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Software Re-Engineering

- Why software evolves continuously
- Costs of Software Evolution
- Challenges of Design Recovery

- What reverse engineering tools can and can’t do
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The Altimeter Example

%

University of Toronto Department of Computer Science

Software Evolves Continuously

IF not-readl(V1) GOTO DEF1; if (read-meterl(Vl))
display (V1); display(V1);
21%
GOTO C; else {
DEFl: IF not-read2(V2) GOTO DEF2; if (read-meter2(v2))
display(V2); display(V2);
GOTO C; else
DEF2: display(3000); display(3000); o
. ) 43% \enhancements adaptive
25%
Questions:
Should you refactor this code?
Should you fix the default value? 4%
Data from:
van Vliet, H.. Software Engineering: Principles preventative
Source: Adapted from van Vliet 1999 and Practices, Wiley 1999, p449
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i Program Types
Source: Adapted from Lehman 1980, pp1061-1063
S-type Programs (“Specifiable”)
problem can be stated formally and completely
acceptance: Is the program correct according to its specification?

“evolution” not relevant
A new specification defines a new problem

P-type Programs (“Problem-solving”)
imprecise statement of a real-world problem
acceptance: Is the program an acceptable solution to the problem?

This software may evolve continuously
the solution is never perfect, and can be improved
the real-world changes and hence the problem changes

E-type Programs (“Embedded”)
software that becomes part of the world that it models
acceptance: depends entirely on opinion and judgment

This software is inherently evolutionary
changes in the software and the world affect each other

© ol ©2012 Steve This
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. Source: Adapted from Lehman 1980, pp1061-1063
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Source: Adapted from Lehman 1980, pp1061-1063

Continuing Change

Any software that reflects some external reality undergoes continual change or
becomes progressively less useful
change continues until it is judged more cost effective to replace the system

Increasing Complexity

As software evolves, its complexity increases...
...unless steps are taken to control it.

Fundamental Law of Program Evolution

Software evolution is self-regulating
...with statistically determinable trends and invariants

Conservation of Organizational Stability

During the active life of a software system, the work output of a development
project is roughly constant (regardless of resources!)

Conservation of Familiarity

The amount of change in successive releases is roughly constant

5 ©2012 Steve This

is available free for use with under a creative license.

No. Brief Name Law
I |Continuing Change E-type systems must be continually adapted else they become progressively less
1974 satisfactory.
I [Increasing Complexity As an E-type system evolves its complexity increases unless work is done to
1974 maintain or reduce it.
IO (Self Regulation E-type system evolution process is self regulating with distribution of product
1974 and process measures close to normal.
IV |Conservation of Organisational [The average effective global activity rate in an evolving E-type system is
1980 |Stability (invariant work rate) |invariant over product lifetime.
V  [Conservation of Familiarity As an E-type system evolves all associated with it, developers, sales personnel,
1980 users, for example, must maintain mastery of its content and behaviour [leh80a]
to achieve satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the system evolves.
VI |Continuing Growth The functional content of E-type systems must be continually increased to
1980 maintain user satisfaction over their lifetime.
VII [Declining Quality The quality of E-type systems will appear to be declining unless they are
1996 rigorously maintained and adapted to operational environment changes.
VII [Feedback System E-type evolution processes constitute multi-level, multi-loop, multi-agent
1996 |(first stated 1974, feedback systems and must be treated as such to achieve significant improvement

formalised as law 1996) over any reasonable base.
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User requirements always grow
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Source: Adapted from Davis 1988, pp1453-1455
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E.g. Linux Kernel

(Source: Godfrey & Tu, 2000)
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E.g. Hadley Centre Climate Model

Evolution of the Unified Model
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Software Geriatrics

Source: Adapted from Parnas, “Software Aging " 1996

Causes of Software Aging
Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs
Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure

Aging software gets more buggy
Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
Design for change
Document the software carefully

Requirements and designs should be reviewed by those responsible for its
maintenance

Software Rejuvenation...

‘ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.
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Reducing Maintenance Costs
General Higher quality code
Modular structure Better testing (verification)
Comprehensibility Use of standards
Good docwmentation  &°
é\" 2%
¢
\ orrectiv
user ﬁ :‘
nhancements \mda)pfl(
r Platform independence
, , Preventative  pocign for change
Better requirements analysis gn , 9
, . . Good architecture
prototyping, iterative development
Desigwn for change
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Why maintenance is hard

Poor code quality
opaque code
poorly structured code
dead code

.....

Lack of knowledge of the application domain

understanding the implications of change

Lack of documentation

code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999
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Rejuvenation

Reverse Engineering
Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring
Refactoring (no changes to functionality)
Revamping (only the user interface is changed)
Re-Engineering
Real changes made to the code

Usually done as round trip:
design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999
© 7] ©2012 steve
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Program Comprehension

During maintenance:

programmers study the code about 1.5 times as long as the documentation
programmers spend as much time reading code as editing it

5 &

Experts have many knowledge chunks:
programming plans
beacons

design patterns

Experts follow dependency links

...while novices read sequentially

Much knowledge comes from outside the code

© 7] ©2012 Steve This

Source: Adapted from van Viiet 1999
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What does this do?

for (i=0; i<n; i++) {

Example 1

for (3=0; j<n; j++) {
if (A[i,31) {
for (k=0; k<n; k++) {
if (A[],k])

A[i,k]=true;

Source: Adapted from van Viiet 1999

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.
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Example 2
procedure A(var X: Ww); procedure change window(var nw: window);
begin begin
b(y, nl); border (current_window, no_highlight);
b(x, n2); border (nw, highlight);
m(w[x]); move_ cursor (w[nw]);
y = X; current_window := nw;
r(plxl]): resume (process[nw]) ;
end; end;
Source: Adapted from van Vliet 1999
©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17
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What tools can do

Reformatters / documentation generators
Make the code more readable
Add comments automatically

Improve Code Browsing

E.g visualize and traverse a dependency graph

(simple) Code transformation

E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Design Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams

e Gowr sl © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.
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what tools can’t do

"‘what were they thinking
when they wrote this?/?!”
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what tools can’t do (2)

Jon Bentley found at Bell Labs that most

(good) programmers can’t even get binary
search right! He published this in his book
Programming Peatrls.
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what tools can’t do (3)

int matt_search(int x[], int t, int lo, int hi) {
int mid = lo+(hi-lo)/2;

if (x[lo]
if (x[mid]
if (x[hi] =

t) return lo;
t) return mid;
t) return hi;

if (mid == lo) return -1;

if (t < x[mid])
return matt_search(x, t, lo, mid);
else
return matt _binary search(x, t, mid, hi);

gimme a break! | only gave myself 10 minutes
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what tools can’t do (4)

int bloch_search(int x[], int t, int count) {
int lo = 0, hi = count-1, mid, val;

while (lo <= hi) {
mid = lo+(hi-lo)/2;
val = x[mid];

if (val < t) lo = mid+1;
else if (val > t) hi = mid-1;
else return mid;

}

return -(lo+l);
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design discovery tools
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design discovery tools (2)
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design discovery tools (3)
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