Computer Science
UNIVERSITY OF TORONTO

lecture 5:
software development lifecycle

(sdic)

csc302h
winter 2014

Computer Science .
éUNIVERSITY OF TORONTO recap from last time

« software design with uml sequence & use
case diagrams

— recommend one of these books:

Computer Science

éUNIVERSITY OF TORONTO recap from last time (2)

* modeling system behavior with sequence
diagrams

— uml collaboration diagram captures control
flow, sequence is a different rendering

— emphasis is on time and ordering of “messages”

— objects on top, arrows are messages, time is
vertical

— interaction frames (alt, opt, loop, par, ...)

Computer Science .
@UNIB%thSI;Y OF TORONTO recap from last time (3)

« when to use sequence diagrams?
— discussing design options
— explaining design patterns (academic exercise)

o b : Subj
ject
ex. observer: |

attach(Observer) >
detach(Observer) observers update()

Notify() ~._

==<= {for all 0 in observers
jﬁ {o.update()} }

concreteSubject concreteObserver
subjectState ! observerState ~-_

etState subject ~~| {observerState =
getsme(()) update() this.subject.getState()}

— elaborating on use cases (practical exercise)

2 Computer Science .
UNIVERSITY OF TORONTO recap from last time (4)

* use case diagrams
— capture system requirements
— show how users interact with a system

— short phrase to sum up a distinct piece of
functionality

— “actors” (stick ppl) show a role that a user takes
on during an interaction

— each use case has one or more actors

— relationships between use cases like
<<extends>>, <<uses>>, <<includes>>

— reverse engineering use cases

Computer Science

@UNIVERSITY OF TORONTO real-world examples

Some real examples of
modeling with um|

Computer Science

UNIVERSITY OF TORONTO real-word example #1

EligibilityWizard EligibilityQuesti TermALile El
Presenter/View ‘onNavigator EligibilityQuesti Ve MessageDialog
JER—

T] new EfgbityQuestionNavigator)

Number of Questons Added

Get Number of Questions

[Number of
Error

questions = 0]
50 salect Plan

umeAtNextUnanswerodGuestion)

noxQuestion ElgibityQuestion D
LR S

— N EligibiltyWizard EligibilityQuesti Eigibaityaussti
TN\ I — Presenter/View onNavigator ontti
displayQuestion (dispatch ChangeEligibilityQuestionEvent) —_—

1 1 1
1 1 1
= ' ' 1
| - 1 1 1
: Erliouest rformEligibilityCheck() ! 1
‘onPresenter/ m O| 1 1
jickedNext) == I I
cokoanox ityQuestionNavigator() | '
| new Eligibil ! !
setGuesionING gevalue) = L . ,
-orEligibiityCheck()
ey
[if answer == null]
Gy 7 =i
h i i
1
I
- 1
Number of Questions Added |
1
[nextQuestion == null] 1
-— Get Number of Questions
InexfQuestiont=null]
Gspayueston (43patch Changs ElgibityuestonEvers) < »
=
-
poveus) | [Number of questions = 0]
Error: Please select Plan
tanswer =
dspiay
3 pet
[if answer not null]
mmmmmmm —
e
[pleviousQuestiont=null]
ey unsion (spattn CrangoETgiity Questonvan)
-
Gancaiose

Computer Science

UNIVERSITY OF TORONTO real-word example #2

% ApolloClient:.Client ApolloServer:Proxy IAMSServer:Server
User
Login with user credentials
AuthenticationService. login(username, password) N
L4
AuthenticationService. login(username, password) N
L4
R Login]
e Login
alt
[Login IS valid]
LoginEvent dispatched
par l
ApplicationService.getRejectedApplications(userld) N
L4
ApplicationService.getRejectedApplications(userld) N
e ________ List=Applicationsummary-] |
- m e e List<ApplicationSummary> J"

Update rejected application view

S ettt o ettt ettt et

ApplicationService.submitApplicationGroup(ApplicationDto)
L4

ApplicationService.submitApplicationGroup(ApplicationDto)

. List<ApplicationDto>

Update mainpage application view

S Sl S o L I

[else]
Dispatch error message "Invalid User Credentials”

Computer

Science

UNIVERSITY OF TORONTO

real-word example #3

ApolloClient:Client

ApolloServer:Proxy

IAMSServer:Server

User
Login with user credentials i
AuthenticationService.login(username, password)
L4
AuthenticationService.login(username, password)
L4
Jt-ooooooorre oo Login | |
P Login
alt]
[Login IS valid]
LoginEvent dispatched

Populate application table

[else]
Dispatch error message "Invalid User Credentials"

ApplicationService.getRejectedApplications(userld)
L4

List<ApplicationSummary>

ApplicationService.getRejectedApplications(userld)
List<AppIicationSummary>J_J

Computer Science
UNIVERSITY OF TORONTO

real-word example #4

Apollo startup

Initialize update timer

Timer started

s Restarts timer

[timer expires]
J

nable to check
update(No

®

Initialize AppCacheStatusHandler

‘ AppCache Idle }(

Timer expires

Checking

Internet
Connection

Display warning
[No update during the past 30 days
|| warning hasn't been shown to users foZ4 hours]

Warning shown
to users

Triggers appCache.update()

Update]

,

Downloading
Update

New cache
swappedin

\,‘ Error state ’

Set up UpdateReady flag,
pending CheckAppCacheEventto be dispatched

”
Set up UpdateReady flag UpdateReady CheckAppCacheEvent dispatched

Reload
browser

Computer Science
UNIVERSITY OF TORONTO

software development lifecycle
(sdic)

&

Computer Science
UNIVERSITY OF TORONTO SdIC

* tend to talk about sdic in terms of a
dichotomy

— “agile” vs. well...um...“not agile”
— or, “planned” vs. “continuous”

— others tend to (incorrectly) think that the
deployment method implies the process
* saas = agile

e installed = traditional

* think more in terms applying the process
on an individual feature, or an aggregate

@ Computer Science
UNIVERSITY OF TORONTO example feature WOI'kﬂOW

PM/R&D

Backlog
PM/R&D

R&D

R&D

R&D
|
MUST have A/B-List @

attribute & size.
MUST have a
developer assigned.

SHOULD have

developer assigned.

Suggested Feature R&D
(Task & Sub-Task) Delivered
Workflow for TPA R&D .
Accepted

R&D

_g University of Toronto Department of Computer Science

Software Processes

- What is a Software Development Process?
- The Lifecycle of a Software Project
- Agile vs. Disciplined

- Some common approaches:
% RUP, SCRUM, XP, ICONIX,...

- Where UML fits Iin (next lecture)

% © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Source: xkcd 844

| [THROW IT ALLOOT (I

HOW TO WRITE GOOD CODE:

START
PROTECT.

DO

THINGS
RIGHTOR Do S O L
THEM FRST? —

DoES NO
ITWORK
YET?

ALMOST, BUT IT5
BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.

AND START OVER.

CODE

e University of Toronto Department of Computer Science

v Project Types

Reasons for initiating a software development project

Problem-driven: competition, crisis,...

Change-driven: new needs, growth, change in business or environment,...
Opportunity-driven: exploit a new technology,...

Legacy-driven: part of a previous plan, unfinished work;, ...

Relationship with Customer(s):

Customer-specific - one customer with specific problem

May be another company, with contractual arrangement
May be a division within the same company

Market-based - system to be sold to a general market
In some cases the product must generate customers
Marketing team may act as substitute customer

Community-based - intended as a general benefit to some community
E.g. open source tools, tools for scientific research

Usually: funder = customer (if funder has no stake in the outcome)
Hybrid (a mix of the above)

;‘?}; © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

o University of Toronto Department of Computer Science

@
Fup' A=

Project Context

What is the current (old) system?
There is *always™ an existing system!
May just be a set of ad hoc workarounds for the problem
Studying it is important:
If we want to avoid the weaknesses of the old system...
...while preserving what the stakeholders like about it

Use pre-existing components?

Benefits:
Can dramatically reduce development cost
Easier to decompose the problem if some sub-problems are already solved

Tension:
Solving the real problem vs. solving a known problem (with ready solution)

Will it be part of a product family?

Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system

Horizontal families: similar systems used in related domains
Typically based on a common architecture (or just shared software assets)

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

W

e University of Toronto Department of Computer Science

v

Lifecycle of an Engineering Project

Lifecycle models
Useful for comparing projects in general terms
Not enough detail for project planning

Examples:
Sequential models: Waterfall, V model
Phased Models: Incremental, Evolutionary
lterative Models: Spiral

Process Models

Used for capturing and improving the development process
Detailed guidance on steps and products of each step

Process Frameworks
Patterns and principles for designing a specific process for your project

!,9& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license. 5

o University of Toronto Department of Computer Science

r

o Waterfall Model

erceived .
P 7, View of development:
o - aprocess of stepwise refinement
« largely a high level management view
| requirements Problems:
A « Static view of requirements - ignores

volatility

» Lack of user involvement once
specification is written

« Unrealistic separation of specification
from design

 Doesn’t accommodate prototyping,
reuse, etc.

‘1 integrate

mu,: © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Computer Science

UNIVERSITY OF TORONTO Gantt Charts & Waterfall

B, Appoint coondinator Seniormansgamant
C};Nucm Mapabng Gales <——— Today's date
Q Define mesage Maketog 5a
Choose trade show Maseting Sales Task labels follow bars
Choose stand sixe and location Masating §aler Comrd pate
Coordinator Groups or people
/ L Wite desinpt responsible for task
(resources)
Midastone
)
O
Lines and armows show ———» | 8 Seps maliag to customen & prespects Coordinater
how tasks are linked A show on corporate wed site Wedmaster Production
(dependencies) . ‘
D |0 [Task Name Duration | __start Finish __|Predecessors | January [Februa [March_[Aprit__[May _[sune [suly _[Auqust [septem|o [Decembl january | Februar| March | April | May
1 RFID Technology in F&N WH 295days Tue2/1/11 Thu4/5/12
2 Planning & Rationalizing 35days Tue2/1/11 Wed 3/23/11
| 3 = Project Scoping 10days Tue 2/1/11 Wed 2/16/11
7] Budgeting 15days Thu2/17/11 Wed 3/9/113
B Scheduling 10days Thuz/17/11 Wed 3/2/113
it ™ colors for #’T Risk Analysis 10days Thu3/10/11 Wed 3/23/1145
Steering Committee Sdays Thu3/10/11 Wed 3/16/1145
8 Process Reengineering 40days Thu 3/24/11 Mon 5/23/11
9 Process Mapping 15days Thu3/24/11 Wed 4/13/11 67
10| Process Simulation: 25days Thu4/14/11 Mon 5/23/11
|| AstIS Analysis 10days Thud/14/11 Thu4/28/119
|1z | To-Be Analysis 10days Fi4/2901 Fi 5S/13/1111
13| Sensitivity Analysis Sdays Mon 5/16/11 Mon 5/23/11 1211
1 | Software Integration 120days Tue’5/24/11 Fri11/11/11
15 | Selection of ERP Consultant and Middlewa 20days Tue 5/24/11 Mon 6/20/1113
| 16 | Redesign of ERP software Code 40days Tue 6/21/11 Tue 8/16/1115
|17 | Data Migration & Documentation 30days Wed8/17/11 Thu 9/29/1116
18 User Communication & Trairing 30days Fi9/3011 Fi 11/1/1117
| 19 | Hardware Configuration 115days Tue5/24/11 Thu11/3/11
20 Hardware Specification & Supplier Selectic 20days Tue 5/24/11 Mon 6/20/1113
| 21 | ‘Warehouse Layout Modification 35days Tue6/21/11 Mon 8/8/1120
| 22 | Hardware Installation & Documentation 30 days| Wed 8/10/11 Wed 9/21/11 21
| 23 | User Communication & Training 30days Thu9/22/11 Thu11/3/1122
| 22 | Pilot Testing 40 daysMon 11/14/11 Tue 1/10/12
5 Acceptance Testing 20 days Mon 11/14/11 Tue 1/10/1218.23 1114 Vo 1/10
R Defect Classification and Correction 30 days| Mon 11/14/11 Mon 12/26/11 18,23 1714 12126
27 Full Scale Deployment 60 days Wed 1/11/12 Thu 4/5/12 —_—
ER Performance Monitoring (KPD 20days Wed /11/12 Thu3/8/1225.26 i
29 | System Maintenance Plan 15days Fii3/9/12 Thu3/29/1228 39 3/29
EN Continuous Improvement Plan Sdays Fi3/30712 Thu4/5/122829 330G a5 o
eyt RFID mptamantaon s Fan arenous | 17 CE——— Milestone 3 Rolled Up Crtical Task (s split e Group By Summary ~ Pe—
Tean.T8 N, S Low, ST Lm, CMHai Critical Task C— Summary G Rolled Up Milestone Extemal Tasks e Deadine °
Progress s Rolled Up Task G Rolled Up Progress e Project Summary Sy
Page 1

Department of Computer Science

FQ University of Toronto

R

V-Model

“analyse

and
design”

4
=

2

T system | .\.
S requirements

+~

v
0

o \
Y

) software | .
§ requirements

Q

-

system
integration

Z

acceptance
test

preliminary | N\ e software
design integration
\ / “test
detailed | .. . component and
design test integrate”
code and unit
debug test

time

SOW'E FICHTS SESERIE]

__© 1 ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

he University of Toronto Department of Computer Science

v Prototyping lifecycle

Preliminary| design build evaluaD
requirementy prototype prototype protofyD

Specify full

) design code test integrate
requirements

Prototyping is used for:
understanding the requirements for the user interface
examining feasibility of a proposed design approach
exploring system performance issues

Problems:

users treat the prototype as the solution
a prototype is only a partial specification

“: © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

University of Toronto Source: Adapted from Dorfinan, 1997, p10 Department of Computer Science

Phased Lifecycle Models

V-
§

Release 1 Incremental development
T design | code | test |integrate| O&M (each release adds more
B release 2 fUﬂC"'iOﬂGlH’Y)
'é_ 2| design | code test |integrate| O&M
g release 3
% > design | code test |integrate| O&M
........... ~clease 4
> design | code | test |integrate] O&M
version 1
reqts design code test integrate O&M
o lessons le%r'nf
reqts desigin co%de *}est intfegrate O&M
Evolutionary development ,ersion 3 | | [lessons /ef" E

(each version incorporates
new requirements)

reqts design code test | integrate

% © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Source: Adapted from Pfleeger, 1998, p57

Department of Computer Science

1_9 University of Toronto

R

Determine goals,
alternatives,
constraints

The Spiral Model

foncepf of
operation

Evaluate
alternatives
and risks

Develop
and
test

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license.

10

Computer Science
@UNIBERSITY OF TORONTO goal Of sdlc

« what's the goal of a good sdlc?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

—

5

University of Toronto

Department of Computer Science

“Agile” vs “Sturdy”

Iterative <— Planned
Small increments <—> Analysis before design

Adaptive planning <— Prescriptive planning
Embrace change <—> Control change
Innovation and exploration <— High ceremony

Trendy <— Traditional
Highly fluid <— Upfront design / architecture
Feedback driven «<—> Negotiated requirements

Individuals and Interactions <— Processes and Tools

Human communication <—> Documentation

Small teams <— Large teams

S, - © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

9 University of Toronto

Department of Computer Science

v Rational Unified Process (RUP)

Inception

~

“lteration 0”

Establish Scope -
Build a business case Iteration #1

Get stakeholder buy-in <
Iteration #2

Elaboration :
Iteration #n

Identify and manage risks
Build an executable architecture
Focus only on high risk items

Z
\

teration #n+1
J

.
Iteration #m

Construction
Iteratively build operational version

<

s = - N
Develop support docs and training materials lteration #t
/

<
lteration #t+1

Transition

Fine-tune
Resolve configuration, installation and usability issues

J

. ,Iiim © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

13

o University of Toronto

Department of Computer Science

Disciplines

Business Modeling

Requirements

Analysis and Design

0 Implementation

RUP Activities

Phases

Inception Elaboration Construction Transition

B Test

B Deployment

Configuration and
Change Management

#

® Project Management

m Environment

|
P N Ny~ Y
I | |

'*%*

t I
_
| l

Initial E1 = C1 c2 CN T1 | T2
Iterations A A
Lifecycle Lifecycle Initial Product
Obijectives Architecture Operational Release
Milestone Milestone Capability Milestone
Milestone

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

® University of Toronto Department of Computer Science

7 SCRUM

Sprint - 30 day iteration
Starts with 1/2 day planning meeting
Starts with Prioritized Product Backlog (from product owner)
Builds a Sprint Backlog - items to be done in this sprint
29 days of development
1/2 day Sprint review meeting - inspect product, capture lessons learnt

Daily Scrum

15 minute team meeting each day.

Each team member answers:
What have you done since last meeting?
What will you do between now and the next meeting?
What obstacles stood in the way of doing work?

Scrum master keeps meeting on track

Scrum teams

Cross-functional, 7 (+2) members
Teams are self-organising

% © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atfribution under a creative commons license.

15

Q University of Toronto Department of Computer Science

“ Scrum Process

==

Product Backlog Sprint Backlog Sprint

Source: wikipedia

Working increment
of the software

IC ‘;n:»;: © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license.

16

»

»
v Extreme Programming

University of Toronto

Department of Computer Science

Fine Scale Feedback
Pair Programming
Planning Game
Test-driven Development
Whole team (customer part of team)

Continuous Process

Continuous Integration
Design Improvement (refactoring)
Small Releases

Shared Understanding

Coding Standards
Collective Code Ownership
Simple Design

System Metaphor

Programmer Welfare
Sustainable pace (40 hour week)

% © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license.

17

e University of Toronto

Yrissal

Department of Computer Science

Extreme Programming

Each cycle:
approx 2 weeks

18

Department of Computer Science

Extreme Programming

Each cycle:
approx 2 weeks

aaaaaaaaaaaaaaa

Suggested Feature
(Task & Sub-Task)
Workflow for TPA R&D

_© | © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

9 University of Toronto

Department of Computer Science

Collective Ownership
Configuration Management
Continuous Integration
Feature-driven devl.
Frequent small releases
Onsite customer
Organization-wide process
Organizational training
Pair programming
Planning game

Peer reviews

Agile practices

Process & product quality assurance
Project monitoring & control

Project planning

Refactoring

Requirements management
Retrospective

Risk Management

Simple design

Tacit knowledge

Test-driven development

J,I:"lm © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

19

Computer Science

UNIVERSITY OF TORONTO which process is the best?

 all processes have their pros and cons, but
only in the context of a given project.

— does continuous deployment make sense for
the next version of microsoft office?

— what process is best for an x-ray machine?

— Space Shuttle avionics — hal/s developed
specifically for shuttle

 completely independently developed primary
and backup systems!

— curiosity rover software, installed in flight! and
then upgraded on mars!

* again, depends on the nature of the project

Computer Science
UNIVERSITY OF TORONTO

break,
then short tutorial

