Computer Science
UNIVERSITY OF TORONTO

lecture 22
course review

csc302h
winter 2014




Computer Science

@UNIVERSITY OF TORONTO courser eview

* hope the pizza is here by now!
e we covered a lot in this course!

 why do we need a course on engineering large
software systems?

— historically, humans have been pretty bad at it!

— billions are wasted annually on failed or over-
budget software projects




@ Computer Science .
UNIVERSITY OF TORONTO course review ( 2 )

e we discussed what it means for a software
system to be considered “large”

— lots of possible choices for metrics
— chose another definition without metrics:

for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and will be used by
someone other than the developer




J Computer Science . .
UNIVERSITY OF TORONTO review — modelmg

* we build models to help:
— during design
— to analyze existing systems (reverse engineer)
— to help us communicate

 models are abstractions

— help us focus on important aspects, not blinded
by the details

— decomposition, modularization, association




J Computer Science . .
UNIVERSITY OF TORONTO review — arch:tectur e

* avoid unnecessary coupling & cohesion

e if alayered approach, what are the layers?
what goes in each?

— following a pattern like MVC, MVP?

* modularize for reusability (well designed public
interface)




Computer Science

éumvansm OF TORONTO review — architecture (2)

e Conway’s law re. software structure &
communication structure

e common architectures

— layered:
* open vs. closed, n-tier, partitioned

— others: broker, client-server, event-based,
repository (hub), MVC

e UML
— package & component diagrams




@ Computer Science . .
UNIVERSITY OF TORONTO  review — software evolution

* E-type, S-type, P-type systems
 Lehman’s laws of program evolution

— continuing change, increasing complexity, self-
regulating, conservation of; organizational
stability, familiarity

* maintenance, rejuvenation, refactoring




&

Computer Science

UNIVERSITY OF TORONTO  Feview — sequence diagrams

* modeling software behavior with sequence
diagrams

— UML collaboration diagram captures control
flow, sequence is a different rendering

— emphasis on time. objects on top, arrows are
“messages”, time is vertical

— interaction frames (alt, opt, loop, par, ...)
 when to use sequence diagrams?

— discussing design options

— elaborating on use cases




&

Computer Science

UNIVERSITY OF TORONTO review — use case diagrams

* capture system requirements
* show how users interact with a system

e short phrase to sum up a distinct piece of
functionality

e “actors” (stick ppl) show a role that a user takes
on during an interaction

e each use case has one or more actors

* relationships between use cases like «extends»,
«uses», «includes»

* reverse engineering use cases to describe a
system




Computer Science .
éUleERsnY OF TORONTO review — SDLC

* agile vs. [traditional | planning-based | sturdy |
disciplined]

 what do they share? how are they different?

* which is better?
— both & neither — depends on context

 SDLC models covered: waterfall, prototyping,
phased, spiral, RUP, SCRUM, XP

* Gantt charts as a (bad) planning tool




&

Computer Science

UNIVERSITY OF TORONTO review — risk management

* risk exposure:
— RE = probability x consequences (loss)

* risk reduction leverage
— RRL = (RE
e risk assessment

vefore — RE.rer) + COSt Of mitigating action
— quantitative (if you can)
— qualitative (risk exposure matrix)

* don’t have independent V&V report to the
development manager (conflict of interest)

* V&V comes out of separate budget




Computer Science . . .
UNIVERSITY OF TORONTO review — reqUIrementS anaIySIS

WHAT PROBLEM ARE
WE TRYING TO SOLVE?

e answer this wrong and you’ll have a quality fail
(and all it’s associated ugliness)

* requirements change over time
* requirements can be incomplete

* therefore, requirements analysis is on-going
and iterative




J Computer Science . . .
UNIVERSITY OF TORONTO review — requirements analys:s (2)

* so, how do we solicit requirements? where do
they come from?

— identify the stakeholders
— identify the goals of the stakeholders
— then think very hard about:

WHAT PROBLEM ARE
WE TRYING TO SOLVE?

— it may not be what you were told




2 Computer Science . . .
UNIVERSITY OF TORONTO review — requirements analys:s (3)

* from requirements to production

Machine °°lnq,'
N

C - computers

P - programs

e D: consists of assumptions, or, truths

* R:arethe wants, the things that solve the problem

e S:isthe bridge, what must the system do to satisfy R
e P:isthe program that satisfies S

 C:iseasy, buy it, rentit, orit lives in the cloud, or...

 ingeneral: S(givenD)=R



&

Computer Science

UNIVERSITY OF TORONTO  fFeview — robustness analysis

* bridge between use case and more technical
things like sequence diagrams & code

e skipped if you don’t need it
e used to:
— analyze logic of a use case

— ensure use cases are “robust” in that they really
do represent the usage requirements

— identify objects & responsibilities
— visualize the things will build (i.e. code)

— communicate (almost) technical stuff to
stakeholders




&

Computer Science

UNIVERSITY OF TORONTO review -— V&V

e validation, or high-level testing, is usually
preformed by doing “dynamic testing”

— unit tests (less so, more for verif.), integration tests,
system tests, acceptance tests (UAT)

e validation: “are we building the right thing?”
 verification: “are we building the thing right?”

e test cases are written for verification & run for
validation.

* range of activities:
— mission critical: may use formal methods (proofs)
— latest fart app, probably not so much :)




Computer Science

UNIVERSITY OF TORONTO review — testing

* multiple causes for defects: missing
requirements, spec. error, bad design, bad

algos, bad developers!
* defects (may) lead to failures, or go unnoticed.

* removing defects earlier is cheaper,
sometimes by orders of magnitude!
» defect detection strategies & effectiveness:
— formal design inspections & testing — 95% (ish)
— agile informal review & regression — 90% (ish)
— different costs, both useful depending on context




Computer Science

@UNIVERSITY OF TORONTO review — testing ( 2 )

* some characteristics of good tests:
— power: bug exists, test will find it
— validity: no false-positives
— non-redundancy: provides new information
— repeatability: easy to re-run

— etc. (don’t memorize, but refer back when
coming up with test plan)




&

Computer Science

UNIVERSITY OF TORONTO review - testing (3)

* type of test, to what it applies, & what it is testing:

— unit: unit of code, tested separately, generally applies
to single use case or part of

— integration: many (or all) units together, tests that
code meets design specs.

— Functional test: coverage of all inputs (inc. edge/
corner cases), tests functional req’s.

— performance: tests (one of the) quality requirements
— acceptance: customer goals

— installation: user environment (optional depending on
context)




&

Computer Science

UNIVERSITY OF TORONTO review - testing (4)

e structural testing (a.k.a. white-box testing)
— should be called “clear-box” testing
— based on structure of code
— coverage == all paths through code tested

* functional testing (a.k.a. black-box testing)
— can’t see inside
— test cases derived from use cases

e other types of testing:

— dataflow, boundary, usability, acceptance,
exploratory, interference, etc.




Computer Science . .
UNIVERSITY OF TORONTO review — testmg (5 )

e test driven development (TDD)
1. developer writes (initially failing) unit tests
2. then, write minimum code to pass unit test

3. then refactor (i.e. write more code) to meet
full specification

* automated testing

* coverage

— both functional and structural (& behavioral,
inheritance)




&

Computer Science

UNIVERSITY OF TORONTO review — static analysis

e static (program) analysis refers to the analysis of a
program’s source code.

e various tools for various programming languages

* increasingly, the IDE is performing static analysis for
us on the fly

* tools look for things like:
— null dereference or null assignment
— array index out of bounds
— other runtime errors not caught by compiler

* |ots of false positives & negatives




Computer Science . .
UNIVERSITY OF TORONTO review — quallty

* whatis quality?
— value to some person
— fitness to purpose
— exceeding the customer’s expectations

e quality assurance focuses on the quality of the
process (V&V on quality of product)

e quality frameworks
— six sigma (60)
— capability maturity model (CMM)




Computer Science

UNIVERSITY OF TORONTO review — top-10 essential practices

source code

i control reproducible
infrastructure / B e

AN

automated
regression
testing

defect/feature
tracking

control
_ effort process
refinement tracking v control
business

planning




Computer Science

UNIVERSITY OF TORONTO review — release planning

* a.k.a. (software) development planning, agile
horizon planning, etc.

What are we building?
By when will it be ready?
How many people do we have?

e can we do all 3 at once?




é Computer Science . .
UNIVERSITY OF ToRONTO  review — release planning (2)

* the essence of planning is uncertainty
— react to changes; both internal & external

* what goes wrong if you don’t plan
— crossing the chasm

* why plan? — external pressures

* with good data, good managers can make good
decisions.




&

Computer Science

UNIVERSITY OF ToRONTO  review — release planning (3)

* requirements (or features = F)
— prioritized potential requirements from wish list
 can even do full cost / benefit analysis

— estimate a size for each (planning poker) in
ideal days (ECDs)

* calculate available resources (N)

— pick a value for T (workdays until release date,
end of sprint, horizon, ...)

— for each developer, determine availability,
vacation, and then multiply by w




@ Computer Science . .
UNIVERSITY OF TORONTO review — rEIease traCk'ng

* the capacity constraint
F=NxT

* plan must respect the capacity constraint

* keep plan up to date with most current
estimates at all times

* dealing with overflow
— move dates

— cut features
— Combination
— adding developers is rarely help to current plan




Computer Science . .
éumfrsnsm oF TorRoNTO  review — release tracking (2)

* burndown charts to show velocity over time

Capacity vs Requirement

300

50

([ 44 1 |

200 4

150 4

100 4




&

Computer Science

UNIVERSITY OF TORONTO review — estimation

* most important points:

— estimates are not saying exactly how long you
think something will take (by definition)

— they are stochastic variables, we model them
with a normal distribution

— we can use confidence intervals to determine
how likely we are to meet deadlines

» estimate with a given confidence interval in
mind (ex. 80%)




Computer Science
UNIVERSITY OF TORONTO




