

lecture 12: testing strategies

csc302h winter 2014

(short) a2 interviews

Time	Team	Interviewer
10:10 a.m.	The Brogrammers	Andrew
10:10 a.m.	doge++	Mashiyat
10:10 a.m.	THE Group	Matt
short break		
10:17 a.m.	Missing Brackets	Andrew
10:17 a.m.	Seven - 2	Mashiyat
10:17 a.m.	Fantasix	Matt
short break		
10:24 a.m.	Solutions	Andrew
10:24 a.m.	Double Double	Mashiyat
10:24 a.m.	DOGE	Matt

recap from last time

introduction to testing

- multiple causes for defects: missing requirements, spec. error, bad design, bad algos, bad developers!
- defects (may) lead to failures, or, sometimes, go unnoticed.
- defect detection strategies & effectiveness:
 - formal design inspections & testing 95%
 - agile informal review & regression 90%
 - different costs, both useful depending on context

recap from last time (2)

- removing defects earlier is cheaper, sometimes by orders of magnitude!
- characteristics of good tests:
 - power: bug exists, test will find it
 - validity: no false-positives
 - non-redundancy: provides new information
 - repeatability: easy to re-run
 - etc. (don't memorize, but refer back when coming up with test plan)

recap from last time (3)

- type of test, to what it applies, & what it is testing:
 - unit test: unit of code, tested separately, generally applies to single use case or part of
 - integration: many (or all) units together, tests that code meets design specs.
 - functional test: coverage of all inputs (inc. edge/ corner cases), tests functional req's.
 - performance: tests (one of the) quality requirements
 - acceptance: customer goals
 - installation: user environment (optional depending on context)

- ...

testing strategies

Department of Computer Science

Testing Strategies

Structural Coverage Strategies (White box testing):

Statement Coverage Branch Coverage Condition Coverage

Data Path Coverage

Function Coverage Strategies (Black box testing):

Use Cases as Test Cases
Testing with good and bad data

Stress Testing

Quick Test Interference Testing

A radical alternative: Exploratory Testing

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

Department of Computer Science

Developer Testing

Write the test cases first

minimize the time to defect discovery forces you to think carefully about the requirements first exposes requirements problems early supports a "daily smoke test"

But: Limitations of Developer Testing

Emphasis on clean tests (vs. dirty tests)
immature organisations have 1 dirty : 5 clean
mature organisations have 5 dirty : 1 clean

Developers overestimate test coverage

Developers tend to focus on statement coverage rather than ...

Summary:

Test-case first strategy is extremely valuable Test-case first strategy is not enough

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

Structured Basis Testing

Source: Adapted from McConnell 2004, p506-508

The minimal set of tests to cover every branch

How many tests?

start with 1 for the straight path add 1 for each of these keywords: if, while, repeat, for, and, or add 1 for each branch of a case statement

Example

```
int midval (int x, y, z) {
/* effects: returns median
  value of the three inputs
*/
if (x > y) {
  if (x > z) return x
  else return z }
else {
  if (y > z) return y
  else return z } }
```

Count 1 + 3 'if' s = 4 test cases

Now choose the cases to exercise the 4
paths:

e.g. x=3, y=2, z=1 x=3, y=2, z=4 x=2, y=3, z=2 x=2, y=3, z=4

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

Department of Computer Science

Dataflow testing

Source: Adapted from McConnell 2004, p506-508

Things that happen to data:

Defined - data is initialized but not yet used

Used - data is used in a computation

Killed - space is released

University of Toronto

Entered - working copy created on entry to a method

Exited - working copy removed on exit from a method

Normal life:

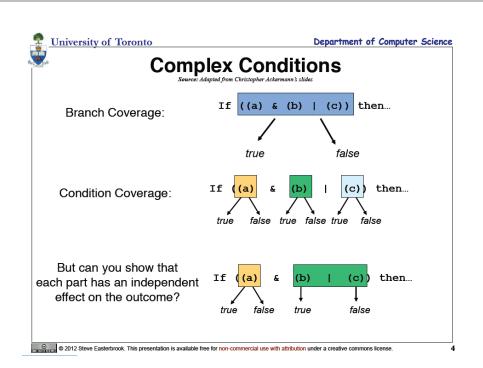
Defined once, Used a number of times, then Killed

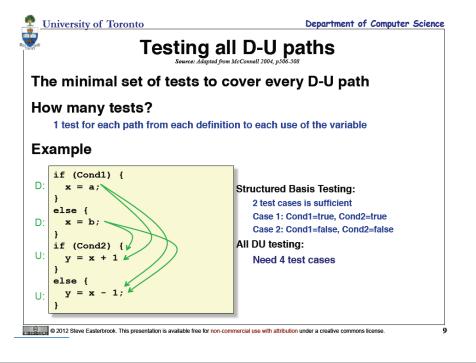
Potential Defects:

D-D: variable is defined twice

D-Ex, D-K: variable defined but not used

En-K: destroying a local variable that wasn't defined?

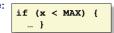

En-U: for local variable, used before it's initialized

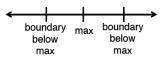

K-K: unnecessary killing - can hang the machine?

K-U: using data after it has been destroyed

U-D: redefining a variable after is has been used

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.


Department of Computer Science


Boundary Checking

Source: Adapted from McConnell 2004, p506-508

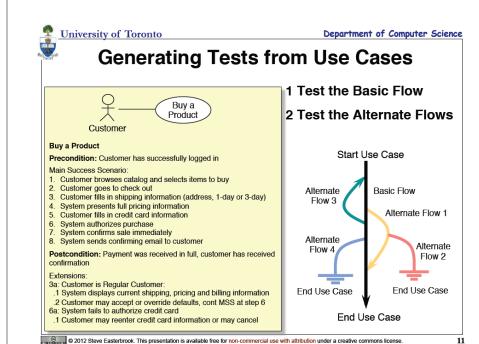
Boundary Analysis

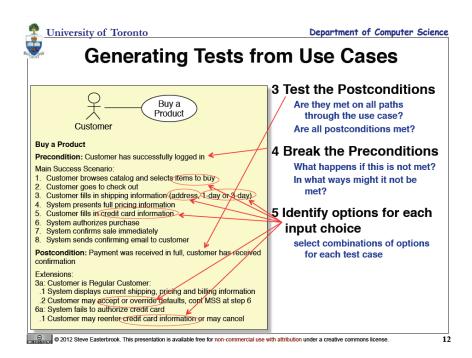
Every boundary needs 3 tests: Example:

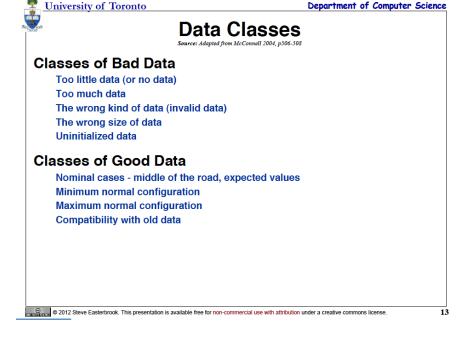
Add a test case for 3 values of x: MAX+1, MAX-1 and MAX

Compound Boundaries

When several variables have combined boundaries


```
for (i=0; i<Num; i++) {
  if (a[i] < LIMIT) {
    y = y+a[i];
  }
}</pre>
```


Test when lots of array entries are close to LIMIT?


Test when lots of entries are close to zero?

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

_

Classes of input variables

Values that trigger alternative flows

- e.g. invalid credit card
- e.g. regular customer

Trigger different error messages

- e.a. text too long for field
- e.g. email address with no "@"

Inputs that cause changes in the appearance of the UI

e.g. a prompt for additional information

Inputs that cause different options in dropdown menus

e.g. US/Canada triggers menu of states/ provinces

Cases in a business rule

e.g. No next day delivery after 6pm

Border conditions

if password must be min 6 characters, test password of 5,6,7 characters

Check the default values

e.g. when cardholder's name is filled automatically

Override the default values

e.g. when the user enters different name

Enter data in different formats

e.g. phone numbers: (416) 555 1234

416-555-1234

416 555 1234

Test country-specific assumptions

e.g. date order: 3/15/12 vs. 15/3/12

14

Limits of Use Cases as Test Cases

Use Case Tests good for:

User acceptance testing

"Business as usual" functional testing

Manual black-box tests

Recording automated scripts for common scenarios

Limitations of Use Cases

Likely to be incomplete

Use cases don't describe enough detail of

Gaps and inconsistencies between use cases

Use cases might be out of date Use cases might be ambiguous

Defects you won't discover:

System errors (e.g. memory leaks) Things that corrupt persistent data

Performance problems Software compatibility problems

Hardware compatibility problems

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

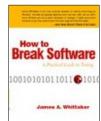
University of Toronto

Department of Computer Science

Quick Tests

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

A quick, cheap test


e.g. Whittaker "How to Break Software"

Examples:

The Shoe Test (key repeats in any input field)

Variable boundary testing

Variability Tour: find anything that varies, and vary it as far as possible in every dimension

University of Toronto

Department of Computer Science

Whittaker's QuickTests

Explore the input domain

- 1. Inputs that force all the error messages to appear
- 2. Inputs that force the software to establish default values
- 3. Explore allowable character sets and data types
- 4. Overflow the input buffers
- 5. Find inputs that may interact, and test combinations of their values
- 6. Repeat the same input numerous times

Explore the outputs

- 7. Force different outputs to be generated for each input
- 8. Force invalid outputs to be generated
- 9. Force properties of an output to change
- 10. Force the screen to refresh

Explore stored data constraints

- 11. Force a data structure to store too many or too few values
- 12.Find ways to violate internal data constraints

Explore feature interactions

- 13.Experiment with invalid operator/ operand combinations
- 14.Make a function call itself recursively
- 15.Force computation results to be too big or too small
- 16.Find features that share data

Vary file system conditions

- 17.File system full to capacity
- 18.Disk is busy or unavailable
- 19.Disk is damaged
- 20.invalid file name
- 21.vary file permissions
- 22.vary or corrupt file contents

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

Interference Testing

Generate Interrupts

From a device related to the task From a device unrelated to the task From a software event

Change the context

Swap out the CD

Change contents of a file while program is reading it

Change the selected printer Change the video resolution

Cancel a task

Cancel at different points of completion Cancel a related task

Pause the task

Pause for short or long time

Swap out the task

Change focus to another application Load the processor with other tasks Put the machine to sleep Swap out a related task

Compete for resources

Get the software to use a resource that is already being used Run the software while another task is doing intensive disk access

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

20

Department of Computer Science

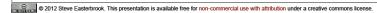
Things to Explore

Function Testing: Test what it can do.

Domain Testing: Divide and conquer the data.

Stress Testing: Overwhelm the product.

Flow Testing: Do one thing after another.


Scenario Testing: Test to a compelling story.

Claims Testing: Verify every claim.

User Testing: Involve the users.

Risk Testing: Imagine a problem, then find it.

Automatic Testing: Write a program to generate and run a zillion tests.

Department of Computer Science

Exploratory Testing

Start with idea of quality:

Quality is value to some person

So a defect is:

something that reduces the value of the software to a favoured stakeholder or increases its value to a disfavoured stakeholder

Testing is always done on behalf of stakeholders

Which stakeholder this time? e.g. programmer, project manager, customer, marketing manager, attorney... What risks are they trying to mitigate?

You cannot follow a script

It's like a crime scene investigation Follow the clues... Learn as you go...

Kaner's definition:

Exploratory testing is

...a style of software testing

...that emphasizes personal freedom and responsibility

...of the tester

...to continually optimize the value of their work

...by treating test-related learning, test design, and test execution

...as mutually supportive activities

...that run in parallel throughout the project

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

19