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@UNIVERSITY OF TORONTO recap from last time

e discussed the top-10 essential practices for
software development:

1. source code control

2. issue tracking

3. build automation

4. automated regression tests
release planning

design specifications
architecture control

effort tracking
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process control
10. business planning
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UNIVERSITY OF TORONTO capability maturity model

* classifies an organization’s maturity into 5 levels
— each level prescribes a group of practices
— CMM is also a road to process improvement

— must have all lower-level practices in place before
attempting next level

e can be certified to a certain CMM level
— some similarities to ISO 9000

— not universally agreed to be a good thing, but is
an interesting exercise
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UNIVERSITY OF TorRoNTO  capability maturity model (3)

[ Optimizing (5)

Process changs management
Technology change managemsnt
Defect prevention

( Managed (4)

Sofiware quakty management
Quanttatve process managemsnt

( Detined (3)

Peer reviews
Intergroup coordination
Software product enginsenng
Integrated software managemsnt
Training program 5
Organizatico process asfinition

Organization process focus
. /

( Repeatable (2)

Software configuration managsment
Software quality assurance
Software subcontract managemsant
Software project tracking and oversight
Software project planning
Requirements managemsnt

( 1nitial (1) )
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* |SO 9000 is a set of quality standards
— subset of these are specific to software
— must document the process

— must maintain “quality records”

e used in audits to ensure adherence to the
process

— process can be anything
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UNIVERSITY OF TORONTO relationship to top-10

* top-10 practices are necessary to achieve CMM
level 2 (repeatable)

 also, top-10 includes enough level 3 (defined)
stuff to attain ISO 9000 certification

* and, top-10 even include some level-4
(quantitatively managed) stuff, where most
useful

— defect arrival/departure rates
— estimate vs. actuals
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* planning is the most important aspect of CMM
Level 2

 common flaws regarding planning
— making no plans!
— make a plan, but don’t track it

— attempt to track the plan with inadequate tools
* Gantt charts
* Microsoft Project
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* planningisn’t always a good thing
— release/expected date is not important
— no expectations on new functionality
— proof-of-concept (a.k.a. “spike”)

* planning is required when external pressures
come to bear on feature availability dates

e doesn’t usually apply to first releases, but is
necessary to “cross the chasm”
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@UNIVERSITY OF TORONTO CrOSSing the chasm

* book by Geoffrey Moore (1991)

The Chasm

The Mainstream
Market
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UNIVERSITY OF TORONTO planning essentials

What are we building?
By when will it be ready?
How many people do we have?

* answer these questions, and nothing more
— not “who will be doing what?”
— not “what are the detailed tasks required?”

— not “in what order must the tasks be
performed?”
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e once initial planning is complete we can
transition to a more detailed development plan

* this more detailed plan sorts out:
— who is assigned to what

— dependencies between features
— etc.
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“The best-laid schemes o' mice an' men Gang aft agley”
— Robbie Burns

* the essence of planning is uncertainty
— plans never “according to plan”
— must embrace change rather than resisting it

* how to make plans and embrace change?
— track the plan constantly, not just at the start
— react quickly & decisively to adverse situations
— embrace a change in direction

— re-plan quickly, can’t be hard to deal with unexpected
changes
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UNIVERSITY OF TORONTO internal changes

e estimation errors

— initial estimates contain a significant (usually
one-sided) margin of error

— as plan progresses, and more information
becomes available, variance in errors drops

* developer availability changes

— illness, parental leave, resignations, cut backs,
unexpected vacation plans, unexpectedly low
hours of work, unexpected low productivity
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* new (big) customer with specific demands

e pressure from competition

e collaboration opportunities

* acquisitions & mergers

* sudden changes in customer needs
— ex. regulatory changes that affect them
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* what are we building?
— hard for 1t release, later ones have big wish list

— marketing/product manager pick ones that will get
most sales

* by when will it be ready?

— too soon: customers won’t be ready, won’t want to
learn, install, pay for it

— too late: competition will pass you, customers will
forget you == forgone revenue

* how many developers?
— usually fixed for a given release, or planning horizon
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What are we building?
By when will it be ready?
How many people do we have?

the difficult question is:

can we do all 3 at once?
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e often organizations will answer all 3 questions,
but not address the difficult one

* development mgmt. wants to please the rest
of the company and agrees to too much —
gung-ho spirit!

— some actually believe in over-commitment to

boost productivity — “it’s a stretch, but we’ll pull
it off!”

* developers will say “it can’t be done!” — but
that’s all those folks ever say, right?
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UNIVERSITY OF TORONTO a common problem ( 2 )

* major state of denial sets in...
— or sometimes hopeless optimism
— everybody is secretly hoping for a miracle

* nobody will accept any blame, and why should
they?
— dev. mgmt.: “we told you it was a stretch!”
— developers: “we said it couldn’t be done!”

— marketing & sales: “R&D, should have said
something earlier!”

— CEO: “you all told me everything was fine!”
— Yourdon’s death march...
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e Death March — Edward Yourdon

FROM THE NEW YORK TIMES BEST-SELLING AUTHOR

The #1 guide to identifying and surviving death marches... expanded and updated

SECOND EDITION

DEATH
MARCH

EDWARD YOURDON
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UNIVERSITY OF TORONTO the solution — gOOd planning

* the “death march” doesn’t need to happen

e to avoid it we need some courage and
conviction

* also need common sense:

— is it even feasible to do what’s asked by the
date required?

— don’t give a quick (off-the-cuff) answer even if
it’s obviously impossible

— put together a plan to demonstrate the facts.




