Computer Science
UNIVERSITY OF TORONTO

lecture 20
capacity constraint

csc302h
winter 2014

&

Computer Science

UNIVERSITY OF TORONTO recap from last time

* requirements (or features = F)
— prioritized potential requirements from wish list
 can even do full cost / benefit analysis

— estimate a size for each (planning poker) in
ideal days (ECDs)

* calculate available resources (N)

— pick a value for T (workdays until release date,
end of sprint, horizon, ...)

— for each developer, determine availability,
vacation, and then multiply by w

2 | Computer Science .
@UNIE?RSI;Y OF TORONTO recap from last time (2)

FS<NxT
* plan must respect the capacity constraint

* keep plan up to date with most current estimates
at all times

* dealing with overflow
— move dates
— cut features
— combination
— adding developers is rarely helps the current plan

Computer Science . .
@UNIVERSITY OF TORONTO CapaCIty constraint

* at the end of a release (sprint, horizon, ...) the
following relationship must hold:

A

T

* today we will more rigorously define this

— to know what we are trying to estimate
— how to compare actuals to estimates (post-mortem)

& Sci
éu&?@ﬁh?@n& TORONTO number of work days: T

T

 number of full working days for development,
subtracting

— weekends

— statutory holidays

— “company days”

— anything we know ahead of time

Computer Science
@UNIVERSITY OF TORONTO developer power. N

* the average number of dedicated developers
per work day during the T-day period

— subtract vacation
— multiply individual work factors: w,
— also defines daily burn-down rate

Computer Science . . .
éum%tnsrcrv or Toronto Work time vs. dedicated time

 work time
— defined as 8 hours per work day

e dedicated time

— uninterrupted hour equivalents

— time dedicated to adding new features to
release or (unit testing)

* uninterrupted time

— 8 hours with 1 hour of constant interruptions is
not 7 hours...more like 4

Computer Science .
@UNIEEtRSI;Y ((:)F TORONTO dEdlcatEd IOSSES

* maintenance on previous (still supported)
releases

* |eadership duties

* meetings

* training

e unexpected days off (ex. illness)

* sales/marketing support

* loss of “zone time” due to interruptions

* work on other projects (availability)

Computer Science

@UNIVERSITY OF TORONTO measuring N (pOSt-faCtO)

2

h
m|
ST

N =

e assume all developers understand what
dedicated, uninterrupted hours are

* nisthe number of developers

* h.is the total number of hours logged by

developer i on all features in the release (best
read from time tracking system)

4 Computer Science . .
@UNIEERSITY OF TORONTO attrlbuﬁng N

h Eti "W
ti = di —Vl. W. l | N _ =l
’ T

* d;isthe number of days developer i is available during
the development phase (sprint, horizon, ...)

* v.is the number of vacation days developer i took
during the development phase

substitute to get back to: E
N =-

h
=
ST

Computer Science

@UNIVERSITY OF TORONTO example

T =39
Doop =32 h . =120
Vint = > h 120
Lo = Aoy, = Voo =35—=5=30 Wbob=8.tbb=8.30=0-5

* Bob called in sick 2 days
— accounted forin h,,,

 Bob took an afternoon off, but worked on the
weekend to make up for it

— Accounted forin h,,

Computer Science
UNIVERSITY OF TORONTO features

F=2fk

* f.is the number of dedicated days (dedicated
hours + 8) it took to develop the kth feature

Computer Science
UNIVERSITY OF TORONTO pos t-mortem

* need a time tracking system capable of tracking h;, ;:

— dedicated (uninterrupted) hours spent
* by the it" developer (out of all n developers)
* on the dt" day
« working on the k" feature

e each such “guantum” would appear on either side of
F =N x T constraining them to be equal

* see section 5.10 of the Penny book for proof

