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¢ CMM levels & tasks:
1) initial

Iecture 19 totally ad-hoc, no process
. 2) repeatable
software development planning - planning & tracking
o *  project management
continued... 3) defined
e process definition, reviews, etc.
csc302h *  engineering management
) 4) managed
winter 2014 e quality of process & feedback for improvement
* quantitative management
5) optimizing
*  continuous improvement & change management
@5?«?@%‘&2??@“& TORONTO recap from last time (2) @5%’?5‘&‘&2?%‘%“& TORONTO recap from last time (3)

* how the top-10 relates to ISO 9000 and to the
CMM levels

* started talking about planning
— what goes wrong if you don’t plan
* crossing the chasm
— why plan? — external pressures

* planning essentials
— what are we building?
— by when will it be ready?
— how many people do we have?

* the essence of planning is uncertainty
— react to changes; both internal & external

the difficult question is:
what are we building?
by when will it be ready?
how many people do we have?

e can we do all three at once?

* acommon problem is to answer the three
questions, but not the difficult one

— good planning to avoid the death march
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Software Development Planning Il
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today

software development planning

continued...
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Next Release

Potential Requirements

* starts with a wish-list
* stated as business requirements

— features and/or architectural enhancements
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A Simple Release Plan

Capacity:
Fred
Lorna
total

Requirement:
AR report

Dates: Coding phase: Jul.1—Oct.1
Beta availability: ~ Nov.1
General availability: Dec.1

Dialog re-design 22 ecd

Thread support 87 ecd

total 317 ecd

Status:
Capacity: 317 effective coder-days
Requirement: 317 effective coder-days
Delta: 0 effective coder days

days available
31 ecd

33 ecd
21 ecd
317 ecd

days required
14 ecd
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¢ who can work on the release?
— skills & familiarity required

* for how long?
— count of workdays in development phase

— is each resource (developer) available for the
entire development phase?

— are they available 100% or are working on other
projects too?

— subtract (estimated, where necessary) vacation
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* how much time can the developers spend
actually writing software?

— work factor = w

— converts 8-hour (nominal, arbitrary) days to
time available to write code and unit tests for
the next release (or horizon)

—ex.w=0.6=>06x8h/d=4.8h/d
— first estimated, then measured quantity
— accounts for things like:

* sick days, other tasks, meetings, etc.

— for a “normal” developer is usually around 0.6
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potontiagaqulnment.
30 36 43

* cost / benefit analysis
— cost: financial + opportunity = person days
* sizing in ECDs
— planning poker: Inherent size of the work item
— who will work on it? Resize
— productivity of that person (w)
* ensure that units are well understood
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the capacity constraint

 after all is done in a release (horizon)...
actual resources used == sum of actual feature time

* this is always true no matter what, so it really is a
constraint

* so, given that we know this must work out for
each planning cycle, we estimate both sides and

force them to be equal

resource estimate == sum of feature estimates
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UNIVERSITY OF TORONTO geometric analogy — capacity constraint UNIVERSITY OF TORONTO release plannlng
* what are we building? F
Z * when will it be ready? T
r * how many developers? N
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* plan must respect the capacity constraint
days
* must continuously update the plan to maintain
) i this propert
everything must fit! property
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* comes from either:
— not knowing, or

— knowing but hoping for the best (death march)
(can happen at the start, or later in the plan)
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dealing with overflow

Developer leaves the
team

Add time

R —

Cut features

Both
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dealing with overflow (2)

feature expansion

4

>

developer returns
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* management must appreciate that software
development carries with it certain inherent
risks.

* the business of a software organization is to
manage and adapt as possibilities continuously
become reality.

* ranting and raving is unproductive.

* with good data, good managers can make good
decisions.
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bonus material...

burndown charts
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burndown charts

Remaining Effort (days)
o

0 5

Project XYZ lteration 1 Burn Down

fteration Timeline (days)
M Ideal Remaining Effort

10 15 20

M Actual Remaining Effort

§

Computer Science
UNIVERSITY OF TORONTO

burndown charts (2)
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burndown charts (3)
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* wifis that!?!?

— Trust me, don’t show this one to your CEQ!




