Computer Science
UNIVERSITY OF TORONTO

lecture 17
software development best
practices

csc302h
winter 2014

§

Computer Science
UNIVERSITY OF TORONTO

structure of a “typical” software company

responsibilities of the various roles
— shareholders, b.o.d., CEO, mgmt. team.

responsibilities of the different functional
units

— marketing, sales, admin, services, finance...

— & most importantly, R&D

Computer Science
UNIVERSITY OF TORONTO

software development best practices
the top 10

§

Computer Science
UNIVERSITY OF TORONTO

source code
control

defect/feature
tracking

reproducible

infrastructure builds

automated
regression
testing

recap from last time

best practices — top 10

] ¥
control \‘
== =

. effort process
refinement tracking control
business
planning




Computer Science
UNIVERSITY OF TORONTO

1. source code control

usually a central repo (yes, even with git)
backed up very regularly

complete change history

maintenance streams via branching & tagging
reproduce old builds/revisions

required for teams

commits tied to issue tracking system

these days, often hosted by a 3 party

— sourceforge, github, many others

Computer Science
UNIVERSITY OF TORONTO

2. issue tracking

keeps track of all issues (defects, features,
chores, etc.)

follows one or more workflows

often incorporates time tracking

reports for management

prioritization

can suffer from “junk-drawer” phenomenon
— different schools on this: hoarding or purging
these days, often hosted by a 3™ party

— ex. pivotal tracker...many, many others!

Computer Science
UNIVERSITY OF TORONTO

3. build automation

single command (scripted) to checkout & build

consistent environment, no hacked developer
environments

— email: “just use the attached dll...”
developer builds & production builds

spits out “the installer,” whatever that means
depending on context

(part of) continuous integration through
automation

— “Matt broke the build again!”

Computer Science .
W inivirsry or Torowto 4, automated regression tests

scripted to run after each build — run all unit
tests, integration tests, etc.

— continuous integration (other part)
prevents previous errors from creeping back in

enhances developer confidence when making
critical changes

find problems earlier
— last check-in is smoking-gun
critical to improving quality over time




§

Computer Science
UNIVERSITY OF TORONTO

5. release planning

ahem, i mean, agile horizon planning

with 1 -4 in place as support, this is arguably the
most important practice!

Release planning determines & tracks:
— what we are building?

— by when will it be ready?

— how many people it will take?

track for entire duration of release, adjusting
along the way

enables management visibility & decision making
enables quality by enforcing proper testing

§

Computer Science
UNIVERSITY OF TORONTO

6. design specifications

complicated features require specs

helps to make better estimates

helps eliminate integration problems later
first candidate for review

yes, agile requires specifications too!

§

Computer Science
UNIVERSITY OF TORONTO

7. architectural control

maintain a clean architecture, esp. with many
developers and lots of commits

document the architecture — uml diagrams can
help here (class, package)

review the design before implementing
enforced by the chief architect

§

Computer Science
UNIVERSITY OF TORONTO

8. effort tracking

essential for improving #5 — release planning

how much was estimated, and then spent on:

— each feature?

— fixing defects?

— everything else?

— any anomalies?

helps improve estimation accuracy

— but we don’t actually care too much about that...
seriously!

in turn, improves estimates of staff time available

for next cycle




Computer Science
UNIVERSITY OF TORONTO

9. process control

* written process for the release cycle

— protocol to follow, who does what & when
* helps training new staff
* enables collection of metrics

— how many features are in what state?

Computer Science
UNIVERSITY OF TORONTO

10. business planning

* development occurs within a business context

— this is the the only one that (potentially) differs
for open-source projects

* getit wrong, and it can be a bigger problem
than technical problems

* involves writing effective proposals
* integrates with budgeting
— tradeoffs with other departments

* staff, equipment, alternatives, etc.

§

Computer Science
UNIVERSITY OF TORONTO

R&D Best Practices — Top 10

reproducible
builds

source code
control

defect/feature
tracking

infrastructure

automated
regression
testing

control \‘
=8|

. effort process
refinement tracking control
business
planning




