Computer Science
UNIVERSITY OF TORONTO

lecture 18
software development planning

csc302h
winter 2014

2 Computer Science .
@UNIVERSITY OF TORONTO recap from last time

e discussed the top-10 essential practices for
software development:

1. source code control

2. issue tracking

3. build automation

4. automated regression tests
release planning

design specifications
architecture control

effort tracking

O 0 N o W

process control
10. business planning

Computer Science
UNIVERSITY OF TORONTO today

software development planning

&

Computer Science

UNIVERSITY OF TORONTO capability maturity model

* classifies an organization’s maturity into 5 levels
— each level prescribes a group of practices
— CMM is also a road to process improvement

— must have all lower-level practices in place before
attempting next level

e can be certified to a certain CMM level
— some similarities to ISO 9000

— not universally agreed to be a good thing, but is
an interesting exercise

Computer Scienc oge .
@UN&‘ERSIT@ or Toronto capability maturity model (2)

Computer Science

UNIVERSITY OF TorRoNTO capability maturity model (3)

[Optimizing (5)

Process changs management
Technology change managemsnt
Defect prevention

(Managed (4)

Sofiware quakty management
Quanttatve process managemsnt

(Detined (3)

Peer reviews
Intergroup coordination
Software product enginsenng
Integrated software managemsnt
Training program 5
Organizatico process asfinition

Organization process focus
. /

(Repeatable (2)

Software configuration managsment
Software quality assurance
Software subcontract managemsant
Software project tracking and oversight
Software project planning
Requirements managemsnt

(1nitial (1))

| Computer Science . .
@um@‘étnsx% OF TORONTO relationship to I1SO 9000

* |SO 9000 is a set of quality standards
— subset of these are specific to software
— must document the process

— must maintain “quality records”

e used in audits to ensure adherence to the
process

— process can be anything

&

Computer Science

UNIVERSITY OF TORONTO relationship to top-10

* top-10 practices are necessary to achieve CMM
level 2 (repeatable)

 also, top-10 includes enough level 3 (defined)
stuff to attain ISO 9000 certification

* and, top-10 even include some level-4
(quantitatively managed) stuff, where most
useful

— defect arrival/departure rates
— estimate vs. actuals

Computer Science

§UNIVERSITY OF TORONTO planning

* planning is the most important aspect of CMM
Level 2

 common flaws regarding planning
— making no plans!
— make a plan, but don’t track it

— attempt to track the plan with inadequate tools
* Gantt charts
* Microsoft Project

&

Computer Science

UNIVERSITY OF TORONTO why plan ?

* planningisn’t always a good thing
— release/expected date is not important
— no expectations on new functionality
— proof-of-concept (a.k.a. “spike”)

* planning is required when external pressures
come to bear on feature availability dates

e doesn’t usually apply to first releases, but is
necessary to “cross the chasm”

Computer Science

@UNIVERSITY OF TORONTO CrOSSing the chasm

* book by Geoffrey Moore (1991)

The Chasm

The Mainstream
Market

Computer Science

UNIVERSITY OF TORONTO planning essentials

What are we building?
By when will it be ready?
How many people do we have?

* answer these questions, and nothing more
— not “who will be doing what?”
— not “what are the detailed tasks required?”

— not “in what order must the tasks be
performed?”

Computer Science . .
UNIVERSITY OF TORONTO lmplementahon plans

e once initial planning is complete we can
transition to a more detailed development plan

* this more detailed plan sorts out:
— who is assigned to what

— dependencies between features
— etc.

&

Computer Science

UNIVERSITY OF TORONTO Of mice and men

“The best-laid schemes o' mice an' men Gang aft agley”
— Robbie Burns

* the essence of planning is uncertainty
— plans never “according to plan”
— must embrace change rather than resisting it

* how to make plans and embrace change?
— track the plan constantly, not just at the start
— react quickly & decisively to adverse situations
— embrace a change in direction

— re-plan quickly, can’t be hard to deal with unexpected
changes

&

Computer Science

UNIVERSITY OF TORONTO internal changes

e estimation errors

— initial estimates contain a significant (usually
one-sided) margin of error

— as plan progresses, and more information
becomes available, variance in errors drops

* developer availability changes

— illness, parental leave, resignations, cut backs,
unexpected vacation plans, unexpectedly low
hours of work, unexpected low productivity

J Computer Science
UNIVERSITY OF TORONTO external changes

* new (big) customer with specific demands

e pressure from competition

e collaboration opportunities

* acquisitions & mergers

* sudden changes in customer needs
— ex. regulatory changes that affect them

&

Computer Science

UNIVERSITY OF TORONTO the difficult question

* what are we building?
— hard for 1t release, later ones have big wish list

— marketing/product manager pick ones that will get
most sales

* by when will it be ready?

— too soon: customers won’t be ready, won’t want to
learn, install, pay for it

— too late: competition will pass you, customers will
forget you == forgone revenue

* how many developers?
— usually fixed for a given release, or planning horizon

Computer Science

UNIVERSITY OF TORONTO the difficult question (2)

What are we building?
By when will it be ready?
How many people do we have?

the difficult question is:

can we do all 3 at once?

&

Computer Science

UNIVERSITY OF TORONTO acommon problem

e often organizations will answer all 3 questions,
but not address the difficult one

* development mgmt. wants to please the rest
of the company and agrees to too much —
gung-ho spirit!

— some actually believe in over-commitment to

boost productivity — “it’s a stretch, but we’ll pull
it off!”

* developers will say “it can’t be done!” — but
that’s all those folks ever say, right?

&

Computer Science

UNIVERSITY OF TORONTO a common problem (2)

* major state of denial sets in...
— or sometimes hopeless optimism
— everybody is secretly hoping for a miracle

* nobody will accept any blame, and why should
they?
— dev. mgmt.: “we told you it was a stretch!”
— developers: “we said it couldn’t be done!”

— marketing & sales: “R&D, should have said
something earlier!”

— CEO: “you all told me everything was fine!”
— Yourdon’s death march...

2 | Computer Science
@UNIE?RSI;Y OF TORONTO acommon problem (3)

e Death March — Edward Yourdon

FROM THE NEW YORK TIMES BEST-SELLING AUTHOR

The #1 guide to identifying and surviving death marches... expanded and updated

SECOND EDITION

DEATH
MARCH

EDWARD YOURDON

&

Computer Science

UNIVERSITY OF TORONTO the solution — gOOd planning

* the “death march” doesn’t need to happen

e to avoid it we need some courage and
conviction

* also need common sense:

— is it even feasible to do what’s asked by the
date required?

— don’t give a quick (off-the-cuff) answer even if
it’s obviously impossible

— put together a plan to demonstrate the facts.

