Computer Science
UNIVERSITY OF TORONTO

lecture 5:
software development lifecycle
(sdic)

Computer Science
UNIVERSITY OF TORONTO

recap from last time

+ software design with uml sequence & use
case diagrams

— recommend one of these books:

csc302h
winter 2014
O'REILLY Py
Com Scien . Com Scien .
@U;n%t;rsr;; OF TORONTO recap from last time (2) @U;n%t;rsr;; OF TORONTO recap from last time (3)

* modeling system behavior with sequence
diagrams

— uml collaboration diagram captures control
flow, sequence is a different rendering

— emphasis is on time and ordering of “messages”

— objects on top, arrows are messages, time is
vertical

— interaction frames (alt, opt, loop, par, ...)

* when to use sequence diagrams?
— discussing design options
— explaining design patterns (academic exercise)
* ex. observer:

(OB . [(obmomersiae -
update) || bjoct getState()

— elaborating on use cases (practical exercise)

Computer Science
UNIVERSITY OF TORONTO

recap from last time (4)

* use case diagrams
— capture system requirements
— show how users interact with a system

— short phrase to sum up a distinct piece of
functionality

— “actors” (stick ppl) show a role that a user takes
on during an interaction

— each use case has one or more actors

— relationships between use cases like
<<extends>>, <<uses>>, <<includes>>

— reverse engineering use cases

§

Computer Science
UNIVERSITY OF TORONTO

real-world examples

Some real examples of
modeling with uml

Computer Science
UNIVERSITY OF TORONTO

software development lifecycle
(sdic)

§

Computer Science
UNIVERSITY OF TORONTO SC”C

+ tend to talk about sdlic in terms of a
dichotomy
— “agile” vs. well...um...“not agile”
— or, “planned” vs. “continuous”

— others tend to (incorrectly) think that the
deployment method implies the process
* saas = agile
* installed = traditional

 think more in terms applying the process
on an individual feature, or an aggregate

Computer Science

UNIVERSITY OF TORONTO example feature workflow

PM/R&D

Backlog
@ : attribute & size.

SHOULD have
developer assigned.

T

developer assigned.

Suggested Feature R&D

(Task & Sub-Task)
Workflow for TPA R&D
ccepte

R&D

Q University of Toronto Department of Computer Science

5 &

Software Processes

- What is a Software Development Process?
- The Lifecycle of a Software Project
- Agile vs. Disciplined

- Some common approaches:
% RUP, SCRUM, XP, ICONIX,...

- Where UML fits in (next lecture)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

HOW TO WRITE GOOD CODE:

ALMOST, BUT M5
BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.
NO, AND THE
REQUIREMENTS
HAVE CHANGED, -
rgs
THROW 1T ALL OUT Y
AND START OVER.
GOoD)
CODE.

Source: xkcd 844

e University of Toronto Department of Computer Science

v Project Types

Reasons for initiating a software development project
Problem-driven: competition, crisis,...
Change-driven: new needs, growth, change in business or environment,...
Opportunity-driven: exploit a new technology,...
Legacy-driven: part of a previous plan, unfinished work, ...

Relationship with Customer(s):

Customer-specific - one customer with specific problem
May be another company, with contractual arrangement
May be a division within the same company
Market-based - system to be sold to a general market
In some cases the product must generate customers
Marketing team may act as substitute customer
Community-based - intended as a general benefit to some community
E.g. open source tools, tools for scientific research
Usually: funder = customer (if funder has no stake in the outcome)

Hybrid (a mix of the above)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

b o University of Toronto Department of Computer Sci

Project Context

What is the current (old) system?
There is *always* an existing system!
May just be a set of ad hoc workarounds for the problem
Studying it is important:
If we want to avoid the weaknesses of the old system...
...while preserving what the stakeholders like about it

Use pre-existing components?
Benefits:
Can dramatically reduce development cost
Easier to decompose the problem if some sub-problems are already solved
Tension:
Solving the real problem vs. solving a known problem (with ready solution)

Will it be part of a product family?
Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system

Horizontal families: similar systems used in related domains
Typically based on a common architecture (or just shared software assets)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Q University of Toronto

Department of Computer Science

v Lifecycle of an Engineering Project

Lifecycle models
Useful for comparing projects in general terms
Not enough detail for project planning

Examples:
Sequential models: Waterfall, V model
Phased Models: Incremental, Evolutionary
Iterative Models: Spiral

Process Models
Used for capturing and improving the development process
Detailed guidance on steps and products of each step

Process Frameworks
Patterns and principles for designing a specific process for your project

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Q University of Toronto Department of Computer S
A &
Waterfall Model
erceived .
P —, View of development:
- » aprocess of stepwise refinement
.:"' + largely a high level management view
“*{requirements Problems:
pe » Static view of requirements - ignores
g volatility
design * Lack of user involvement once
specification is written
.__.‘ + Unrealistic separation of specification
from design
code » Doesn’t accommodate prototyping,
reuse, etc.
ot
test
EHy
“{ integrate

| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Computer Science
UNIVERSITY OF TORONTO

<«———— Today's date

Task kabels folow bars

+ Groups or people
il . Makesagdale responsidle for task

wsestone budpet Mases T R AT s (resources)
o setgsendonte Courthater

3 Ovme up sl o pablpants 3ating 504 Consdnor

N
Lines and amows show ——> QD Seps mamiag 1o cumtoman & prospects Coordinater

how tasks are linked (GEIED, Pobucize show on corporate we site Webmarter.Picduction
(dependencies) |

Different colors for

b University of Toronto Department of Computer Sci

v V-Model

,e University of Toronto

Department of Computer Science

v

Prototyping lifecycle

_ /
'% system system Preliminary | design build ﬁ
£ requirements integration requirementy prototype | prototype | prototype
o
s software acceptance
) requirements test
3 Specify full
= N\, = - design code test integrate
_— requirements
preliminary software
\ design integration ’
“analyse ~ el “test Prototyping is used for:
and detailed ponent . and . understanding the requirements for the user interface
design" design Test infegrate examining feasibility of a proposed design approach
\ \ / / exploring system performance issues
code and unit
debug || test Problems:
users treat the prototype as the solution
a prototype is only a partial specification
time
28 ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7 © 71 ©2012 Steve E: This is available free for non-commercial use with attribution under a creative commons license. [
3 University of Toronto Source: Adapted from Dorfinan, 1997, p10 Department of Computer Science rﬁ University of Toronto Source: Adapted from Pfleeger, 1998, pS7 Department of Computer Science
Release 1 .
: - Incremental development Determine goals, Evaliaie
design ‘ code ‘ test "ﬂfegl'd‘fe‘ 0&m ‘ (each release adds more alternatives, o
E release 2 functionality) constraints and risks
€ design | code ’ test ‘in‘regrafe| 0&M ‘
E
g release 3
g | desig code ‘ test ‘infegrafe‘ 0&M ‘
........... release 4
‘ design ‘ code ’ test in‘regr'q‘re‘ 0&M ‘
concept of
version 1 operation
reqts ’ design ‘ code ‘ test ‘ integrate ’ 0&M ‘
e lessons learnt
version
reqts ‘ design ‘ code ‘ test integrate ‘ O&M ‘

. Develo
Evol}t‘mona‘r'y development ersion 3 l/“s""s /ef""f l Plan and P
(eac version incorporates reqts ’ design ’ code ‘ test ‘ imcgrn‘rel \ "Mplementqy, acceptonce test

new requirements) — 'on plan fest
=] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9 [EcSm] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Computer Science
UNIVERSITY OF TORONTO

goal of sdic

» what’s the goal of a good sdlc?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

Q University of Toronto

Department of Computer Science

“Agile” vs “Sturdy”

Iterative <—> Planned
Small increments <—> Analysis before design

Adaptive planning <— Prescriptive planning
Embrace change <— Control change
Innovation and exploration <—> High ceremony

Trendy <— Traditional
Highly fluid <— Upfront design / architecture
Feedback driven «<—> Negotiated requirements

Individuals and Interactions <—> Processes and Tools

Human communication <—> Documentation

Small teams <— Large teams

B ,r;lm © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12
o University of Toronto Department of Computer Science b University of Toronto Department of Computer Sci
Rational Unified Process (RUP) RUP Activities
. Phases
Inceptlon “lteration 0” Disciplines Inception Elaboration Construction Transition
Establish Scope -
Build a business case Iteration #1 S EEE— T
Get stakeholder buy-in " Requirements e
Iteration #2 & Analysis and Design |
Elaboration) g N
. 0 Implementation g e L
Identify and manage risks Iteration #n = ==
. . B Test
Build an executable architecture b — el |
Focus only on high risk items ® Deployment 4
a Configuration and
i Change Managemert s ——
conStrucuon)) lteration #m B Project Management I
Iteratively build operational version
. . Environment |
Develop support docs and training materials - " ——
P supp 9 Iteration #t - A |
T iti Initial E1 E2 c1 | c2 | oNn [T |T2
ransition . i
: lteration #t+1 terations _ A\ A A A
Fine-tune Lifecycle Lifecycle Initial Product
. . . . P j Architecture Operational Release
Resolve configuration, installation and usability issues ki Milasione cg’;bimy Milesione
Milestone
B o = © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13 % © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

o University of Toronto

Department of Computer Sci

9 University of Toronto Department of Computer Sci

SCRUM Scrum Process
Sprint - 30 day iteration
Starts with 1/2 day planning meeting
Starts with Prioritized Product Backlog (from product owner) 24 h
Builds a Sprint Backlog - items to be done in this sprint
29 days of development
1/2 day Sprint review meeting - inspect product, capture lessons learnt
Daily Scrum 30 days
15 minute team meeting each day.
Each team member answers:
What have you done since last meeting?
What will you do between now and the next meeting?
What obstacles stood in the way of doing work? Product Backlog Sprint Backlog Sprint Wz;‘f:g ggﬁg::nt
Scrum master keeps meeting on track
Scrum teams
Cross-functional, 7 (+2) members
Teams are self-organising Source: wikipedia
| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15 © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license. 16
% University of Toronto Department of Computer Science Q University of Toronto Department of Computer Science
R & H H
Extreme Programming e Extreme Programming

Fine Scale Feedback
Pair Programming
Planning Game
Test-driven Development
Whole team (customer part of team)

Continuous Process
Continuous Integration
Design Improvement (refactoring)
Small Releases

Shared Understanding
Coding Standards
Collective Code Ownership
Simple Design
System Metaphor

Programmer Welfare
Sustainable pace (40 hour week)

2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

Each cycle:
approx 2 weeks

= © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Q University of Toronto Department of Computer Science

Extreme Programming

Each cycle:
approx 2 weeks

,l?,, © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

. &

b o University of Toronto

Department of Computer Sci

Collective Ownership
Configuration Management
Continuous Integration
Feature-driven devl.
Frequent small releases
Onsite customer
Organization-wide process
Organizational training
Pair programming
Planning game

Peer reviews

Agile practices

Process & product quality assurance

Project monitoring & control
Project planning
Refactoring

Requirements management
Retrospective

Risk Management

Simple design

Tacit knowledge

Test-driven development

=2] ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

19

Computer Science
UNIVERSITY OF TORONTO

which process is the best?

« all processes have their pros and cons, but
only in the context of a given project.

— does continuous deployment make sense for
the next version of microsoft office?
— what process is best for an x-ray machine?

— Space Shuttle avionics — hal/s developed
specifically for shuttle

* completely independently developed primary
and backup systems!

— curiosity rover software, installed in flight! and
then upgraded on mars!

* again, depends on the nature of the project

Computer Science

@UNIVERSITY OF TORONTO

break,

then short tutorial

