Computer Science
UNIVERSITY OF TORONTO

Computer Science .
UNIVERSITY OF TORONTO recap f rom last time

¢ CMM levels & tasks:
1) initial

Iecture 19 totally ad-hoc, no process
. 2) repeatable
software development planning - planning & tracking
o * project management
continued... 3) defined
e process definition, reviews, etc.
csc302h * engineering management
) 4) managed
winter 2014 e quality of process & feedback for improvement
* quantitative management
5) optimizing
* continuous improvement & change management
@5?«?@%‘&2??@“& TORONTO recap from last time (2) @5%’?5‘&‘&2?%‘%“& TORONTO recap from last time (3)

* how the top-10 relates to ISO 9000 and to the
CMM levels

* started talking about planning
— what goes wrong if you don’t plan
* crossing the chasm
— why plan? — external pressures

* planning essentials
— what are we building?
— by when will it be ready?
— how many people do we have?

* the essence of planning is uncertainty
— react to changes; both internal & external

the difficult question is:
what are we building?
by when will it be ready?
how many people do we have?

e can we do all three at once?

* acommon problem is to answer the three
questions, but not the difficult one

— good planning to avoid the death march

Computer Science
UNIVERSITY OF TORONTO

Software Development Planning Il

§

Computer Science
UNIVERSITY OF TORONTO

today

software development planning

continued...

Computer Science
UNIVERSITY OF ToroNTO eliciting potential requirements

Next Release

Potential Requirements

* starts with a wish-list
* stated as business requirements

— features and/or architectural enhancements

§

Computer Science
UNIVERSITY OF TORONTO

A Simple Release Plan

Capacity:
Fred
Lorna
total

Requirement:
AR report

Dates: Coding phase: Jul.1—Oct.1
Beta availability: ~ Nov.1
General availability: Dec.1

Dialog re-design 22 ecd

Thread support 87 ecd

total 317 ecd

Status:
Capacity: 317 effective coder-days
Requirement: 317 effective coder-days
Delta: 0 effective coder days

days available
31 ecd

33 ecd
21 ecd
317 ecd

days required
14 ecd

Computer Science

UNIVERSITY OF TORONTO sizing available resources

¢ who can work on the release?
— skills & familiarity required

* for how long?
— count of workdays in development phase

— is each resource (developer) available for the
entire development phase?

— are they available 100% or are working on other
projects too?

— subtract (estimated, where necessary) vacation

Computer Science

UNIVERSITY OF ToRONTO Sizing available resources (2)

* how much time can the developers spend
actually writing software?

— work factor = w

— converts 8-hour (nominal, arbitrary) days to
time available to write code and unit tests for
the next release (or horizon)

—ex.w=0.6=>06x8h/d=4.8h/d
— first estimated, then measured quantity
— accounts for things like:

* sick days, other tasks, meetings, etc.

— for a “normal” developer is usually around 0.6

Computer Science

UNIVERSITY OF TORONTO §jZing potential requirements

potontiagaqulnment.
30 36 43

* cost / benefit analysis
— cost: financial + opportunity = person days
* sizing in ECDs
— planning poker: Inherent size of the work item
— who will work on it? Resize
— productivity of that person (w)
* ensure that units are well understood

Computer Science
UNIVERSITY OF TORONTO

the capacity constraint

 after all is done in a release (horizon)...
actual resources used == sum of actual feature time

* this is always true no matter what, so it really is a
constraint

* so, given that we know this must work out for
each planning cycle, we estimate both sides and

force them to be equal

resource estimate == sum of feature estimates

Computer Science . . Computer Science R .
UNIVERSITY OF TORONTO geometric analogy — capacity UNIVERSITY OF TORONTO geometric analogy —requirement
-
e —
'
s |- 1 person-day
(o]
n
S
[N N N S) O I N B
days
Computer Science . . . Computer Science .
UNIVERSITY OF TORONTO geometric analogy — capacity constraint UNIVERSITY OF TORONTO release plannlng
* what are we building? F
Z * when will it be ready? T
r * how many developers? N
S
o}
n FSNxT
S
* plan must respect the capacity constraint
days
* must continuously update the plan to maintain
) i this propert
everything must fit! property

Computer Science
UNIVERSITY OF TORONTO most common problem

* comes from either:
— not knowing, or

— knowing but hoping for the best (death march)
(can happen at the start, or later in the plan)

Computer Science
UNIVERSITY OF TORONTO

dealing with overflow

Developer leaves the
team

Add time

R —

Cut features

Both

Computer Science
UNIVERSITY OF TORONTO

dealing with overflow (2)

feature expansion

4

>

developer returns

Computer Science . . .
UNIVERSITY OF TORONTO orgamzaﬁonal issues

* management must appreciate that software
development carries with it certain inherent
risks.

* the business of a software organization is to
manage and adapt as possibilities continuously
become reality.

* ranting and raving is unproductive.

* with good data, good managers can make good
decisions.

§

Computer Science

UNIVERSITY OF TORONTO

bonus material...

burndown charts

Computer Science

@UNIVERSITY OF TORONTO

burndown charts

Remaining Effort (days)
o

0 5

Project XYZ lteration 1 Burn Down

fteration Timeline (days)
M Ideal Remaining Effort

10 15 20

M Actual Remaining Effort

§

Computer Science
UNIVERSITY OF TORONTO

burndown charts (2)

300 -
250 A
200 -
150 4
100 A

50 4

0 -

I Daily Completed
= Planned

s— Actual

012 34567 8 91011121314151617 181920

§

Computer Science
UNIVERSITY OF TORONTO

burndown charts (3)

400
350 A

300 g
250

Workitem Hours
8
o

0 Fr=rrrrTTT

—— Pending
C—In Progress
C—— Complete

-..._||—"— Remaining

Nx A e e

Calendar Days

* wifis that!?!?

— Trust me, don’t show this one to your CEQ!

