIVERSITY OF TORONTO administrative

lecture 3: * alis up on the website

. . . » see me if you are still not in a grou
reverse engineering & design j y | group

. « stick around for tutorial

discovery
csc302h

winter 2014

@ Computer Science . o University of Toronto Department of Computer Science
UNIVERSITY OF TORONTO recap fl’ om last time

minimize coupling between modules
conway’s law re. software structure & team/
communication structure
common architectures
— Layered

* open vs. closed, n-tier, partitioned

— others: broker, client-server, event-based,
repository (hub), mvc

uml
— package & component diagrams

&
al

Software Re-Engineering

- Why software evolves continuously
- Costs of Software Evolution
- Challenges of Design Recovery

- What reverse engineering tools can and can’t do

[F8.5] ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

? University of Toronto

Department of Computer Science

The Altimeter Example

%

University of Toronto Department of Computer Science

Software Evolves Continuously

IF not-readl(V1) GOTO DEF1; if (read-meterl(Vl))
display (V1); display(V1);
21%
GOTO C; else {
DEFl: IF not-read2(V2) GOTO DEF2; if (read-meter2(v2))
display(V2); display(V2);
GOTO C; else
DEF2: display(3000); display(3000); o
.) 43% \enhancements adaptive
25%
Questions:
Should you refactor this code?
Should you fix the default value? 4%
Data from:
van Vliet, H.. Software Engineering: Principles preventative
Source: Adapted from van Vliet 1999 and Practices, Wiley 1999, p449
®] © 2012 Steve This ion is available free for non-commercial use with attribution under a creative commons license. 2 ® 7] ©2012 Steve . This is available free for non-commercial use with attribution under a creative commons license. 3
o ,? University of Toronto

& University of Toronto Department of Computer Science

i Program Types
Source: Adapted from Lehman 1980, pp1061-1063
S-type Programs (“Specifiable”)
problem can be stated formally and completely
acceptance: Is the program correct according to its specification?

“evolution” not relevant
A new specification defines a new problem

P-type Programs (“Problem-solving”)
imprecise statement of a real-world problem
acceptance: Is the program an acceptable solution to the problem?

This software may evolve continuously
the solution is never perfect, and can be improved
the real-world changes and hence the problem changes

E-type Programs (“Embedded”)
software that becomes part of the world that it models
acceptance: depends entirely on opinion and judgment

This software is inherently evolutionary
changes in the software and the world affect each other

© ol ©2012 Steve This

is available free for non-commercial use with attribution under a creative commons license. 4

Department of Computer Science

. Source: Adapted from Lehman 1980, pp1061-1063
o formal

may statement \controls the

relate roduction P-tvpe
+o of problem oF typ!
real PROGRAM
world abstract
/ i view of world
provides
maybe of solution
interest to S-type g requirements|
specification
. E-type /
i real world)
7 solution PROGRAM
=-{PROGRAM
- abstract
fleaunenens view of world
specification
\ model
©] ©2012 Steve This is available free for non-commercial use with attribution under a creative commons license. 5

_9 University of Toronto

Laws of Program Evolution

Department of Computer Science

Source: Adapted from Lehman 1980, pp1061-1063

Continuing Change

Any software that reflects some external reality undergoes continual change or
becomes progressively less useful
change continues until it is judged more cost effective to replace the system

Increasing Complexity

As software evolves, its complexity increases...
...unless steps are taken to control it.

Fundamental Law of Program Evolution

Software evolution is self-regulating
...with statistically determinable trends and invariants

Conservation of Organizational Stability

During the active life of a software system, the work output of a development
project is roughly constant (regardless of resources!)

Conservation of Familiarity

The amount of change in successive releases is roughly constant

5 ©2012 Steve This

is available free for use with under a creative license.

No. Brief Name Law
I |Continuing Change E-type systems must be continually adapted else they become progressively less
1974 satisfactory.
I [Increasing Complexity As an E-type system evolves its complexity increases unless work is done to
1974 maintain or reduce it.
IO (Self Regulation E-type system evolution process is self regulating with distribution of product
1974 and process measures close to normal.
IV |Conservation of Organisational [The average effective global activity rate in an evolving E-type system is
1980 |Stability (invariant work rate) |invariant over product lifetime.
V [Conservation of Familiarity As an E-type system evolves all associated with it, developers, sales personnel,
1980 users, for example, must maintain mastery of its content and behaviour [leh80a]
to achieve satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the system evolves.
VI |Continuing Growth The functional content of E-type systems must be continually increased to
1980 maintain user satisfaction over their lifetime.
VII [Declining Quality The quality of E-type systems will appear to be declining unless they are
1996 rigorously maintained and adapted to operational environment changes.
VII [Feedback System E-type evolution processes constitute multi-level, multi-loop, multi-agent
1996 |(first stated 1974, feedback systems and must be treated as such to achieve significant improvement

formalised as law 1996) over any reasonable base.

k? University of Toronto

fo

Department of Computer Sci

User requirements always grow

conventional

Fa development
E User needs
o
2
£ /- Inapppdpriateness
[:
(shaded area)
Shorifall
i Adaptabilit
Latghess ; yp Y
\J (slope of line)
H Lorigevi
Lorigevity
\eJ ’ 3 S Y Time
& o @ o
PO & (& & ‘\
X & xR Q\° ON xR
N @ >N R, ¥ >3
NN R SN ¢
A PG o
AR I A A SR
(5\ o¥ \ob &
&Y & v &R &

Source: Adapted from Davis 1988, pp1453-1455

e © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

_? University of Toronto

o

Department of Computer Science

2800

‘; o0
2400 — s o ks
] oo ve®
2000 E eSS
1600 - o
- . .‘.
1200 - ,"

E.g. Logica Financial Software

(Source: Lehman et al, 2000)
Size in Modules

800
400

[B

0 5 10 15 20

© ol ©2012 Steve This

is available free for non-commercial use with attribution under a creative commons license. 8

kﬁ University of Toronto Department of Computer Sci

E.g. Linux Kernel

(Source: Godfrey & Tu, 2000)

2,500,000
——Total LOC ("wc -I") -- development releases
—— Total LOC ("wc -I") -- stable releases
+ Total LOC uncommented -- development releases
2,000,000 ~— . Total LOC uncommented -- stable releases /
1,500,000 A ya
o
o
-
: ///
[

1,000,000 s “"[

h

500,000 T

0 T T T T T |
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

[P] © 2012 Steve Easterbrook. This presentation s available free for non-commercial use with atiribution under a creative commons license.

g University of Toronto

Department of Computer Science

E.g. Hadley Centre Climate Model

Evolution of the Unified Model

—=— Lines of Code (left hand scale) —e— Number of Files (right hand scale)

1000 Q o 10
z a0 T g
H e o -
900 g = S) 5o
800 8 H 8
5 5 v6.1
g &
& 700 3 - 7 %
a V55 V0 2
g ; i 32 . :
2 600 = V52 V53 LR 2 6 3
3 V4.5 < 2 2 £
£ wi_a 5.0 ’i1/rf— = g3 e £
g 500 % S c 5
; S ! P
3 a3 a S 5
s e L] 5
5 400 g V42 £ .3
H 5 H 2
H z £
S 300 3z
200 2
100 1
0 o
Jan 1993 Jan 1994 Jan 1995 Jan 1996 Jan 1997 Jan 1998 Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan2003 Jan 2004 Jan 2005 Jan 2006 Jan 2007 Jan 2008
m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Lines of Code in Windows
60

50

40

30

20

Millions of Lines of Code

10

Years: 1993-2006

g University of Toronto

Department of Computer Science

Software Geriatrics

Source: Adapted from Parnas, “Software Aging " 1996

Causes of Software Aging
Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs
Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure

Aging software gets more buggy
Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
Design for change
Document the software carefully

Requirements and designs should be reviewed by those responsible for its
maintenance

Software Rejuvenation...

‘ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

1

,Q University of Toronto Department of Computer Science

Reducing Maintenance Costs
General Higher quality code
Modular structure Better testing (verification)
Comprehensibility Use of standards
Good docwmentation &°
é\" 2%
¢
\ orrectiv
user ﬁ :‘
nhancements \mda)pfl(
r Platform independence
, , Preventative pocign for change
Better requirements analysis gn , 9
, . . Good architecture
prototyping, iterative development
Desigwn for change

,,,m(.")‘“,] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

,Q University of Toronto Department of Computer Science

Why maintenance is hard

Poor code quality
opaque code
poorly structured code
dead code

.....

Lack of knowledge of the application domain

understanding the implications of change

Lack of documentation

code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999

© 7] ©2012 Steve . This ion is available free for non-commercial use with attribution under a creative commons license. 13

,? University of Toronto Department of Computer Science

5 &

Rejuvenation

Reverse Engineering
Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring
Refactoring (no changes to functionality)
Revamping (only the user interface is changed)
Re-Engineering
Real changes made to the code

Usually done as round trip:
design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999
© 7] ©2012 steve

is available free for non-commercial use with attribution under a creative commons license. 14

g University of Toronto Department of Computer Science

Program Comprehension

During maintenance:

programmers study the code about 1.5 times as long as the documentation
programmers spend as much time reading code as editing it

5 &

Experts have many knowledge chunks:
programming plans
beacons

design patterns

Experts follow dependency links

...while novices read sequentially

Much knowledge comes from outside the code

© 7] ©2012 Steve This

Source: Adapted from van Viiet 1999

ion is available free for non-commercial use with attribution under a creative commons license. 15

b University of Toronto

Department of Computer Science

What does this do?

for (i=0; i<n; i++) {

Example 1

for (3=0; j<n; j++) {
if (A[i,31) {
for (k=0; k<n; k++) {
if (A[],k])

A[i,k]=true;

Source: Adapted from van Viiet 1999

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

16

g University of Toronto Department of Computer Science

Example 2
procedure A(var X: Ww); procedure change window(var nw: window);
begin begin
b(y, nl); border (current_window, no_highlight);
b(x, n2); border (nw, highlight);
m(w[x]); move_ cursor (w[nw]);
y = X; current_window := nw;
r(plxl]): resume (process[nw]) ;
end; end;
Source: Adapted from van Vliet 1999
©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

g University of Toronto

Department of Computer Sci

D &

What tools can do

Reformatters / documentation generators
Make the code more readable
Add comments automatically

Improve Code Browsing

E.g visualize and traverse a dependency graph

(simple) Code transformation

E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Design Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams

e Gowr sl © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

Computer Science
UNIVERSITY OF TORONTO

what tools can’t do

"‘what were they thinking
when they wrote this?/?!”

Computer Science
UNIVERSITY OF TORONTO

what tools can’t do (2)

Jon Bentley found at Bell Labs that most

(good) programmers can’t even get binary
search right! He published this in his book
Programming Peatrls.

Computer Science
UNIVERSITY OF TORONTO

what tools can’t do (3)

int matt_search(int x[], int t, int lo, int hi) {
int mid = lo+(hi-lo)/2;

if (x[lo]
if (x[mid]
if (x[hi] =

t) return lo;
t) return mid;
t) return hi;

if (mid == lo) return -1;

if (t < x[mid])
return matt_search(x, t, lo, mid);
else
return matt _binary search(x, t, mid, hi);

gimme a break! | only gave myself 10 minutes

Computer Science
UNIVERSITY OF TORONTO

what tools can’t do (4)

int bloch_search(int x[], int t, int count) {
int lo = 0, hi = count-1, mid, val;

while (lo <= hi) {
mid = lo+(hi-lo)/2;
val = x[mid];

if (val < t) lo = mid+1;
else if (val > t) hi = mid-1;
else return mid;

}

return -(lo+l);

Computer Science
UNIVERSITY OF TORONTO

design discovery tools

i api
[(«1>] HE o DOIERERIEE Q prs)
FAVORITES (2 META-INF (] openmrs » [activelist » [5] ActiveListService.java

2 AllMyFiles | Ll org > [3] Address.java [3] AdministrationService java
. (3 annotation » [5] APIAuthenti...ception.java
@ AirDrop (1 aop » [3] APIException java
#\ Applications & api » [5) Blankidentifi...ception.java
[Desktop [arden » 3] Cohortservice java
[3) Auri java [c ion java
[Documents (7 attribute » 3] ConceptNa..xception.java
© Downloads (5] Auditable.java (5 ConceptNameType.java
] Movies [3) BaseC java [3 c ice.java
) [5) BaseCustomizableDatajava [i| ConceptsLo...ception java
I3 Music [5) BaseCustom.._etadatajava 3] ConceptSto...xception,java
(@) Pictures [3) BaseOpenmrsData.java (] context
2 ma [3) BaseO java 3 Dat jice.java
(5] BaseO java (5 D ice java
SHARED [3) BaseOrderable java 3 db
pmbackup (2 cohort » [5) DuplicateCo...ception.java
[3) Cohort.java (i) Duplicatelde...ception.java
DEVICES (2 comparator » [3] EncounterService java
[Matt’s Mac... (5] Concept.java (5] EventListeners.java
5 C java 5 ice java
(5] ConceptClass.java (5] GlobalPropertyListener.java
il ConcentComplex.iava B3 handler

Computer Science
UNIVERSITY OF TORONTO

design discovery tools (2)

O [Java - /main/j / java - Eclipse SDK - /Users/matt/stuff/courses/csc302s_2013/OpenMRS/... ")
=} 13- 0-Q | |H G- |®5 18151~ v [§ava
12 Package Explorer % = 813 Conceptservicejava 2 utline 53 =8
v . a s L
2% * concept Context. getC ice(). getC EA SRR
Fora * concept.setNane & org.openmrs.api
v N and other required values on the concept v A
v Conceptservice
@ openmrs * Context.getConceptService().saveConcept(concept); °
» Gactivelist . o . i © setConceptDAO(Concer
» Gy annotation e & createConcept(Concept,
> Gyaop * esee org.opennrs.api . context. Context & createConcept(Concept
v Gyapi . & updateConcept(Concep|
» Gycontext public interface ConceptService extends OpenmrsService { © getConceptyUuid(Strin
> Gydb & updateConcept(Concep|
» G handler °« 7t & createDrug(Drug) : void,
Sets the data access object for Concepts. The dao is used for saving and | & updateDrug(Drug) - voic
» Gyimpl * to/fi the databe P &l g}
) ActiveListService java * offrom the datebase & deleteConcept(Concept;
AdministrationService.java * eparan dao The data access object to use & voidConcept(Concept, §|
APlAuthenticationException java -/ © saveConcept(Concept)
APIException. java public void setConceptDAO(ConceptDAO dao); @ saveDrug(Drug) : Drug
| BlankldentifierException. java @ purgeConcept(Concept),
Cononsenvice ava s o retreConcestConcept,
ConceptinUseException java + edeprecated use #saveConcept(Concept) o retireDrug(drug, String)
c / © unretireDrug(Drug) : Dr
e p
ConceptNameType java EAuthorized({ PrivilegeConstants. MANAGE_CONCEPTS }) O pugebatna ¢
ConceptService.java public void createConcept(Concept concept) throws APIException; © getConcept(integer) : C
ConceptsLockedException java © getConceptName(intege
C e /% @ getConceptAnswer(intey
) DataSetService java [2 Problems 2@ Javadoc| (& Declaration v =0
Oitems
Description ~IResource Path Location Type
) EncounterService java
) EventListeners java
| Formservice java
} GlobalPropertyListener.java
| IdentifierNotUniqueException.java
J
Jo®]

Computer Science
UNIVERSITY OF TORONTO

design discovery tools (3)

Untitled - untitledModel_classes ~ ArgoUML *

Il easB®Ba | & @

Elal-]
LER=1=]

—v v e 2 H % 1

E [Package-centric sl
Order By Type, Name &

» [Profile Configuration
v B3 untitledModel

Use Case Diagram
> Bl java
» £] Main java
£] Node java
»] Tree java In
o double
e Stringl]
© void
«» javaimport
™ documentation
™ GeneratedFromimport
™ param
™ return
— Node -> Node
— Node -> Node
— Tree -> Node
— Tree -> Random
By Priority] 18 items *
=T High
» [Medium
> ELow

=

main(args : String[l) : void

Node.

value : double

MNod od:
Tree > Npde <<create>> Node(value : double) :I

root fehild

Tree

<<create>> Tree()
addNode(n : Node) : void
average() : double

: Node,n : Node) : void

aSource | 4 Constraints
ElcClass 4 @ «» E B Client Dependencies: » Attributes: >
e 8
lamespacs E“‘""‘z‘wSpecnhzation: > §

Owned Elements: »

Visibility:

() public () package () prot;
modifiers

() isRoot (] isteaf [Ahs"L

Template Parameters: >

JB 36M used of 505M max

Computer Science
UNIVERSITY OF TORONTO

tutori

