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structure of a “typical” software company

responsibilities of the various roles
— shareholders, b.o.d., CEO, mgmt. team.

responsibilities of the different functional
units

— marketing, sales, admin, services, finance...

— & most importantly, R&D
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software development best practices
the top 10
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1. source code control

usually a central repo (yes, even with git)
backed up very regularly

complete change history

maintenance streams via branching & tagging
reproduce old builds/revisions

required for teams

commits tied to issue tracking system

these days, often hosted by a 3 party

— sourceforge, github, many others
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2. issue tracking

keeps track of all issues (defects, features,
chores, etc.)

follows one or more workflows

often incorporates time tracking

reports for management

prioritization

can suffer from “junk-drawer” phenomenon
— different schools on this: hoarding or purging
these days, often hosted by a 3™ party

— ex. pivotal tracker...many, many others!
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3. build automation

single command (scripted) to checkout & build

consistent environment, no hacked developer
environments

— email: “just use the attached dll...”
developer builds & production builds

spits out “the installer,” whatever that means
depending on context

(part of) continuous integration through
automation

— “Matt broke the build again!”
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scripted to run after each build — run all unit
tests, integration tests, etc.

— continuous integration (other part)
prevents previous errors from creeping back in

enhances developer confidence when making
critical changes

find problems earlier
— last check-in is smoking-gun
critical to improving quality over time
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5. release planning

ahem, i mean, agile horizon planning

with 1 -4 in place as support, this is arguably the
most important practice!

Release planning determines & tracks:
— what we are building?

— by when will it be ready?

— how many people it will take?

track for entire duration of release, adjusting
along the way

enables management visibility & decision making
enables quality by enforcing proper testing
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6. design specifications

complicated features require specs

helps to make better estimates

helps eliminate integration problems later
first candidate for review

yes, agile requires specifications too!
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7. architectural control

maintain a clean architecture, esp. with many
developers and lots of commits

document the architecture — uml diagrams can
help here (class, package)

review the design before implementing
enforced by the chief architect
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8. effort tracking

essential for improving #5 — release planning

how much was estimated, and then spent on:

— each feature?

— fixing defects?

— everything else?

— any anomalies?

helps improve estimation accuracy

— but we don’t actually care too much about that...
seriously!

in turn, improves estimates of staff time available

for next cycle
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9. process control

* written process for the release cycle

— protocol to follow, who does what & when
* helps training new staff
* enables collection of metrics

— how many features are in what state?
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10. business planning

* development occurs within a business context

— this is the the only one that (potentially) differs
for open-source projects

* getit wrong, and it can be a bigger problem
than technical problems

* involves writing effective proposals
* integrates with budgeting
— tradeoffs with other departments

* staff, equipment, alternatives, etc.
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