Computer Science
UNIVERSITY OF TORONTO

lecture 13:
automated testing

csc302h
winter 2014

@ Computer Science
UNIVERSITY OF TORONTO announcements

* midterm in tutorial hour today

location groups
- The Brogrammers
SS1074 . MISSII?lg Brackets
- Solutions
- doge++

GB248 (lecture room) [S)i\(,??e-pzoume

THE Group

« Fantasix
RW229 . DOGE

9 University of Toronto Department of Computer Science

Automated Testing

Automated testing
JUnit and family

Testing GUI-based software
Testing Object-Oriented Systems
When to stop testing

m ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

University of Toronto

Department of Computer Science

[;
'\.‘_?" "r»ﬂ'

Per Functionality

Kind of Behavior

Cross Functional

Purpose of Tests

T Acceptance Usability]
Business " s’r-\re(sass}?\tenf Testing
. usi .
Facing (Executable Specification) Is it pleasurable?
Cor_lr'_\po?enf Exploratory
~ esTs 2
m Architect Intent ' Tesflng
[(Design of the System)| Is it self-consistent? e
Technology Unit Property from Mary
Facing Tests Testing | "prieckan
Developer Intent Is it Responsive,
(Design of the Code) Secure, Scalable?
Support Critique
Development Product

® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

b o University of Toronto Department of Computer Science

Automated Testing

Source: Adapted from Liskov & Guttag, 2000, pp239-242

Where possible, automate your testing:

tests can be repeated whenever the code is modified (“regression testing”)
takes the tedium out of extensive testing
makes more extensive testing possible

Will need:

test drivers - automate the process of running a test set
sets up the environment
makes a series of calls to the Unit-Under-Test (UUT)
saves results and checks they were right
generates a summary for the developers

May need:

test stubs - simulate part of the program called by the unit-under-test
checks whether the UUT set up the environment correctly
checks whether the UUT passed sensible input parameters to the stub
passes back some return values to the UUT (according to the test case)
(stubs could be interactive - ask the user to supply return values)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

? University of Toronto Department of Computer Science

Automated Testing Strategy

Source: Adapted from Meszaros 2007, p66
Direct control points Indirect gbservation points
TestCase /] =
/ ixture
/,/ Test Double
./ /Initialize
Setup T >
(\/’ Exercise (with',,retum value)
. (with return vaj@ UUT < e DOC
Exe Ircise # 5 Unit Depended
Under o
| Test [) " Component
. G : 0 some mg
Verif
y _GetStafe, (no return value)’
Teardown Indirect control point
Direct observation points

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

9 University of Toronto Department of Computer Science

Principles of Automated Testing

Source: Adapted from Meszaros 2007, p39-48

Write the Test Cases First Isolate the UUT
Design for Testability Minimize Test Overlap
Use the Front Door First Check One Condition Per Test

test via public interface

avoid creating back door manipulation Test Concerns Separately

Communicate Intent Minimize Untestable code
Tests as Documentation! e.g. GUl components
Make it clear what each test does e.g. multi-threaded code
etc

Don’ t Modify the UUT _ _
avoid test doubles Keep test logic out of production

avoid test-specific subclasses code
(unless absolutely necessary) No test hooks!

Keep tests Independent

Use fresh fixtures
Avoid shared fixtures

m ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

L o

LS _;_' g

b

University of Toronto

Department of Computer Science

1) Start the application (e.g. UMLet)

Testing interactive software

ane __ UNLet - New Disgram .
Flle EdR Melp Insert custom alamens: |) pacnies | defal_paleme usf 4
| simpleClass | |AbstraciClass| -
Iy
<Sterectypes 0ol
Package: FarClass Qp
. {Scrme Properties}
2) Click on S ang a
. ; p— <4
0 i o
File -> Open o | <7
Responsibilties -
- Respl — :
= Rusel A 4) click Open
—x -
«nstiaceOt 0]
\

' <

[___obectiOass | @ |

[ZRNG] Open I
Dosbile-click on a UML element %0 the right — !
o add it 1o the diagrasy _ 1) models >
O Name &l DateMod¥ned
s12.uxf Tussday, March 25, 2008 | 08 AM
|

/

3) select test2.uxf

File Format | UMLet diagram farmat (*.uxf) T}

l: Cancel , LJ:;-M

&

M3~ 24

® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

9 University of Toronto Department of Computer Science

@ Automating the testing

Source: Adapted from Zeller 2000, p57

Challenges for automated testing:

Abstraction - How do we know it’ s the right window?

Manual
tests

ol

[_—
|

Functionality

I I
]

Synchronization - How do we know a window popped open that we can click in?

Portability - What happens on a display with different resolution / size, etc

Automated
tests

»I:l' © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

o University of Toronto Department of Computer Science

@ Testing the Presentation Layer

Source: Adapted from Zeller 2000, chapter 3

Script the mouse and keyboard events
script can be recorded (e.g. “send_xevents @400,100")

script is write-only and fragile

Script at the application function level

E.g. Applescript: tell application “UMLet” to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application...
Allow an automated test to create windows, interact with widgets, etc.

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

L o University of Toronto Department of Computer Science

v How to Test Object Oriented Code?

Encapsulation
If the object hides it’ s internal state, how do we test it?
Could add methods that expose internal state, only to be used in testing
But: how do we know these extra methods are correct?

Inheritance

When a subclass extends a well-tested class, what extra testing is needed?
e.g. Test just the overridden methods?

But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods

Polymorphism

When class A calls class B, it might actually be interacting with any of B’ s
subclasses...

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

9 University of Toronto

Department of Computer Science

Inheritance Coverage

Source: Adapted from IPL 1009

. Coverage achieved by testing DerivedA

. Coverage achieved by testing DerivedB

Inherited methods not exercised

£ Misleading coverage reported by
>~ traditional structural coverage metrics

DerivedA

DerivedB

Inherited methods

New methods

“‘Inherited methods

New methods

m ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

: o University of Toronto Department of Computer Science

v Consider this program...

Source: Adapted from IPL 1999

class Base {
Base public void foo() {
. hel ;o owes
+foo() } stper
+bar() public void bar() {
-helper() helper(); ...

A -

private helper() {...}
}

Derived

class Derived extends Base {
private helper() {...}
}

-helper()

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

: 4 University of Toronto

Department of Computer Science

Test Cases

Source: Adapted from IPL 1999

public void testFoo() {
Base b = new Base();
b.foo() ;

}

public void testBar() {
Derived d = new Derived() ;
d.bar () ;

}

Base
+foo() -- Exercised in testFoo
+bar() -- Untested!

-helper() -- Exercised in testFoo

/\

Derived
{+foo()} -- Untested!
{+bar()} -- Exercised in testBar hy
-helper() -- Exercised in testBar

inherited methods

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

@ University of Toronto

Department of Computer Science

v Extend the test suite

Source: Adapted from IPL 1909

public void testBaseFoo() {
Base b = new Base();
b.foo() ;

}

public void testBaseBar () {
Base b = new Base();
b.bar () ;

}

public void testDerivedFoo() {
Base d = new Derived() ;
d.foo();

}

public void testDerivedBar () {
Derived d = new Derived() ;
d.bar() ;

Base
+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar
-helper() -- Exercised in tBF and tBB
/\
Derived
{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar
-helper() -- Exercised in tDF & tDB

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

19

_9 University of Toronto

Department of Computer Science

-
)

Subclassing the Test Cases

Source: Adapted from IPL 1909

test new methods

re-test inherited methods

Base
< ________________________ |
|
Base methods :
|
JANNA ;
|
:
DerivedA DerivedB !
testBase
inherited methods inherited methods
new metRods new metRods Test Base methods
| |
: | Z} /\
: e T |
| |
| |
i testDerivedA testDerivedB
|
|

re-test inherited methods
test new methods

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

20

o University of Toronto Department of Computer Science

v When to stop testing?

The bad news

Typical testing results @

s
T A 8 A
e o
- S
g £
> S
S 2
* s
0
O
o
> >
Time (e.g. days) Number of defects found to date

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

21

b o University of Toronto Department of Computer Science

v When to stop testing?

Source: Adapted from Pfleeger 1998, p359

Motorola’ s Zero-failure testing model
Predicts how much more testing is needed to establish a given reliability goal

basic model: empirical constant
b®

failures = ae”
\ testing time

failur

Reliability estimation process
Inputs needed:

test fime’

fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far

th = total testing hours up to the last failure
Calculate number of further test hours needed using:
In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(if + fd))

Result gives the number of further failure free hours of testing needed to
establish the desired failure density
if a failure is detected in this time, you stop the clock and recalculate

Note: this model ignores operational profiles!

J:l:— © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

22

o Unuversity of Toronto Department of Computer Science

v Fault Seeding

Seed N faults into the software
Start testing, and see how many seeded faults you find

Hypothesis:
Detected seeded faults B Detected nonseeded faults
Total seeded faults Total nonseeded faults

Use this to estimate test efficiency
Estimate # remaining faults

Alternatively

Get two teams to test independently
Estimate each team’ s test efficiency by:

faults found by team 1 Faults found by both teams
Efficiency(team1) = =
Total number of faults Total # faults found by team 2
unknown

m ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

23

C Scien .
@U§T5%t§21;§ OF TORONTO midterm test

e midterm...now!

location groups
- The Brogrammers
SS1074 . M|55|pg Brackets
- Solutions
- doge++

GB248 (lecture room) [S)i\l:il?e-pzoume

THE Group

« Fantasix
RW229 . DOGE

