Computer Science
UNIVERSITY OF TORONTO

lecture 15
software quality

csc302s
winter 2014

Computer Science

UNIVERSITY OF TORONTO recap fl' om last time

* static analysis

* alotis done “live” by the IDE while you are
coding.

* beyond what is done in your IDE:

— attempts to find null dereference or null
assignment

— array index out of bounds etc.
— other runtime errors not caught by compiler
— duplicate code

* many false positives & negatives

* your mileage may vary

b o University of Toronto Department of Computer Science

P
>

Software Quality

Understanding Quality

Importance of Process Quality
tools for improving process quality

Software Quality Attributes
Tools for improving process quality
Software Quality Attributes

Je&el © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atribution under a creative commons fioense.

9 University of Toronto Department of Computer Sci

v Challenge Problem

Context
You built some software
You tested it
You shipped it

But:

Is it any good?
How would you know?
Can you do a better job next time?

Q1: What is Quality?

[FeGa] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

*e University of Toronto

Department of Computer Science

» &

“Quality is value to some person”
“Quality is fitness to purpose”

“Quality is exceeding the customer’s
expectations”

JFe&e © 2008 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons fioense.

3 University of Toronto Department of Computer Sci

4 Views of Quality

Quality in Use External Quality Attributes
(Does it pass all the tests?)

(What' s the end-user’ s experience?)

j/ ‘ e
Internal Quality Attributes Process Quality
(Is it well-designed?) (Is it assembled correctly?)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons icense.

_Q University of Toronto

Department of Computer Science

&

Quality Assurance

V&YV focuses on the quality of the product(s)

requirements, models, specifications, designs, code,...

QA focuses on the quality of the processes
How well are the processes documented?
How well do people follow these processes?
Does the organisation measure key quality indicators?
Does the organisation learn from its mistakes?

Examples:
1S09001
Ticklt
Capability Maturity Model (CMM)
Total Quality Management (TQM)

[l © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with tribution under a creative commons ficense.

} University of Toronto Department of Computer Sci

Managing Quality (history)

Source: Adapted from Blum, 1992, p473-470. See also van Vliet, 1090, sections 6.3 and 6.6

Industrial Engineering
Product Inspection (1920s)
examine intermediate and final products and discard defective items
Process Control (1960s)
monitor defect rates to identify defective process elements & control the process
Design Improvement (1980s)
engineering the process and the product to minimize the potential for defects

Deming: Total Quality Management
Use statistical methods to analyze industrial production processes
Identify causes of defects and eliminate them
Basic principles are counter-intuitive:
in the event of a defect (sample product out of bounds)...
...don't adjust the controller or you’ll make things worse.
Instead, analyze the process and improve it

[l © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

g University of Toronto

Six Sigma

Department of Computer Science

Key ideas: 34.1% [34.1%
Use statistics to measure defects N
Design the process to reduce defects vee) g

Origin of the term
99.9999% of all items are with =6c of the mean on a normal curve
So a target of 60 mean no more than 1 defective part per million
In practice, must allow for +1.5c drift in the mean over the long term
So we really only get +4 .50 = 3.4 defective parts per million

For complex devices
100 parts: probability of a defective device is 0.0013
10,000 parts: probability of a defective device is 0.04 (l.e. 96% are okay....)
= Design things to have fewer components
= Control the manufacturing variability of the components

|t Bera] ©2012 Steve Easterbrook. This presentation is availabe free for non-commercial use with stiribution under a creafive commons license. 9

k? University of Toronto Department of Computer Science

Applying This to Software

Quality Management for Software
No variability among individual product instances
All defects are design errors (no manufacturing errors)
Process improvement principles still apply (to the design process!)

Defect removal

Two ways to remove defects:
fix the defects in each product (i.e patch the product)
fix the process that leads to defects (i.e. prevent them occurring)

The latter is cost effective as it affects all subsequent projects

Defect prevention (from Humphrey)
programmers must evaluate their own errors
feedback is essential for defect prevention
there is no single cure-all for defects
must eliminate causes one by one
process improvement must be an integral part of the process

process improvement takes time to learn

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

ﬁ? University of Toronto Department of Computer Science

Process Modeling & improvement
Process Description observations quallty
understand and describe current goals
practices d’:;'Inltlon

Process Definition

Prescribe a process that reflects the
organization’ s goals

prescriptive
process model

company process
Process customization database

adapt the prescribed process model for
each individual project

Improved

prescriptive
process model
Process enactment
Carry out the process
(develop the software!)
collect process data

Process improvement process Tessons

enactment learnt
use lessons learnt from each project to
improve the prescriptive model
P P P PROJECT X
analyze defects to eliminate
sonwal\’
product
G| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons icense. 12

University of Toronto Department of Computer Science

o
4 e.g. Capability Maturity Model (CMM)

Source: Adapted from Humphrey, 1939, chapter 1. See also van Viiet, 1999, section 0.0.

Level Characteristic Key Challenges
... Improvement fed back |Identify process indicators
5. Optimizing into process “Empower” individuals
o s Automatic collection of process data
4. Managed eIm T Use process data to analyze and
measured process .
modify the process
(Qualitative) Process measurement
3. Defined process defined and [Process analysis
institutionalized Quantitative Quality Plans
(Intuitive) Establish a process group
2. Repeatable | process dependent on |Identify a process architecture
individuals Introduce SE methods and tools
Ad hoc / Chaotic ,':"°4°°: x“"“?"“‘"*
1. Initial No cost estimation, roject rlanning
lannina. management. Configuration Mgmnt, Change Control
P 9. 9 Software Quality Assurance

[G| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

S &

b University of Toronto

Department of Computer Sci

Counterpoint: 6 Sigma for Software?

Software processes are fuzzy
Depend on human behaviour, not predictable

Software Characteristics are not ordinal
Cannot measure degree of conformance for software
Mapping between software faults and failures is many-to-many
Not all software anomalies are faults
Not all failures result from the software itself
Cannot accurately measure the number of faults in software

Typical defect rates
NASA Space shuttle: 0.1 failures/KLOC (but it cost $1000 per line)
Best military systems: 5 faults/KLOC
Worst military systems: 55 faults/KLOC
Six Sigma would demand 0.0034 faults/KLOC (?)

eS| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14

g University of Toronto

[N »

Department of Computer Science

Arguments against QA

Costs may outweigh the benefits
Costs: Increased documentation; more meetings; ...
Benefits: Improved quality of the process outputs (better software?)

Reduced “agility”
Documenting the processes makes them less flexible

Reduced “thinking”

Following the defined process gets in the way of thinking about the best way to
do the job

Barrier to Innovation
New ideas have to be incorporated into the Quality Plan and get signed off

Demotivation
Extra bureaucracy makes people frustrated

Bl © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons ficense.

15

b University of Toronto

Department of Computer Science

How to assess software quality?

Source: Budgen, 1994, pp05-7

Reliability
designer must be able to predict how the system will behave:
completeness - does it do everything it is supposed to do? (e.g. handle all possible
inputs)
consistency - does it always behave as expected? (e.g. repeatability)
robustness - does it behave well under abnormal conditions? (e.g. resource failure)

Efficiency

Use of resources such as processor time, memory, network bandwidth
This is less important than reliability in most cases

Maintainability
How easy will it be to modify in the future?
perfective, adaptive, corrective

Usability

How easy is it to use?

[t © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

19

} University of Toronto

Department of Computer Science

Measuring Quality

Source: Budgen, 1994, pp60-1

We have to turn our vague ideas about quality into
measurables

examples. ..
The Quality Concepts
(abstract notions of | reliability | | maintainability | | usability |
quality properties)
Measurable Quantities . information time taken
(define some metrics) to failure? Wz Eo e e
modules? how to use?
Counts taken from run it and count e
Design Representations | count crashes procedure i
(realization of the metrics) |_Per hour??? calls?2? s‘;’::k';;;r

|Gl ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with stiribution under a creafive commons license.

20

P

University of Toronto Department of Computer Science

ISO/IEC 25010:2011

Changeability
Maturity
.

Fault Tolerance
Testability

Recoverability
Adap

Installability

| Replaceability

Reliability Maintainability

Understandability

Learnability
Operability

Attractiveness |

G| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons icense. 23

Computer Science
UNIVERSITY OF TORONTO

ISO/IEC 25010:201
The fundamental objective of the ISO/IEC 9126 standard is to
address some of the well known human biases that can adversely
affect the delivery and perception of a software development
project. These biases include changing priorities after the start of a
project or not having any clear definitions of "success." By clarifying,
then agreeing on the project priorities and subsequently converting
abstract priorities (compliance) to measurable values (output data
can be validated against schema X with zero intervention), ISO/IEC
9126 tries to develop a common understanding of the project's
objectives and goals.

The standard is divided into four parts:
¢ quality model

* external metrics

* internal metrics

e quality in use metrics.

3 University of Toronto Department of Computer Science

Conflicts between Quality factors

Testability

Accuracy

Fault Tolerance

Efficiency Portability

Maturity
Stability

Maintainability > Functionality

Security

Reliability Usability

el © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creafive commons license. 24

*Q University of Toronto Department of Computer Sci

S &

More abstractly...

“Better, Faster, Cheaper - pick any two”

Resource Utilization 5 Time behaviour
(“Space”) (“Time”)

[t Gra] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license. 25

9 University of Toronto

Department of Computer Science

L4 Measurable Predictors of Quality

Source: Budgen, 1994, pp68-74

Simplicity
the design meets its objectives and has no extra embellishments
can be measured by looking for its converse, complexity:
control flow complexity (number of paths through the program)
information flow complexity (number of data items shared)
name space complexity (number of different identifiers and operators)

Modularity
different concerns within the design have been separated
can be measured by looking at:

cohesion (how well components of a module go together)
coupling (how much different modules have to communicate)

[l © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

26

Computer Science . N
UNIVERSITY OF ToroNTO - Slide from lecture 2 — architecture

"Il semble que la perfection soit atteinte non quand il
n'y a plus rien a ajouter, mais quand il n'y a plus rien a
retrancher.”— Antoine de Saint Exupéry, Terre des
Hommes, 1939

(my) translation: "perfection is finally attained not
when there is no longer anything to add, but when
there is no longer anything to take away"

