Computer Science
UNIVERSITY OF TORONTO

lecture 17
software development best
practices

csc302h
winter 2014

&

Computer Science

UNIVERSITY OF TORONTO recap from Iast time

« structure of a “typical” software company

* responsibilities of the various roles
— shareholders, b.o.d., CEO, mgmt. team.

» responsibilities of the different functional
units

— marketing, sales, admin, services, finance...
— & most importantly, R&D

Computer Science
UNIVERSITY OF TORONTO

software development best practices
the top 10

Computer Science

UNIVERSITY OF TORONTO best practices - tOp 10

source code

i control reproducible
infrastructure / I— roduc

AN

automated
regression
testing

defect/feature
tracking

control
: effort process
refinement tracking ! control
business

planning

&

Computer Science

UNIVERSITY OF TORONTO 1. source code control

* usually a central repo (yes, even with git)

* backed up very regularly

 complete change history

* maintenance streams via branching & tagging
* reproduce old builds/revisions

* required for teams

 commits tied to issue tracking system

* these days, often hosted by a 3" party
— sourceforge, github, many others

&

Computer Science

UNIVERSITY OF TORONTO 2. issue tracking

* keeps track of all issues (defects, features,
chores, etc.)

* follows one or more workflows

e often incorporates time tracking

* reports for management

* prioritization

e can suffer from “junk-drawer” phenomenon
— different schools on this: hoarding or purging

* these days, often hosted by a 3™ party
— ex. pivotal tracker...many, many others!

&

Computer Science

UNIVERSITY OF TORONTO 3. build automation

* single command (scripted) to checkout & build

e consistent environment, no hacked developer
environments

— email: “just use the attached dll...”

* developer builds & production builds

* spits out “the installer,” whatever that means
depending on context

e (part of) continuous integration through
automation

— “Matt broke the build again!”

&

Computer Science

UNIVERSITY OF ToroNTO 4, qutomated regression tests

e scripted to run after each build — run all unit
tests, integration tests, etc.

— continuous integration (other part)
* prevents previous errors from creeping back in

* enhances developer confidence when making
critical changes

e find problems earlier
— last check-in is smoking-gun
e critical to improving quality over time

Computer Science

UNIVERSITY OF TORONTO 5. release planning

 ahem, i mean, agile horizon planning

 with 1—-4in place as support, this is arguably the
most important practice!

* Release planning determines & tracks:
— what we are building?
— by when will it be ready?
— how many people it will take?

* track for entire duration of release, adjusting
along the way

* enables management visibility & decision making
* enables quality by enforcing proper testing

Computer Science . o po .
@UNIB%thSI;Y OF TORONTO 6. design specifications

 complicated features require specs

* helps to make better estimates

* helps eliminate integration problems later
 first candidate for review

* vyes, agile requires specifications too!

Computer Science

éumvansm OF TORONTO 7. architectural control

* maintain a clean architecture, esp. with many
developers and lots of commits

* document the architecture — uml diagrams can
help here (class, package)

* review the design before implementing
* enforced by the chief architect

&

Computer Science

UNIVERSITY OF TORONTO 8. effort tracking

e essential for improving #5 — release planning
* how much was estimated, and then spent on:
— each feature?
— fixing defects?
— everything else?
— any anomalies?
* helps improve estimation accuracy

— but we don’t actually care too much about that...
seriously!

* in turn, improves estimates of staff time available
for next cycle

Computer Science
éUNIVERsnY OF TORONTO 0. process contr OI

* written process for the release cycle
— protocol to follow, who does what & when

* helps training new staff

 enables collection of metrics
— how many features are in what state?

&

Computer Science

UNIVERSITY OF TORONTO 10. business planning

* development occurs within a business context

— this is the the only one that (potentially) differs
for open-source projects

e getit wrong, and it can be a bigger problem
than technical problems

* involves writing effective proposals

* integrates with budgeting
— tradeoffs with other departments

e staff, equipment, alternatives, etc.

Computer Science

UNIVERSITY OF TorRONTO R&D Best Practices — Top 10

source code

i control reproducible
infrastructure / I— roduc

AN

automated
regression
testing

defect/feature
tracking

control
: effort process
refinement tracking ! control
business

planning

