Computer Science
UNIVERSITY OF TORONTO

lecture 19
software development planning
continued...

csc302h
winter 2014

Computer Science .
@UNIVERSITY OF TORONTO recap from last time

e CMM levels & tasks:
1) initial
 totally ad-hoc, no process
2) repeatable

 planning & tracking
* project management

3) defined
. process definition, reviews, etc.
* engineering management
4) managed
* quality of process & feedback for improvement
* quantitative management
5) optimizing

* continuous improvement & change management

Computer Science .
@UNIEEtRsrCrY OF TORONTO recap from last time (2)

* how the top-10 relates to ISO 9000 and to the
CMM levels

e started talking about planning
— what goes wrong if you don’t plan

e crossing the chasm

— why plan? — external pressures

* planning essentials
— what are we building?
— by when will it be ready?
— how many people do we have?

&

Computer Science

UNIVERSITY OF TORONTO recap from last time (3)

* the essence of planning is uncertainty
— react to changes; both internal & external

e the difficult question is:
what are we building?
by when will it be ready?
how many people do we have?

e can we do all three at once?

* acommon problem is to answer the three
qguestions, but not the difficult one

— good planning to avoid the death march

Computer Science
UNIVERSITY OF TORONTO

Software Development Planning II

Computer Science
UNIVERSITY OF TORONTO today

software development planning
continued...

Computer Science e oy . .
UNIVERSITY OF ToroNTO eliciting potential requirements

S

Next Release

Potential Requirements

e starts with a wish-list

* stated as business requirements
— features and/or architectural enhancements

&

Computer Science
UNIVERSITY OF TORONTO

A Simple Release Plan

Dates:
Beta availability:

Capacity:
Fred
Lorna

Bill

total
Requirement:

AR report

Dialog re-design

Thread support
total

Status:
Capacity:
Requirement:
Delta:

Coding phase: Jul.1—Oct.1

General availability: Dec.1
days available

days required

Nov.1

31 ecd
33 ecd

21 ecd
317 ecd

14 ecd
22 ecd

87 ecd
317 ecd

317 effective coder-days

317 effective coder-days
0 effective coder days

&

Computer Science

UNIVERSITY OF TORONTO sizing available resources

* who can work on the release?
— skills & familiarity required

e for how long?
— count of workdays in development phase

— is each resource (developer) available for the
entire development phase?

— are they available 100% or are working on other
projects too?

— subtract (estimated, where necessary) vacation

&

Computer Science

UNIVERSITY OF ToRONTO §iZing available resources (2)

* how much time can the developers spend
actually writing software?

— work factor =w

— converts 8-hour (nominal, arbitrary) days to
time available to write code and unit tests for
the next release (or horizon)

—ex.w=0.6=0.6x8h/d=4.8h/d
— first estimated, then measured quantity

— accounts for things like:
* sick days, other tasks, meetings, etc.

— for a “normal” developer is usually around 0.6

&

Computer Science

UNIVERSITY OF TORONTO §jzing potential requirements

potential Requlremem.e

b P

30 36 43

* cost / benefit analysis
— cost: financial + opportunity = person days
* sizing in ECDs
— planning poker: Inherent size of the work item
— who will work on it? Resize
— productivity of that person (w)
e ensure that units are well understood

&

Computer Science

UNIVERSITY OF TORONTO the capacity constraint

e after all is done in a release (horizon)...

actual resources used == sum of actual feature time

* thisis always true no matter what, so it really is a
constraint

* 5o, given that we know this must work out for
each planning cycle, we estimate both sides and
force them to be equal

resource estimate == sum of feature estimates

Computer Science . .
UNIVERSITY OF TORONTO geometric analogy — capacity

1 person-day

w 5 O nw - O T
|

Computer Science . .
UNIVERSITY OF TORONTO geometric analogy — requirement

=N

43

|§ 4

Computer Science]]]
UNIVERSITY OF TORONTO geometric analogy — capacity constraint

w S5O W = (T

everything must fit!

J Computer Science .
UNIVERSITY OF TORONTO release planmng

* what are we building? F

 when will it be ready? T

* how many developers? N
FSNxT

* plan must respect the capacity constraint

* must continuously update the plan to maintain
this property

Computer Science
UNIVERSITY OF TORONTO most common problem

e comes from either:
— not knowing, or
— knowing but hoping for the best (death march)

(can happen at the start, or later in the plan)

C Sci . .
éu&?&&i&?@n&: TORONTO deallng with overﬂow

Developer leaves the
team

Cut features
Both

Add time

—

Computer Science . .
éUNISERSITY OF TORONTO deallng with overﬂow (2)

feature expansion

developer returns

o L

&

Computer Science

UNIVERSITY OF TORONTO organizational issues

* management must appreciate that software
development carries with it certain inherent

risks.

* the business of a software organization is to
manage and adapt as possibilities continuously
become reality.

* ranting and raving is unproductive.

* with good data, good managers can make good
decisions.

Computer Science
UNIVERSITY OF TORONTO

bonus material...

burndown charts

Computer Science

UNIVERSITY OF TORONTO

burndown charts

Remaining Effort (days)

— w

o 2 o 2 92 o
o jav]
—

Project XYZ teration 1 Burn Down

5 10 15 20
fteration Timeline {days) End

B |deal Remaining Effort [l Actual Remaining Effort

Computer Science

UNIVERSITY OF TORONTO burndown charts (2)

B Daily Completed

—P|anned

300

s—Artual

012 3 45 67 38 91011121314151617 181520

C Scien
@Ugl?gg&&; OF TORONTO burndown charts (3)

——1 Pending
C—InProgress
—— Complete

Workitem Hours

N AT D D L Y o P
Calendar Days

o witfis that!?!?
— Trust me, don’t show this one to your CEO!

