
     

Copyright © 2012 by David A. Penny 

 

The Agile Planning Horizon in 
Professional Software Development 

Managing at the dynamic boundary where business 

necessities meet software development realities. 

 

 

 

David A. Penny, Ph.D. 

 

15 September, 2012 (12
th

 edition) 

  

$40 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny ii 

© 2012 by Dr. David A. Penny, Toronto, Ontario, Canada 

 

All rights reserved. No part of this book may be reproduced, in any 

form or by any means, without permission in writing from the author. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny iii 

ABOUT THE AUTHOR 

Dr. Penny has had a mixed industrial and academic career spanning 

over 25 years involvement in software development. 

As a Ph.D. student at the University of Toronto specializing in 

languages, operating systems, and software engineering, Dr. Penny was 

involved in software production initiatives including chemical-physics 

simulation software, robotic control software, variable-precision 

numeric libraries, language run-time environments, the Object-Oriented 

Turing IDE, the Mini Tunis teaching operating system, the Software 

Landscape, a program verification system, and the Polyx multi-

processor operating system. 

Following graduation, Dr. Penny took a position at IBM working on 

an integrated development environment for C++ on the AIX platform. 

Dr. Penny then joined Algorithmics Incorporated becoming its CTO 

and VP Software Development. He led the development of 

RiskWatch™, the industry's leading middle-office financial risk 

management software for global banks, and related products. 

After Algorithmics, Dr. Penny brought his ideas to a larger 

population as a software development management consultant and as an 

Associate Professor of Computer Science at the University of Toronto. 

Dr. Penny then joined Electronics Workbench, a provider of 

packaged Windows-based software to electronics professionals and 

educators, as Vice President of R&D. He is currently CIO at Ceryx 

Inc., an applications service provider where he is adapting his ideas to 

fit delivery of Software-as-a-Service. 

  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny iv 

ACKNOWLEDGEMENTS 

I would like to express my thanks to the professional software 

development colleagues I have encountered during my career and who 

have informed and inspired so much of this book. 

Special thanks to Arthur Tateishi, a long-standing colleague and 

friend with whom, over the course of numerous professional software 

development engagements, we have developed many of the ideas 

forming the basis of this book. 

My thanks to Professor Richard C. Holt for mentoring and assisting 

me in the early days of my career, and providing leeway to allow me to 

try out my ideas and try my hand at running software projects. 

Thanks to Steve Rosenberg for many discussions on software 

development management, and for recommending me for my first 

executive management role. Thanks also to Ron Dembo, Bill Dinardo, 

Bill Wignall, and Gus Harsfai, for believing in these ideas and allowing 

me free reign to implement them, and to Jonathan Rose for hiring me to 

teach a software engineering course to his 4th year students which 

inspired the creation of this book. 

To Matt Medland, Braulio Lam, Derek Mock, Tom Berenstein, 

Erich Klein and my numerous students for taking these ideas and 

putting them into practice so wonderfully within their software 

development organizations. 

And finally, a big thanks to Matt Medland for his detailed comments 

on the book. Any remaining errors are entirely my own. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny v 

Contents 

Preface .......................................................................................... 1 

1. Introduction ............................................................................. 3 

1.1. Agile Development ...................................................................... 4 

1.2. Continuous Release Methods ....................................................... 7 

1.3. The Agile Planning Horizon......................................................... 9 

1.4. Dynamic Estimation Equilibrium ............................................... 12 

1.5. Essential Practices ...................................................................... 13 

1.5.1. Source Code Control...................................................................... 13 

1.5.2. Defect / Feature Tracking .............................................................. 14 

1.5.3. Reproducible Builds and Deployment ............................................ 14 

1.5.4. Automated Regression Testing ....................................................... 15 

1.5.5. Agile Horizon Planning ................................................................. 15 

1.5.6. Feature Specifications ................................................................... 16 

1.5.7. Architectural Control ..................................................................... 16 

1.5.8. Effort Tracking ............................................................................... 17 

1.5.9. Process Control ............................................................................. 17 

1.5.10. Software Development Business Planning ................................... 18 

1.6. Effective and Defective Organizations ....................................... 18 

1.6.1. Infrastructure ................................................................................. 18 

1.6.2. Control ........................................................................................... 22 

1.6.3. Refinement ..................................................................................... 25 

1.6.4. Relationships .................................................................................. 27 

1.7. Intended Audience & Scope ....................................................... 29 

1.8. Professional Experience ............................................................. 31 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny vi 

2. Planning .................................................................................. 33 

2.1. Planning  Overview ................................................................... 34 

2.2. Why Plan?.................................................................................. 35 

2.3. Gantt Charts Considered Harmful ............................................. 37 

2.4. Of Mice and Men ....................................................................... 39 

2.5. The Difficult Question ............................................................... 42 

2.6. A Software Vendor Fable .......................................................... 44 

3. Agile Horizon Planning Overview ....................................... 47 

3.1. Software Vendors ...................................................................... 48 

3.2. The Traditional Software Product Lifecycle ............................. 50 

3.3. SaaS Lifecycle ........................................................................... 53 

3.4. The Agile Horizon Plan ............................................................. 54 

3.5. Implementation Planning ........................................................... 58 

3.6. Eliciting Potential Requirements ............................................... 60 

3.7. Sizing Potential Requirements ................................................... 61 

3.8. Sizing the Available Resources ................................................. 63 

3.9. The Capacity Constraint ............................................................ 65 

3.10. Ratios ....................................................................................... 67 

3.11. Shipping the Release ............................................................... 71 

3.12. Summary .................................................................................. 73 

4. The Capacity Constraint ....................................................... 75 

4.1. A Geometric Analogy ................................................................ 75 

4.2. Organizational Issues ................................................................. 80 

4.3. Setting Expectations .................................................................. 82 

4.4. A Web of Commitments ............................................................ 83 

4.5. Managing the Plan ..................................................................... 84 

5. The Quantitative Capacity Constraint ................................ 87 

5.1. Basic Definitions ....................................................................... 88 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny vii 

5.2. Post-Facto Considerations ......................................................... 89 

5.3. Number of Workdays, T ............................................................. 90 

5.4. Developer Power, N ................................................................... 91 

5.5. Attributing N .............................................................................. 93 

5.6. Factors Affecting wi ................................................................... 97 

5.7. Effort, F ...................................................................................... 99 

5.7.1. Common Work and Abandoned Features .................................... 100 

5.8. Developer Productivity ............................................................ 102 

5.9. F = N  T .................................................................................. 104 

5.10. Proof of the Capacity Constraint ............................................ 106 

5.11. Modifications for Continuous Release ................................... 108 

5.12. Summary ................................................................................ 111 

6. The Stochastic Capacity Constraint .................................. 113 

6.1. Confidence Intervals ................................................................ 114 

6.2. Stochastic Variables ................................................................. 115 

6.3. Estimates .................................................................................. 118 

6.4. The Capacity Constraint ........................................................... 119 

6.5. Summing Distributions ............................................................ 120 

6.6. The Delta Statistic .................................................................... 121 

6.7. The Initial Planning of the Release .......................................... 123 

6.8. Adjusting the Agile Horizon Plan ............................................ 124 

6.9. Advanced Planning I ................................................................ 126 

6.10. Advanced Planning II ............................................................. 129 

6.11. Appreciating Uncertainty ....................................................... 131 

6.12. Loading the Dice .................................................................... 134 

6.13. Summary ................................................................................ 137 

7. Software Releases ................................................................ 139 

7.1. Concepts & Terminology ......................................................... 140 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny viii 

7.2. New Releases ........................................................................... 144 

7.3. The Cost of Feature Releases .................................................. 146 

7.4. Being Responsive to Customers .............................................. 148 

7.5. Pushing Back ........................................................................... 151 

7.6. Features in Maintenance Releases ........................................... 152 

7.7. Release Proliferation ................................................................ 155 

7.8. Mitigating the Consequences ................................................... 157 

7.9. Impact of SaaS ......................................................................... 157 

7.10. Summary ................................................................................ 161 

8. Software Versions ................................................................ 163 

8.1. Concepts & Terminology ........................................................ 163 

8.2. Costs of Versions ..................................................................... 165 

8.3. Version Proliferation ............................................................... 166 

8.4. Static Versus Dynamic Versions ............................................. 168 

8.5. Customized Software ............................................................... 169 

8.6. User-Extension APIs ............................................................... 171 

8.7. Summary .................................................................................. 178 

9. Source Control & Build ...................................................... 179 

9.1. Requirements for a Source Control System ............................. 179 

9.2. Uses For Source Control .......................................................... 184 

9.2.1. Repository .................................................................................... 184 

9.2.2. Structure ...................................................................................... 184 

9.2.3. History ......................................................................................... 185 

9.2.4. Control......................................................................................... 186 

9.2.5. Collaboration .............................................................................. 186 

9.2.6. Multiple Streams .......................................................................... 187 

9.2.7. Reproducible System State ........................................................... 187 

9.2.8. Coder/Build Communication ....................................................... 188 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny ix 

9.3. Codeline Policy ........................................................................ 190 

9.3.1. The Main Codeline ....................................................................... 190 

9.3.2. Maintenance Codeline ................................................................. 192 

9.3.3. Shipping Codeline ........................................................................ 193 

9.3.4. Private Codeline .......................................................................... 194 

9.3.5. Example ....................................................................................... 194 

9.3.6. SaaS Codelines ............................................................................ 196 

9.4. Builds and Installs .................................................................... 197 

9.5. Development Builds ................................................................. 199 

9.6. Production Builds ..................................................................... 201 

9.7. Automated Builds ..................................................................... 203 

9.8. Summary .................................................................................. 205 

10. Testing ................................................................................ 207 

10.1. Unit Test ................................................................................. 208 

10.2. Component Test ..................................................................... 208 

10.3. Integration Test ...................................................................... 209 

10.4. System Test ............................................................................ 209 

10.5. Final Release Test .................................................................. 210 

10.6. Automated Regression Testing .............................................. 210 

10.7. Performance Regression Test ................................................. 211 

10.8. Memory Leak Test ................................................................. 213 

10.9. Benefits of Regression Testing .............................................. 213 

10.10. Regression Coverage ............................................................ 215 

10.11. GUI Versus Scripting ........................................................... 217 

10.12. Regression Testing Architecture .......................................... 220 

10.13. Summary .............................................................................. 224 

11. Defect Tracking ................................................................. 225 

11.1. Introduction to Defect Tracking ............................................. 225 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny x 

11.2. Defect Information ................................................................ 226 

11.3. Defect States .......................................................................... 228 

11.4. Management Controls ............................................................ 231 

11.5. Metrics ................................................................................... 232 

11.6. Relationship to Source Code Control Systems ...................... 234 

11.7. Defect Attribution .................................................................. 237 

11.8. Relationship to Customer Issue Tracking .............................. 238 

11.9. Shipping Software With Known Defects .............................. 240 

11.10. Release Notes ...................................................................... 242 

11.11. Automated Patching Facilities ............................................. 244 

11.12. Summary .............................................................................. 247 

12. Feature Tracking ............................................................... 249 

12.1. Feature Tracking System ....................................................... 249 

12.2. Feature Information ............................................................... 250 

12.3. Feature States ......................................................................... 252 

12.4. Specifications & Designs ....................................................... 256 

12.5. Reviews ................................................................................. 260 

12.5.1. Feature Review .......................................................................... 260 

12.5.2. Specification Review .................................................................. 261 

12.5.3. Design Review ........................................................................... 262 

12.5.4. Code Review .............................................................................. 263 

12.5.5. Feature Demo ............................................................................ 263 

12.6. Effort Tracking ...................................................................... 264 

12.7. Management Control ............................................................. 267 

12.7.1. Coder Work Factors and Vacation Estimates ........................... 267 

12.7.2. Actual Versus Estimated Feature Time ..................................... 269 

12.7.3. Progress to Process ................................................................... 270 

12.8. Summary ................................................................................ 272 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny xi 

13. Process Control .................................................................. 273 

13.1. The Process Document ........................................................... 273 

13.2. Documenting Process ............................................................. 274 

13.2.1. Scope .......................................................................................... 274 

13.2.2. Actors ......................................................................................... 274 

13.2.3. Inputs ......................................................................................... 275 

13.2.4. Outputs ....................................................................................... 275 

13.3. Sample Process Document ..................................................... 275 

13.4. Process Enhancement ............................................................. 291 

13.5. Summary ................................................................................ 294 

14. Architectural Clarity ......................................................... 295 

14.1. The Efficiency of Clarity ........................................................ 295 

14.2. Code Clarity ........................................................................... 297 

14.3. Coding Standards and Metrics ............................................... 302 

14.4. Architectural Clarity ............................................................... 304 

14.5. Architectural Degradation ...................................................... 305 

14.6. Summary ................................................................................ 307 

15. The Software Vendor Business Environment ................. 309 

15.1. Managing ................................................................................ 309 

15.2. The Software Vendor’s Business ........................................... 310 

15.3. Software Vendor Structure ..................................................... 313 

15.4. Marketing ............................................................................... 316 

15.5. Sales ....................................................................................... 319 

15.6. Client Services........................................................................ 321 

15.7. Finance and Administration ................................................... 321 

15.8. Summary ................................................................................ 321 

16. Business Planning .............................................................. 323 

16.1. Proposals ................................................................................ 323 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



  

Copyright © 2012 by David A. Penny xii 

16.2. Corporate Budgets ................................................................. 326 

16.3. Funding Initiatives ................................................................. 328 

16.4. The Annual Budget Cycle ..................................................... 329 

16.5. The Software Development Business Plan ............................ 330 

16.5.1. Introduction ............................................................................... 331 

16.5.2. Baseline Budget ......................................................................... 332 

16.5.3. Organizational Structure ........................................................... 335 

16.5.4. New Project Summary ............................................................... 336 

16.5.5. Project Details ........................................................................... 338 

16.6. Establishing The Budget Request .......................................... 339 

16.7. Finalizing the Budget ............................................................. 340 

16.8. Summary ................................................................................ 341 

17. Concluding Remarks ......................................................... 343 

Appendix A Sample Deterministic Agile Horizon Plan .. 345 

Appendix B Sample Stochastic Agile Horizon Plan ........ 353 

Appendix C Agile Horizon Plan Definitions .................... 361 

 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012  by David A. Penny 

Preface 

The programming of computers is still a relatively young field. Up until 

the 1970's, the scarcest commodity required for programming was 

computer time. Everything that could be done to conserve computer 

time was worthwhile, even at the expense of vast person effort. 

With the advent of more affordable computers, that situation 

changed. As a graduate student working at the University of Toronto in 

the 1980's, we had Sun™ workstations running Unix™ at our desks. 

We self-organized into teams who interacted every day, we designed as 

we went, and we had continuous feedback with stakeholders. We 

continuously integrated our work with other team members using 

source code control systems developed by our contemporaries, and we 

strove to put in place automated testing frameworks because manual 

testing was ineffective and just plain boring. 

We were shocked to learn that there was another world, a Corporate 

world, a Department of Defense world, where very large teams of 

people wrote volumes of documentation and had them signed off 

according to rigorous processes, not approaching an actual computer 

until much later. Testing was manual and performed at the end, only 

then exposing significant problems that caused massive delays as code 

designed by different teams had to be made to work together. 

Many of us at the time were able to avoid this monstrosity in its 

entirety. After completing my Ph.D. in the field of software engineering 

I moved on into industry at the height of the dot-com bubble in the mid 

1990's where I became a manager/architect/coder, learning my 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



2 Preface  

Copyright © 2012 by David A. Penny 

professional trade as I went, leading the development efforts of one of 

Canada's most rapidly growing software companies. We did not look 

back. We used what worked for us on the large University projects, 

learned from one another, and learned how to work effectively with 

important customers and the business side of the organization. 

It was during those early professional years where I first developed 

many of the concepts and ideas captured in this book, and later honed 

them by applying and adapting them to other organizations I managed, 

and by evaluating other companies and helping them as a consultant. 

The genesis of this book was in the summer of 2005 upon a request 

from the Chair of the Department of Computer Engineering at the 

University of Toronto, Jonathan Rose (a TA of mine when I was an 

undergraduate, and the very successful founder of his own company 

that wrote innovative FPGA design software based on his research). 

Jonathan asked if I would teach a practical course on software 

engineering to their 4
th
 year students. I told him if I did, I would throw 

out the traditional software engineering textbook (essentially 

unchanged since I had taken the course two decades earlier) and start 

fresh based on what I had learned myself. Jonathan was encouraging of 

this approach, so I wrote the first iteration of this book in that summer, 

and I have been teaching the course and refining the book in my spare 

time ever since. 

My hope is that you may find something within these pages to assist 

you in our shared passion: developing great software without drama! 

 

David A. Penny 

Toronto, Ontario 

September 2012 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012  by David A. Penny 

1. Introduction 

In my experience as a manager and consultant, I have observed that not 

enough commercial software development is conducted in a truly 

professional manner. This lack leads to extended development time, 

defect-laden software, and considerable frustration. This situation is 

often due to a lack of application of basic professional practices. 

While there is no universal agreement on what constitutes basic 

professional practice, there is a core body of practice that accomplished 

professionals can agree upon. Some of these practices have come to be 

known as agile practices, and others just make good sense. The 

importance of these core practices and details for using them are not 

generally taught at the Universities where professional software 

developers are educated. Universities provide essential underpinnings 

for software professionals; however their focus is not on preparing a 

student specifically for commercial software development. This phase 

of the student's education has been left to an informal apprenticeship. 

My intent in writing this book is to provide professionals with the 

practical body of knowledge required to operate effectively. 

This is not a book specifically about how to design or code or test, 

but rather the focus is on the management of software projects. 

Building large-scale software systems is a problem of coordination, 

which in our case lies under the purview of technical software 

development management. However, I did not intend this book only for 

managers. For individual contributors as well it provides invaluable 

guideposts in how to effectively contribute to a well-functioning team. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



4 Introduction  

Copyright © 2012 by David A. Penny 

1.1. Agile Development 

Increasingly, professional software development organizations are 

embracing agile development methodologies. These encourage frequent 

human interaction, iterative development in small units of functionality, 

a continuously working state for the software proven through 

automated testing, and embracing late-breaking requirements changes. 

These ideas are not new. I used practices that have come to be 

known as agile as early as the 1980's. The term "agile" came about 

more recently (in 2001) to contrast these methods to the waterfall 

development methodology (and other process-heavy methods). 

The waterfall is a strict step-by-step document-driven method 

starting with full-system requirements documents, going on to full-

system specifications documents, software design documents, finally 

getting to coding, and then relegating testing to the end. The next step 

in the waterfall could not start until the previous one was signed off as 

being fully completed. Complex change processes were required to go 

back and re-work a step. 

 

 

Requirements 

Design 

Coding 

Specification 

Testing 

User Acceptance 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 5 

Copyright © 2012 by David A. Penny 

Waterfall never worked well. In fact, the very first description of it 

in the literature by Royce in 1970 in his survey paper "Managing the 

Development of Large Software Systems" explained why it could not 

work well because of the inherent feedback problems. 

Nevertheless, because it seemed reasonable, it was widely used "by 

default", despite other more agile approaches suggested in the literature 

(such as Barry Boehm's "Spiral" or James Martin's "RAD"). While the 

waterfall was increasingly showing itself to be problematic, at the same 

time it paradoxically became increasingly entrenched in 

bureaucratically-imposed approaches to software development. It was 

policy in large industry and government that contractors must submit 

work products according to the waterfall model, and the steps were 

even embedded into standards documents. 

With the accessibility of computing increasing in Universities, and 

the independent software vendor coming into prominence, smaller 

software development shops accountable only to themselves could 

choose what methodology they wished. In the absence of a reference 

framework for software development other than the waterfall, all such 

organizations ran the risk of being painted with the "cowboy hacker" 

brush. When things went wrong (as they often do in our business), the 

"solution" was to impose the dreaded "tried and true" waterfall, which 

only made matters worse. 

 To counteract this and to make professionally acceptable many of 

our best practices, in 2001 a group of like-minded thinkers came 

together at a ski resort in Utah to publish the "Agile Manifesto" (see 

http://agilemanifesto.org). A number of agile methods have been put 

forward, and increasingly many organizations, including large 

corporations, are embracing them. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



6 Introduction  

Copyright © 2012 by David A. Penny 

Agile methods are not document driven. They are driven by 

producing small increments of working programs that stakeholders can 

try for themselves to ensure they are getting what they want. In this 

way, the development can never go too far off track. The program is 

always kept in a working state by means of a strong focus on automated 

testing throughout the development effort. The program is only ever 

designed to meet the requirements of the next iteration of functionality, 

but is designed in such a way that is easy-to-modify when new 

requirements come up. 

The most popular agile methods have been Kent Beck's Extreme 

Programming and Sutherland and Schwaber's Scrum, as popularized by 

Mike Beedle. Both of these methods were developed during the 1990s. 

While agile methods are the clear way forward, when I hear from a 

software development organization that they "use agile", it can mean 

almost anything, and sometimes means almost nothing. Agile is 

emphatically not the lack of waterfall, or avoiding writing 

documentation, but rather the consistent and repeatable application of 

its practices embedded in a management framework that acts as a 

control system over the whole. In this book I talk about the practices 

and the management controls necessary to ensure they are provably 

carried out. 

This book is not about specific agile methods. There are a number of 

excellent books that deal with that.  All agile methods, all software 

development in fact, need to be supported by certain core development 

practices, and need to be controlled by certain core technical 

management practices. In this book we discuss these core practices 

essential to any agile development method. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 7 

Copyright © 2012 by David A. Penny 

1.2. Continuous Release Methods 

When I started my career, the software lifecycle was governed by the 

notion of the big bang release. Every year or so a new major release of 

the software was shipped, containing many user-visible changes with 

respect to earlier releases. Consider for example the Microsoft Office 

products such as Word and Excel in the 2003, 2007, and 2010 big bang 

releases. 

Owing to the methods by which software was delivered to its 

consumers, a new release had a lot of overhead. For example, shrink 

wrapped consumer software required system testing across all the 

various platforms it might install on, burning physical CD's, putting 

them into boxes, shrink-wrapping them, sending them out through 

distribution channels, and then having them hit store shelves. Different, 

but equally lengthy and high overhead processes apply to large 

enterprise software deliverables, as another example. 

These big bang releases provided an ideal planning horizon. By 

managing what the product would look like in nine-month increments, 

the business could plan its future. Deciding all the features to go into 

the next major release was a significant event, as these were make or 

break decisions for a product line.  

While this approach is still relevant in certain circumstances, a lot of 

commercial software has now moved to more continuous release 

methods. We need software management methods that can address 

release and distribution models across the spectrum. 

Some of the most aggressive continuous distribution methods are 

enabled by SaaS (Software-as-a-Service). The idea of SaaS is that the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



8 Introduction  

Copyright © 2012 by David A. Penny 

software vendor not only writes the software but also runs a large 

centralized instance. Customers access the software remotely using web 

browsers. 

With SaaS, businesses do not need to buy large compute and 

database servers, house them, power them, maintain them, and back 

them up. Rather the customer simply signs up for the service on a web 

site, and begins using the software immediately. They pay on a usage 

basis model: so many dollars per user per month. 

All customers share the centralized common instance, with the 

software itself maintaining separation between customers using the 

"multi-tenant" model (an analogy with the idea of many tenants 

occupying one large apartment building). 

With the SaaS delivery method combined with agile practices, it is 

possible (and advisable) to almost continuously release functional 

increments to the field. These functional changes need not necessarily 

be presented to customers immediately, but can be held back using 

configuration switches and released just to certain customers initially 

(recall a "Would You Like to Try our New Interface?" type of question 

you sometimes see when using a web-based application). 

Even certain software that installs onto desktop computers is coming 

close to continuous release methods with downloadable patches 

available on a frequent basis (my son tells multi-user gaming software 

is particularly know for this, as is software such as Adobe Acrobat 

which has frequent new releases). Indeed it is typical for your cable 

box, smart thermostat, or even your operating system to continuously 

download and apply patches, without you being aware of it. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 9 

Copyright © 2012 by David A. Penny 

With the advent of SaaS and continuous release methodologies, the 

traditional notion of the big bang software release is disappearing, and 

along with it the easy and obvious planning horizon of "the next major 

release". However, something must replace it in order for us to properly 

manage a software venture. 

1.3. The Agile Planning Horizon 

A complaint I often hear from business leaders whose development 

teams embrace agile methods is that they do not know what is going on. 

They do not know what will be delivered by when. They feel a lack of 

control of their business's destiny. 

At first glance, this seems to be an odd criticism of agile methods 

that were designed to provide stakeholders with continuous visibility 

and continuous feedback into what was being built. 

But is the CEO trying out the software every two weeks? Even if 

she were, does using the next iteration every two weeks give her an 

understanding of what will be delivered by the end of the fiscal year, or 

by the end of the quarter? 

The reason for this lack is that "first generation" agile methods did 

not particularly concern themselves with this issue. They focus on 

developing small increments in functionality in a high-quality and 

predictable manner. The original design point for agile methods is the 

desire to build software that satisfies the needs of an identifiable user 

set in the most efficient manner possible. Knowing what was going to 

be delivered on a nine-month time horizon, for example, was not a goal, 

and only slows things down to try to "guess". 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



10 Introduction  

Copyright © 2012 by David A. Penny 

This haziness over the longer time frame, however, flies in the face 

of business necessity which insists that we know the timeframe and the 

main feature set of the software product under development. 

In moving away from "big bang releases" in favor of more 

continuous release methodologies, we risk throwing out the baby 

(longer-term planning) with the bathwater (big bang releases). While 

the notion of the big bank release is going by the wayside in certain 

environments, we must still retain a method for planning our future. 

I was faced with this challenge myself as my talented Director of 

Software Development began moving our SaaS software to more 

continuous release methods. In order to reconcile the two, we decided 

that while big releases were gong away, what we formerly called 

"release planning" could be renamed "agile horizon planning". Indeed 

many software development organizations have adopted a similar 

notion, be it Altassian's JIRA Version concept 

(http://www.altassian.com), or Sutherland's MetaScrums [Sutherland 

2005, "Future of Scrum: Parallel Pipelining of Sprints in Complex 

Projects"]. 

With horizon planning we identify a fixed planning horizon (our 

business finds a quarterly planning horizon to be convenient) and we 

decide before the quarter starts what set of features would be most 

beneficial, yet still feasible to deliver, within that planning horizon. 

The details of when exactly the various features would get released 

to the field (a software development concern), and how they would be 

bundled and presented to customers (a product management concern) 

were unimportant. What was important was managing the set of 

features that would be shipped within the planning horizon. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 11 

Copyright © 2012 by David A. Penny 

At first glance, this seems straightforward, but it is anything but. We 

need to have a high degree of confidence that everything we were 

planning to ship would ship with high quality and within the horizon. 

We are not willing to just take the team's word on it. We need to see the 

background work that went into the team convincing themselves that it 

is feasible. This required a methodical approach, and this is the 

approach we outline in this book. 

However, software development is not a sure thing. We are often 

building things that have never been built before, and managing the 

uncertainty in the horizon plan is equally critical as having a feasible 

plan in the first place. Thus as we work through the planning horizon, 

we insist that new and up-to-date information continuously flow into 

the plan, and that the plan itself be updated continuously as a result. 

Just as software development is uncertain, so is the business climate 

in which we develop the software. New customers or partners force us 

to reconsider our priorities mid-stream, as do competitive pressures. We 

need to ensure our horizon plan is always ready to be reconfigured to 

meet updated business needs. But also always within the constraint that 

at all times the updated horizon plan would maintain the feasibility of 

delivering the features with high quality within the horizon with the 

available team. 

Thus not only should our software development methods be agile, 

but our larger horizon planning must be equally agile, hence the name 

"agile horizon planning". 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



12 Introduction  

Copyright © 2012 by David A. Penny 

1.4. Dynamic Estimation Equilibrium 

Agile horizon planning is therefore a dynamic framework where we 

continuously keep track of our best estimates on how long features will 

take to code, how long we need to test and stabilize them, how long we 

need for release preparation, and how much development resource is 

available to us. I say best estimates in the sense that, especially earlier 

on, we really do not know exactly what we want, exactly how to build 

it, exactly how long it will take, or even know with certainty the human 

resources that will be available to us over the planning horizon. Even if 

we did, the business will impose new requirements midway through the 

horizon that will change the entire situation. 

The best we can hope for is a dynamic equilibrium where at all 

times the business stakeholders maintain their best guess as to what is 

required within the agile planning horizon, and the software team 

maintains their best guess as to the specification and design of the 

features and the timeframe to implement them. At any given point, if 

the guesses as to the timeframe given by the development team and the 

guesses as to the dates required by the business stakeholders do not 

jibe, then the stakeholders need to jointly agree on tradeoffs and the 

dynamic balance restored. As the two sides march together, closer and 

closer to the end of the planning horizon, these "guesses" become better 

and better and our confidence in our feature set, delivered quality, and 

final date increases. 

Making sure we bring to bear all available expertise and gather and 

synthesize all pertinent information in real-time is the essence of the 

dynamic balance we strive for. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 13 

Copyright © 2012 by David A. Penny 

1.5. Essential Practices 

With this background on agile methods and agile horizon planning, we 

can now discuss the core essential practices I suggest are required for 

effective commercial software development. When I am asked to 

evaluate a software development organization, I use this list as a 

template against which to compare the organization. These are: 

 Source Code Control 

 Defect / Feature Tracking 

 Reproducible Builds and Deployment 

 Automated Regression Testing 

 Agile Horizon Planning 

 Feature Specifications 

 Architectural Control 

 Effort Tracking 

 Process Control 

 Software Development Business Planning 

If a software organization can put a checkmark beside each of these 

practices, it is on solid footing in my opinion. 

1.5.1. Source Code Control 

Source code control is the basis for solid professional software 

development. It enables a complete repository for all the ingredients of 

a shipping software product, it keeps a complete history of all changes, 

it enables simultaneous development by many developers, and it 

efficiently enables multiple maintenance and development streams. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



14 Introduction  

Copyright © 2012 by David A. Penny 

A good rule of thumb is that if something does not exist under 

source code control, it does not exist at all. 

1.5.2. Defect / Feature Tracking 

To manage a software development effort, one must control what 

changes go into the source code. A workflow management system 

capable of keeping track of all the defects discovered against the code, 

and all the features that are slated to go into the code, and manage the 

process of getting them done correctly, is an important tool to enable 

this level of control. The source code control system and workflow 

management system should be integrated in such a way that every 

change to the source code requires a reference to either a defect or a 

feature record. 

1.5.3. Reproducible Builds and Deployment 

Building on solid source code control, reproducible builds and 

deployments are the next major practice necessary for software 

development sanity. 

Building a software product for testing, setting up a test 

environment, creating a shippable ISO image for burning onto a CD, or 

publishing the next iteration of SaaS out to production, should ideally 

involve no more than issuing a single command. 

This guarantees a consistently reproducible build of a product which 

is necessary for efficient maintenance activities. It also is the necessary 

prerequisite for automated regression testing. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 15 

Copyright © 2012 by David A. Penny 

1.5.4. Automated Regression Testing 

Once reproducible builds are in place it is then possible to support 

an automated regression testing environment. Such an environment 

ideally tests every aspect of the software in a fully automated fashion. 

In case of error, it should concisely report on exactly where and how 

the program under test has failed. 

Passing these tests should give confidence that the software has not 

been broken in any way. The focus of the testing group should be in 

developing and maintaining more and more complete and torturous 

automated regression tests (not in manual testing). 

This enables software development to move quickly and confidently 

when deploying production changes. 

1.5.5. Agile Horizon Planning 

Effective agile horizon planning is the most important of the 

practices given in this book. It is the means by which resourcing, dates, 

and feature content are initially established and continuously tracked 

and updated. Agile horizon planning must at all times preserve the 

integrity of the capacity constraint: that expected remaining work 

requirement at all times equals expected remaining work capacity. 

With good agile horizon planning, stakeholders can be kept up-to-

date on what they can expect can be delivered to the field with good 

quality within a chosen planning horizon, and they can adjust that as 

they go. 

With this practice, quality can be maintained, "elbow room" can be 

manufactured for continuous improvement initiatives, product 

management is empowered to make late-breaking decisions about 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



16 Introduction  

Copyright © 2012 by David A. Penny 

feature content without upsetting quality, and the uncertainties inherent 

in software development can be managed. 

1.5.6. Feature Specifications 

One of the surest ways to upset a software project is to be unclear 

about what is being built. 

A professional software organization must have practices in place to 

decide whether or not a given feature requires a written specification, a 

capacity to produce and review written specifications, and a mechanism 

to ensure that the final product adheres to the specification. 

Because agile methods prefer human interaction over written 

documentation, there is sometimes a misconception that writing a 

feature specification is not "agile". This is not true at all, individual 

feature specification documents should be written when they help to 

clarify matters. 

1.5.7. Architectural Control 

All software products require an architecture to which coders must 

adhere. The major architectural structures are the module structure 

(how the source code is organized), the process structure (how the 

application/process/thread structure is organized at run-time), the data 

architecture (how/where external data is stored), and the software 

design (major elements in the class, procedural, and/or in-memory data 

structure design). 

Every software project should have a coherent and evolving 

architectural vision and a way of protecting the integrity of that vision 

in the face of rapid change and multiple (possibly inexperienced) 

developers. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 17 

Copyright © 2012 by David A. Penny 

Because agile methods have a philosophy of not architecting in 

advance of requirements, there is again sometimes a misconception that 

exerting control over the architectural is not "agile". This is not true. It 

is quite proper to have a mechanism to guide the architectural evolution 

of the software with a steady hand. 

1.5.8. Effort Tracking 

Making estimates on resource availability, on effort required to 

implement features, and on ongoing effort required to fix defects is 

central to agile horizon planning. However, without a means to track 

the actual amount of effort expended, quantitatively-based decision 

making is difficult. Therefore, we require some means of tracking time 

spent against various activities to a highly granular level (i.e., fractions 

of hours). 

1.5.9. Process Control 

Well-run software projects follow a certain defined sequence of 

steps to get new features or groups of features from inception to final 

ship. To have control of this process means that the steps are written 

down and known explicitly to all participants, that there are automated 

systems into which records of passing each step are kept, and therefore 

that summary reports can be produced showing the extent to which the 

process is being adhered to. 

This is a pre-requisite for effectively inserting quality steps into the 

process. For example, defining a specification review step and 

recording the pass/fail and action items from this step. Without process 

control and associated automatically generated reports, skipping these 

steps is the usual outcome. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



18 Introduction  

Copyright © 2012 by David A. Penny 

1.5.10. Software Development Business Planning 

All of the other activities listed (and especially horizon planning) 

exist in a business context expressed in terms of budgets. It is critical 

for a software developing organization to understand explicitly its 

budget, how it will be used, available flexibility within the budget, and 

that budgets can change according to business conditions. 

Having a written business plan enables a software development 

organization to get a budget from higher management and then to 

manage to it. 

1.6. Effective and Defective Organizations 

If one can imagine a defective organization in which none of the above-

listed essential practices are in use, the software professional must work 

to remedy the situation as described below. 

1.6.1. Infrastructure 

The four infrastructure practices (source code control, defect/feature 

tracking, reproducible builds, and automated regression testing) form a 

firm foundation upon which more can be built. 

If absent, source code control, must be on the top of the list of 

improvements. We must decide on a good system, purchase and/or 

install it on an appropriately sized server with redundant disks and good 

backups, and migrate all the existing source code into the system. This 

exercise can be accomplished within a few weeks with minimal 

disruption, and is utterly non-negotiable. As an alternative, many 

organizations are moving to SaaS-based source code control, though 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 19 

Copyright © 2012 by David A. Penny 

some companies take issue with having their valuable source code 

residing in the cloud. 

Even if source code control is in place, but the system used is 

inadequate, it should be replaced with a better one as a first priority, 

with the change history imported. 

The next thing to look for is a system for keeping track of defects found 

in the code, and doling them out to the appropriate developers 

(automatically, to the extent possible). Management must then take the 

stance that defects above a certain severity level must be fixed first, 

before a developer may work on a new feature. The defect tracking 

system should be implemented on a more general purpose workflow 

management system to enable process refinement and enforcement later 

on. 

The same system can provide a repository for feature requests as a 

basis for tracking new work. It is also necessary that the source code 

control system and the defect/feature tracking system be integrated. 

That is to say, the tool should enforce that all source code check-ins be 

made against either a specific feature or defect. The selection and 

rollout of a defect/feature tracking system can usually be accomplished 

within a month.  

We now turn our attention to the manner in which developers or testers 

make builds of the software and release it into the field. 

If the process of building a release or assembling an installer has many 

manual steps, with files copied all over the place in the process, 

problems will arise. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



20 Introduction  

Copyright © 2012 by David A. Penny 

Professionals should strive for nothing less than a fully-automated 

build facility, with all scripts and source (and no intermediate files) 

pulled from source control. The goal must be a push-button build. Only 

in this manner can we guarantee quality and consistency. 

If the concept of "build" does not apply (as for some simple script-

based Web technologies, for example), or if the organization offers 

software-as-a-service, "build" should be understood to include fully 

automated deployment of the development system to staging and then 

to production. 

Implementing such a build facility for internal testing builds is the 

first priority. Implementing it for the installer images and CD creation 

for shrink-wrap software, or for pushing to production for SaaS, is the 

second priority. If the build system is in rough shape, the first step can 

take several weeks of dedicated effort by the top developer most 

familiar with the system. The second stage can stretch for months if it 

must take into account all the variants of the software that typically 

need to be shipped, or all the complexities of deploying SaaS to 

production. 

The next priority must be an automated testing facility. Quality 

products depend upon the extent of automated testing. No amount of 

manual testing can make up for the lack of an automated testing 

facility. Often the most effective way of doing this is architecting the 

software in such a way that it has an automation API that as closely as 

possible follows the code paths of GUI-based commands. 

Putting in place such an API is a major feature effort (months of 

development). Building an automated testing facility around it may take 

several months more. It will then be a constant struggle to build a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 21 

Copyright © 2012 by David A. Penny 

library of automated tests and to maintain it in the face of software 

corrections and enhancements. 

This effort is made considerably easier if the API was contemplated 

at day-one of the architecture, and if all features in the software are 

coded to be accessible to the API. 

While the application regression testing infrastructure is the first 

priority, full suites of automated unit tests that test internal code are 

also a help in maintaining quality and tracking down defects quickly to 

their source. These types of automated unit tests are usually maintained 

within a framework that allows developers to contribute new test 

scaffolding and test cases whenever they create a new program module 

(for example, a new set of classes in C#). These suites test for correct 

functioning of the programmer’s interface to these program modules, 

and will typically test more completely the code paths within these 

modules than can the main regression tests, as code that is currently 

unused within the application is also tested, and obscure error 

conditions that might never occur in the application regression tests can 

be tested as well. 

With Web-oriented Software-as-a-Service (SaaS), automated testing 

can often take the form of cloud-based testing services that call a test 

URL and emulate the behavior of client-side code running in the 

various browsers. 

At this stage, the basic infrastructure for solid software development is 

in place. However, there is as yet little management control over the 

development effort. Practices around this are the next priority. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



22 Introduction  

Copyright © 2012 by David A. Penny 

1.6.2. Control 

In many software developing organizations, medium to longer term 

planning is surprisingly lacking. I have found recently that the lack of 

this is being legitimized under the banner of being agile. 

The argument goes that features are being continuously released to 

the field in short sprints of effort. For any sprint, the small set of 

features is chosen just before the sprint starts from an unsorted backlog 

of such features. If a business executive asks what is planned for the 

next six months, they risk being told that the question itself is not very 

agile. 

Companies cannot do business like this. Independent of feature 

release to the field frequency, we must always have a longer term 

planning horizon. 

 First priority is to set the next planning horizon and then estimate 

the person-days of developer effort available. Then one may consider a 

portfolio of features to include during this planning horizon, estimating 

the effort involved in each one, and making sure the sum total effort 

required is balanced with the effort available. 

As time proceeds, re-estimation should be repeated regularly and 

appropriate corrective actions taken well before the end of the horizon. 

In this manner, management will have visibility into larger-scale 

progress and can adjust direction as they go. 

While it is a goal that the software be ready to ship at the end of every 

small sprint, it is rarely achieved. The agile correction is often the 

"stabilization sprint", where no new features are worked on for a period 

of time. As well, with packaged software there are many activities that 

must occur prior to releasing a new major release out into the field. For 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 23 

Copyright © 2012 by David A. Penny 

SaaS, the actual act of releasing a significant change into production 

has considerable preparation associated with it. Finally, it is often wise 

to include a beta testing period before declaring the new feature set 

generally available. 

All of these types of activities need to be factored into a planning 

horizon, not just the coding and unit testing. The exact ordering of these 

activities is less important. However, I should say that it is generally 

unwise to leave all stabilization, release preparation, and even beta 

testing of features to the end of a planning horizon. Rather, it is better 

to intersperse these activities throughout, but to keep the total time 

spent on them in some proportion to the coding time. If the coding time 

during a planning horizon increases, so must this other time increase in 

proportion to it. 

Putting such a system into practice is a team effort involving 

development, management, and product marketing. Initially, the tools 

used need be no more than a spreadsheet. As an organization grows in 

sophistication it may build custom tools that update agile horizon plans 

in real-time on the corporate Intranet. Putting such practices into place 

with rudimentary tools generally requires a full planning cycle to work 

out the kinks, and then the following planning cycle will proceed more 

smoothly. 

Once the organization decides what features to work on, the next most 

important practice is writing feature specifications. 

Under the guise of agile methods, some development organization 

will eschew written documentation. This is not the spirit of agile. Agile 

values working software over comprehensive documentation, but does 

not rule out documenting a complex feature. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



24 Introduction  

Copyright © 2012 by David A. Penny 

A feature specification is a document that describes how a new 

feature will appear to the end-users of the software. Writing them 

improves quality, reduces costs, and aids release predictability. A 

typical planning horizon of a major software product may contain 

hundreds of new features. Not all of them will deserve a full-blown 

feature specification, though all will deserve at least a meeting with 

notes recorded. For those that do require a specification document, not 

having one is a serious mistake. 

Institutionalizing the appropriate creation of feature specifications is 

difficult in a coding-centric environment; however a capacity to write 

and review specifications must be developed. Existing developers are 

not always the best people to write specifications. Management must 

set budget aside to hire or develop people with the required domain 

knowledge, business analysis abilities, and writing skills. 

With a solid infrastructure, horizon planning, and feature specifications 

in place, the organization now has good control of the quality and 

predictability of its software. However, there is a longer-term, lurking 

menace in any significantly-sized software effort (i.e., more than a few 

hundred thousand lines of code). The lurking menace is architectural 

deterioration. 

While there are exceptions, generally a first release of a successful 

software product will have a fairly coherent architecture. This is 

because the architecture of a first release is often tightly held by a 

creative mastermind taking full ownership. However, as developers are 

added to a project, as the original architectural leaders move on to other 

projects, and as defect corrections and new feature additions pile onto 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 25 

Copyright © 2012 by David A. Penny 

an architecture not originally envisaged to cope with the requirements 

now placed upon it, the architecture has a tendency to deteriorate. 

Written architecture documents become out of date, which then, in a 

downward spiral, further precipitate the lack of attention paid to these 

documents. This causes them to become increasingly out of date and 

hence more and more useless to developers. 

To reverse this trend requires management action to ensure there is 

always one person or one group in charge of the architecture. That 

person should spearhead the development of tools and techniques to 

document the architecture and, where possible, automatically extract it 

and enforce it in the source code. As well, allocating a certain effort 

budget not for new feature development, but for changes to the source 

code to improve the architecture (or return it to compliance) is also 

imperative. 

1.6.3. Refinement 

Once infrastructure and control is in place, refinements can be made. 

The first refinement is to put in place a system for measuring the actual 

effort expended on various development activities: a fine-grained time-

tracking system. There is no need to measure when an employee gets 

into work or leaves; rather, for coders, it is necessary to measure how 

much time they devote to each individual feature, and how much time 

they each devote to fixing defects. 

These measurements can then be used to refine assumptions that go 

into forming a horizon plan, such as on average how much time each 

workday a coder is able to devote to coding new features. 

Many managers are fearful of insisting on this much discipline from 

their coders. However, as long as the coders understand how the data 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



26 Introduction  

Copyright © 2012 by David A. Penny 

will be used (i.e., in support of their efforts and not against them) they 

will welcome it. 

Some commercial and open source time tracking tools have 

appropriate functionality, and are capable of being integrated into an 

existing environment. Putting in place such a system and integrating 

may take a few weeks. Management must then insist on its use and 

monitor the data closely. Within three months of management 

dedicating attention to it, the habit of tracking time will be firmly in 

place, requiring only infrequent reminders to staff to keep it up. 

The next refinement is to get control of the software development 

lifecycle process by defining it thoroughly, writing it down, publishing 

it on an Intranet, and instrumenting it to assess the extent to which it is 

being followed. 

A simple process with the controls discussed previously may 

comprise a dozen or so steps. These steps should be written down, and 

the systems (especially the workflow management system used for 

defect and feature tracking) should be customized to capture features 

moving from one stage in the process to the next. Management can then 

develop reports that indicate the flow of features through the various 

stages. Non-conformance becomes immediately visible to all. 

Writing down the process and instrumenting it is a few month's 

effort, however it cannot be started until the informal process is being 

used consistently. 

The formal measured process will then bring to light situations 

where the informal process is not being followed. Some of the time, 

there is a good reason for this, and the process can be refined to account 

for these situations. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 27 

Copyright © 2012 by David A. Penny 

Then, if the organization wishes to add process steps to correct 

problems (e.g., a specification review, a feature demonstration meeting, 

a documentation signoff, a code review, and so on) it can do so in a 

controlled fashion, and can monitor and adjust for compliance. 

Finally, as an umbrella for accomplishing all of the foregoing activities, 

a development manager must think like any other business manager and 

build a business plan for the development group. The purpose of such a 

plan is to build confidence within the executive team that the situation 

is well-assessed, the development group is organized with defined areas 

of responsibilities, development priorities are aligned with corporate 

priorities, and plans for improvement are well thought-out with 

concrete timelines and resource requirements translated into budgetary 

terms. This plan then forms the basis of a negotiation with executive 

management on an appropriate budget. 

While this exercise may seem mundane, without doing it, no 

progress will likely be made on any of the other points. 

1.6.4. Relationships 

Of the ten core practices described above, the key practice is agile 

horizon planning. Agile horizon planning is a goal towards which an 

organization should strive, and is the key marker that separates well run 

from poorly run organizations. 

The four infrastructural practices, of which source code control is 

the prime enabler, while having benefit in their own right exist in large 

part to serve agile horizon planning. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



28 Introduction  

Copyright © 2012 by David A. Penny 

 

Agile horizon planning, in turn, enables feature control and 

architectural control, two practices that are difficult to implement in an 

organization always scrambling to catch up to poorly planned, 

unrealistic deadlines.  

The three remaining practices are considered refinements in the 

sense they improve upon an already well-run operation. 

The outline of the book will follow this rationale. We first proceed with 

a detailed discussion of agile horizon planning. By covering this 

material first we lay the groundwork to discuss the importance of the 

infrastructural practices, the control practices, and the refinements. 

Infrastructure 

Control 

Refinement 

source code 
control 

defect/feature 
tracking 

reproducible 
builds 

automated 
regression 

testing 

agile 
horizon 

planning 
feature 

specifications 
architectural 

control 

business 
planning 

effort 
tracking 

process 
control 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 29 

Copyright © 2012 by David A. Penny 

1.7. Intended Audience & Scope 

The ideas contained in this book are most applicable in the context of a 

commercial independent software vendor organization that has 

produced the first release of a product, and is now interested in shipping 

new features with increased quality and predictability. 

Within such an organization, the ideas can be championed either by 

decision-makers within the software development organization, or at a 

more grass-roots level by developers on a practice-by-practice level. 

The ideas will be of interest to those who wish to learn to manage a 

reliable software organization, including executives in related areas, 

individual contributors, product and project managers, and students. 

I primarily stress follow-on development as opposed to "green 

fields" new product development. The reason is that follow-on 

development makes up the vast majority of effort expended in the 

software industry, and is thus the type of software development most 

likely to be encountered by the software professional. 

As well, much has been written on green fields development; less on 

the more economically significant topic of follow-on development. To 

illustrate the economic significance of follow-on development as 

opposed to green fields, consider the following hypothetical but 

reasonable scenario. 

A software vendor develops a modest new software product 

over a one-year period using a team of three developers, a 

tester, and a documenter. Using a nominal loaded cost per 

employee per year of $100,000, the cost of this 

hypothetical initial development is approximately 

$500,000. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



30 Introduction  

Copyright © 2012 by David A. Penny 

Assume that the product is successful at launch, and is 

still shipping new releases and maintaining older releases 

five years later. During this time, the software has been 

ported to multiple platforms and has been significantly 

enhanced. To support the effort, the development team has 

ramped up to a staffing of twenty developers, plus an 

additional ten in the test and build teams and five 

documenters. This follow-on effort represents 

approximately 100 person-years, at a cost of $10,000,000, 

and is spending $3,500,000 a year for maintenance of the 

product.  

As this scenario illustrates, follow-on costs dominate initial release 

costs. To make the most impact, effort should be directed at ensuring 

follow-on activities are efficient. For example, a 10% increase in 

productivity during initial development would have saved the 

hypothetical vendor company only $70,000. The same 10% increase in 

efficiency during follow-on development would have saved the 

company $1,000,000 to date, and $350,000 or more per year going 

forwards. 

This is not to downplay the importance of the initial release. It sets 

the stage for everything that follows. If done well, the follow-on 

releases will proceed smoothly. If done poorly, the entire product 

lifetime will be a continuous game of "catch-up". Thus one of the most 

important attributes of initial release development is how well it sets the 

stage for subsequent development. Understanding the practices 

essential to subsequent release development is therefore important to 

carrying out the initial release development in an effective manner. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Introduction 31 

Copyright © 2012 by David A. Penny 

1.8. Professional Experience 

Before continuing on our journey I will digress, if my readers allow, for 

a quick word concerning professional experience directed at newly 

minted professional software developers and students of our field. 

Whether software developers find themselves thrust into leadership 

positions, or whether they are one of many on a team, all software 

professionals have a collective responsibility to improve the state of 

practice within their organizations. To know how to do this requires 

education and experience. To qualify as an experienced commercial 

software developer one requires: 

 A solid formal education in the computer sciences. 

 To have been involved in several release cycles of a software 

product, from release inception to ship and maintenance. 

Shipping a software product that a large number of customers have paid 

money to purchase is an important experience. The software developer 

is no longer in the driver's seat as he or she is for school assignments. 

The expectations and pressures associated with a commercial release 

are much higher. 

However, simply shipping the software and then moving on is not 

adequate. Experience comes from having made certain decisions, and 

later having to correct the problems that arise, sometimes only years 

later. Only in this fashion, by learning from mistakes in a business 

setting, can a software professional gather relevant experience. 

The recommendations in this book stem from this type of 

experience. To the inexperienced, many of the recommendations will 

seem practical and sensible, and the aspiring professional will no doubt 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



32 Introduction  

Copyright © 2012 by David A. Penny 

wish to put the ideas into practice. However, without the experience to 

know that the problems these techniques solve are important ones, it is 

all too easy to lose this enthusiasm and gradually drift towards the 

activities that seem to lead most directly to the end goal (i.e., coding 

and debugging). 

The experienced professional will recognize the importance of the 

problems and how failing to address them early in the project will come 

back to haunt the project later. They will be loathe, therefore, to start 

any software development activity without the solutions to these 

problems in place. 

While experienced professionals may have different ways of 

addressing the various problems, they will generally agree that the 

problems being solved are important ones that must be addressed. 

It is not so much knowing specific prescriptive solutions that make 

the professional. Rather, it is knowing the problems and how severe 

they can become if left untreated that is the true mark of the 

professional. 

In this book I will strive to identify these problems and propose 

solutions that have worked in practice in various settings. 

To the inexperienced professional or the student who has yet been 

troubled by these problems, I can only plead indulgence and hope they 

will take me at least somewhat on faith. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012  by David A. Penny 

2. Planning 

Of all the activities that ought to take place in the commercial software 

development organization, the planning and subsequent tracking of 

software progress is one of the most critical. The Carnegie Mellon 

Software Engineering Institute identifies planning and project 

management as the most basic of all software practices [see The 

Capability Maturity Model, Carnegie Mellon University, Software 

Engineering Institute, 1994]. Indeed, project planning is what separates 

the chaotic "initial" organizations from the more sound, second-level 

"repeatable" ones. Any company that has achieved CMM Level 2 is 

doing well, and has a firm foundation for further improvement. 

Despite its importance, good software planning and tracking is a 

constant struggle. Many times the typical software organization will 

make no plans at all. Other times it will make plans that seem to have 

no connection to reality. Sometimes management will make a plan but 

not update it as events unfold. If development makes a plan and keeps it 

properly updated, the business stakeholders will often complain that it 

is difficult, if not impossible, to make necessary changes to it. These 

planning problems will take their toll on the software company, and can 

even threaten its continued existence. 

The software company that persistently finds itself in these 

situations can take heart in two facts. First, they are by no means alone. 

Many software companies seem to go through these chaotic early 

stages. Second, when the time eventually comes to do so, it is 

surprisingly easy to correct the situation. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



34 Planning  

Copyright © 2012 by David A. Penny 

I will describe an overall approach to the management of the software 

development organization that centers on the notion of a well-defined 

planning horizon, the rational planning and tracking throughout that 

time period, and dynamically managing requirement changes. I discuss 

these practices in the context of a living, fast-paced software 

organization that has little time or management focus to devote to 

process enhancement. I will include practical advice on effecting 

change and making the techniques work. 

The practices in this book have been developed and refined within 

enterprise software vendors, shrink-wrapped software vendors, and 

SaaS organizations. The ideas have proven to be simple to implement 

and apply, and yet effective in practical applications. 

2.1. Planning  Overview 

I will start in this introductory chapter to planning by discussing some 

general considerations regarding plans and planning. We discuss what 

happens when we do not plan, how planning and tracking necessarily 

go hand in hand, and why good planning is so elusive. 

Chapter 3, "Agile Horizon Planning Overview", overviews a typical 

planning process for software, and I introduce my particular approach 

to determining what software the development organization can write in 

what timeframe with what resources. 

The following three chapters go into increasing detail on the horizon 

planning framework. 

Chapter 4, "The Capacity Constraint", discusses the planning 

framework qualitatively; Chapter 5, "The Quantitative Capacity 

Constraint" delves into it from a quantitative perspective; and Chapter 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 35 

Copyright © 2012 by David A. Penny 

6, "The Stochastic Capacity Constraint", looks at how we cope with the 

uncertainties inherent in planning. 

Planning having been dealt with, we proceed with chapters covering 

the other key practice areas discussed in the previous chapter. 

2.2. Why Plan? 

In the contemporary software development environment where the 

small start-up with no processes to speak of can become highly 

successful, we can legitimately ask, "Why bother planning at all?" 

Planning is not always a good thing. For the sole developer, alone in 

her basement working on the next killer application, there is little 

reason to plan. In fact, planning will only slow her down and hamper 

her creativity. We can say the same of small, entrepreneurial start-ups 

and skunk-works projects within larger organizations that wish to 

emulate them. 

Similarly, if the goal is to as efficiently as possible continuously 

develop software that assists a targeted group of users in doing their 

jobs, it is good enough to see a constant gradient of improvement, and 

knowing what particular features will come out in a year's time is 

inessential. I believe this scenario is the true design point for agile 

methods, and why a naïve agile approach can therefore be a danger 

when planning is required in a commercial software development 

environment. 

However, so long as there is little or no external pressure to produce 

a given set of functionality by a given date, planning is inessential and 

just slows you down. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



36 Planning  

Copyright © 2012 by David A. Penny 

Planning becomes useful to a business when external pressure comes to 

bear on the software organization. 

This external pressure is usually weak in the beginning stages of a 

company’s existence. A company can exist for a considerable time 

marketing their software only to what Geoffrey Moore refers to in his 

ground-breaking high-tech marketing book, Crossing the Chasm, as the 

innovator and early adopter market segments. These market segments 

wish only new functionality delivered as soon as possible, are tolerant 

of defects in the software, are resigned to poor or nonexistent 

documentation, and will suffer less than adequate support. In general, 

these early customers have great patience with the fledgling software 

company. Once the company "crosses the chasm" and wishes to sell to 

the majority market segments, the software organization’s planning 

practices must change dramatically. 

These majority customers will want to plan their purchase and 

schedule their acceptance testing and rollout. They expect high quality 

documentation and customer service, are intolerant of defects, and 

expect that if they report a defect that the vendor will promptly fix it in 

a maintenance release that contains no extraneous feature 

enhancements. Under these conditions, planning is one factor that 

separates successful software vendors from those that disappear into 

Moore’s chasm. 

When targeting the majority markets, the successful software 

company must set expectations and then deliver to them. If an 

important new customer requests specific functionality, there must be a 

mechanism in place to determine if software development can deliver 

within the timeframe, and then monitor to make sure that it happens. 

Good documentation, customer training, marketing, customer service, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 37 

Copyright © 2012 by David A. Penny 

and sales are dependent upon the organization having a unified view of 

the expected functionality and release date. If there are to be any 

changes, it is essential that the software development department 

provide warning well in advance to allow the company to take 

mitigating actions as early as possible. 

Whether the pressures come from new customers, venture capitalists, or 

industry analysts, the common thread is external expectations. In all 

cases the software organization must make commitments, manage 

expectations, and deliver on those expectations. If it does not, the 

company will cease being successful. 

In these circumstances, proper planning is essential. Why then are 

there so many software companies that fail to do a good job of it? 

2.3. Gantt Charts Considered Harmful 

Too many software developers and project managers look at plans in 

one certain way: as a Gantt chart. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



38 Planning  

Copyright © 2012 by David A. Penny 

Practically all project-planning software we see revolves around this 

concept. To many classically trained project managers, it is 

inconceivable to start a software project without first listing out all the 

detailed tasks that need to be performed, assigning personnel to these 

tasks, taking into account the inter-dependencies between tasks, and 

only then assessing the feasibility of getting a software release out the 

door by a planned date. Typically, these plans wind up becoming large 

and unwieldy, if done non-trivially at all. 

The problem with the large Gantt chart plan is that it is too clumsy a 

tool for the sort of agile horizon planning that needs to go on in the 

typical software vendor organization. Because the plan is oriented 

towards documenting a set of activities, it is awkward for performing 

fast-paced "what-if" tradeoff analysis between features and dates. 

More particularly, effective use of a Gantt chart implies a level of 

knowledge of how events will unfold that has no justification at the 

time initial planning is taking place. 

A complex Gantt chart is overkill at the start of a new release 

initiative. Fortunately, it is not necessary to use one.  

Software organizations often lose sight of their most important 

objectives when planning. These are to know what they are building, by 

when, and using how many people. 

 

 What are we building? 

 By when will it be ready? 

 How many people will it take? 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 39 

Copyright © 2012 by David A. Penny 

Coming up with a plan that answers these questions (and no more) must 

be the focus in agile horizon planning. 

Later, when the vendor has clear answers to these questions, it can 

develop an implementation plan using Gantt charts. This plan can be 

used to divide work amongst people, assign people to tasks, and 

sequence those tasks. In our framework, implementation plans flow 

from agile horizon plans. The framework proves itself when these more 

detailed plans do not contradict the agile horizon plans. 

That having been said, it is my opinion that agile horizon planning 

combined with agile development methods renders any implementation 

plan unnecessary. 

2.4. Of Mice and Men 

Developing an initial plan that answers the important agile horizon 

planning questions is less than half the effort. One of the biggest 

culprits is not neglecting to have a plan in the first place, but rather 

neglecting to update it as it unfolds. 

There is one certainty in any planning effort: the plan will change. 

Some would have us believe that this is a flaw with the planners. If only 

they had planned properly in the first place, they would not have to 

keep changing the plan. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



40 Planning  

Copyright © 2012 by David A. Penny 

However, it seems to be a universal truth that all sorts of plans have 

a distressing habit of going astray. The Scottish poet Robbie Burns 

expressed it well in 1785: 

But, Mousie, thou art not alone 

In proving foresight may be vain: 

The best laid schemes o' mice an’ men 

 Gang aft a-gley,  

An’ lea’e us naught but grief an’ pain 

 For promis’d joy. 

[To A Mouse, on turning her up in her nest, with the plough, November, 

1785, Robert Burns, from Poems, Chiefly in the Scottish Dialect] 

When formulating plans it is important to understand that these plans 

represent only a current understanding of one possible way reality may 

unfold. Unless we accept, indeed embrace, the uncertainties in a plan, 

we will be disappointed by our planning success. Embracing 

uncertainty implies that as time passes, as better information becomes 

available, as the business situation changes, as we uncover flaws in the 

initial planning, we must update the plan. It most particularly does not 

mean sticking to our plan through thick and thin, and hoping to make 

up for lost time somewhere, somehow. 

Plans change for a variety of reasons. The reasons divide into internal 

and external causes. Internal causes are those resulting from changes to 

the estimates we made during the initial planning. External causes are 

those resulting from late-breaking changes in the requirements. Let us 

consider internal causes first. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 41 

Copyright © 2012 by David A. Penny 

In the computer industry, even professionals are notoriously bad at 

being able to predict how long it will take to build cutting-edge 

software. Therefore, any initial estimates upon which we base a plan 

must contain a significant margin of error. As time goes by and as 

development proceeds, it would be rather odd if re-estimates of how 

much longer a feature will take to implement were consistent with the 

initial estimate. Every time we uncover an estimation error it is a 

change that upsets the plan. Unless we update the plan it descends into 

meaninglessness. 

A particular cause for distress is that once "padding" is removed (as 

I advocate here in favor of honest estimates and rational reaction to 

estimation changes by management) estimation inaccuracies are more 

often than not skewed towards overly optimistic estimates. This is 

because developers will rarely imagine a piece of work that needs to be 

done which is not required. However, in coming up with estimates it is 

likely that they will forget some work that would need to be done. 

Putting a bit of padding into an estimate to account for this is advisable; 

however, the tendency even in that case will be to estimate low. 

Other internal causes that require plan updates are developers 

quitting, personnel being re-assigned away from the project, 

unexpected changes to vacation plans, and changes in the number of 

hours per day a developer can devote to adding new features into the 

release. 

External causes can affect plans as well. Suppose a major new prospect 

has arrived on the scene and will only purchase the vendor’s software if 

they implement a certain new feature. For the kind of revenue they are 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



42 Planning  

Copyright © 2012 by David A. Penny 

expecting from that customer, chances are they will change the plan. 

This is an external cause. 

Other external causes for plan changes are competitor moves, 

collaboration opportunities, and changes in a regulatory environment. 

Whatever the reasons for change, we can be certain that we will need to 

update the plan regularly throughout the development effort. It is in this 

situation that the large Gantt chart shows its weakness. With so 

unwieldy a document, updating it regularly is impractical. 

Yet we cannot sufficiently stress that making an initial plan without 

updating it is worse than useless. It actually wastes time that we could 

have better spent on productive tasks. Only if we keep a plan up-to-date 

in the face of reality does it continue to have meaning. 

2.5. The Difficult Question 

A software development organization needs to make a good initial plan 

and needs to keep it up-to-date. Unfortunately, the software industry, 

collectively speaking, is not good at planning. While there are three 

easy questions to answer when planning, there is at least one difficult 

question. 

Recall the three planning questions the software vendor needs to 

have answered. 

 What are we building? 

 By when will it be ready? 

 How many people will it take? 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 43 

Copyright © 2012 by David A. Penny 

The first question, "what are we building?" can be hard to answer for 

the first release of a product, but is usually much simpler for follow-on 

work. The product managers will have lists of features that the 

customers have requested or that the sales force says are necessary to 

close future sales. Choosing a set of these features for the next planning 

horizon and refining their specification is straightforward. 

The second question, "by when should it be done?" is easy enough. 

The software vendor must pick a reasonable date that is not so far out 

that the customers think the vendor has given up on the product. 

That leaves the third question: "how many developers?" For most 

ongoing software ventures, the development organization knows how 

many developers they have to work with. They can think about hiring, 

but unless they can get developers who are already familiar with the 

code base, the newly hired developers will not contribute more than 

what they consume from the other team members for on-the-job 

education. Therefore, resourcing, at least for the next planning cycle, is 

usually very constrained. 

The easy questions are therefore "what", "when", and "how many". 

There is one more thing to consider. Can the software development 

organization build "what" with "how many" by "when"? This is the 

difficult question; nonetheless, the software company will need to 

address it. If they do not, they are likely to run into trouble as the 

following tale illustrates. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



44 Planning  

Copyright © 2012 by David A. Penny 

2.6. A Software Vendor Fable 

While the development organization often raises the essential question 

of whether or not resource balance exists for a proposed plan, it is 

surprising how often this question remains unanswered. 

One common approach is "our developers are the best; of course 

they can pull it off." If this flattery does not convince, the next line of 

defense is often "it needs to get done; the business is riding on it." 

Management asks development what they need to make it happen. Do 

they need more money to hire consultants? Do they need extra pay for 

working weekends? 

The final line of defense is often: "the release has already been 

promised and we can’t go back on our promises now." To this, 

unfortunately, there is no rebuttal. 

We are now at the point where practically nobody in the 

organization thinks the release can happen on time, but nonetheless 

everybody is working away on it. Edward Yourdon describes this 

situation in his book Death March [Prentice-Hall, 1997]. Development 

knows it cannot happen on time. Product marketing knows it will not 

come in on time. The CEO hears "we’re going to really have to push 

ourselves to get this one done, but we know how important it is to the 

company." 

As time marches on it becomes increasingly clear that the features 

cannot all be done on time. Balancing this is the fact that it is also 

getting increasingly painful to have to admit this. Trapped in a difficult 

situation the human psyche prevails: hopeless optimism sets in. It will 

be their finest hour. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Planning 45 

Copyright © 2012 by David A. Penny 

When the planned date passes, development management 

characterizes it as a short delay, a couple of weeks at the outside to 

correct the most important problems. This will typically happen more 

than once. Eventually, things come to a head. Development admits that 

it now appears as though it will take another couple of months. 

Development, however, is blameless. Nobody agreed to the 

ridiculous plan in the first place. Development said it was next to 

impossible but that they would work as hard and as smart as they could. 

The obstacles were too much to overcome. 

Product Marketing as well is blameless. They made the plan, but 

Development said it was doable. Nobody heard any complaints for the 

last three months either. They were under the impression that 

everything was going fine. 

Unfortunately, this little fable happens far too often in the software 

industry. With a little knowledge, foresight, common sense, and 

commitment to change, such situations are entirely avoidable. 

Read on.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

3. Agile Horizon Planning 

Overview 

For a software organization to be successful, it needs to accurately plan 

and track the development of its software. To enable this, the software 

organization must make two commitments. The first is that they 

subscribe to the notion of a longer term horizon plan. The second is that 

they follow a repeatable development process. For the purposes of 

introducing agile horizon planning it is not necessary that we take into 

account the low-level details of the process. A sketch will do. 

In this chapter, we give an overview of how agile horizon planning 

operates in the context of a specific type of technical release cycle. In 

subsequent chapters, we go into the details in greater depth, discussing 

tradeoffs, business issues, and advice on how to make the process work 

in a software organization. 

We will be discussing agile horizon planning in the context of a 

software vendor organization wishing to better control follow-on 

releases of their software product. The median of such product ventures 

will involve around three dozen people and a code base of a million 

lines of code or so. However, the ideas are applicable on larger and 

smaller scales, as well as in software development contexts other than a 

software vendor organization. 

To set the stage, we start by describing the business environment of 

a typical software vendor organization. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



48 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

3.1. Software Vendors 

A software vendor is a business that makes its money by providing 

software and related services such as help desks, training, product-

related consulting, user groups, and so on. 

The typical medium-sized software vendor organizes itself as 

follows. 

The marketing group is responsible for identifying market 

segments and determining what software features the market would be 

willing to pay for. They are also responsible for communicating the 

existence and benefits of the software to these target markets, and for 

identifying new channels to market. Ultimately, they are responsible for 

the profitability of products. 

The product management group within marketing will manage and 

coordinate the horizon plans for the various products, and coordinate 

the launch of new products, or new releases of existing products. 

The sales group, often organized by sales region, identifies 

individual prospects, negotiates terms with them, and consummates 

sales. This group is responsible for the company’s revenue targets. 

The client services group is responsible for helping customers get 

up and running with the company’s software, and dealing with any 

ongoing issues they may have. As such, they provide pre-sales support, 

 Software Vendor 

Sales Finance & 
Administration 

Marketing 

Product 
Management 

Software 
Development 

Client 
Services 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 49 

Copyright © 2012 by David A. Penny 

training, help desk services, and consulting services. They are 

ultimately responsible for customer satisfaction. 

The software development group is responsible for delivering high 

quality product with a promised set of features by a promised date. This 

group will have limited direct contact with customers. Client services 

will deal with customer issues, and product management will deal with 

customer requests for product enhancements. 

The finance and administration group ensures that the company 

has adequate funding, provides oversight over spending by establishing 

budgets, and takes care of the day-to-day operations. 

Human resources and internal IT are two departments that tend to 

report wherever it makes most sense, given the experience of the 

various executives. 

The lifeblood of the software company is the flow of new features in 

their software products going out the door. If the rhythm of these new 

features falters, it jeopardizes the health of the company. 

Customers depend upon the new features, plan ahead of time to 

receive them, and make commitments based on promised deliveries. To 

satisfy its customers, the software company must successfully combine 

the efforts of the entire organization to meet the challenge of shipping 

on time and with high quality. Therefore managing the horizon plan is 

central to the management of the software company. 

Managing the horizon plan means deciding what new features are to 

appear by what date, and adjusting this plan as the situation changes. 

The company measures success by whether it can consistently make 

and meet its commitments. Agile horizon planning, as described in 

what follows, is the means by which this can occur. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



50 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

3.2. The Traditional Software Product Lifecycle 

Before discussing the increasingly important continuous release 

methods advised for SaaS-type software, I will first describe a more 

traditional release method, suitable for most other types of delivery 

where the cost of releasing a new feature set to the field is relatively 

high. 

The preliminary stage, requirements gather, consists of gathering 

potential requirements for the release. The marketing product 

management group will coordinate this effort. Once they have brought 

together and prioritized this wish list, the initial agile horizon planning 

can begin. It consists of working with software development and key 

decision makers to decide on the dates for the release and what features 

from the wish list will make it in-plan. 

 

requirements gather 

specification & design 

code & unit test alpha test 

beta test 

generally available release 

development cutoff 

fork 

plan available 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 51 

Copyright © 2012 by David A. Penny 

Once the company has settled on an initial agile horizon plan, 

detailed specification and design work begins on certain in-plan 

features. This can involve both prototyping and written work. As 

analysts, coders, and architects refine the features into specifications 

and designs, they will update their initial sizing estimates, necessitating 

re-planning. It is not necessary that all such work be done before coding 

can begin. This phase is used to get a head start. 

When design and specification has produced enough output, 

development is ready to begin coding and unit testing. For traditional 

release lifecycles this point is called "fork" because the source code is 

logically forked into the release currently being supported in the field, 

and the new release that is under development. Throughout this phase, 

software development and product management update the horizon 

plan as they uncover new information, and shift features and dates once 

the plan is no longer within the comfort zone. Coding and unit testing 

continues until the team arrives at the milestone known as 

"development cutoff". At this point, no developers can identify any 

remaining code they need to add to make the release feature-complete. 

After development cutoff, alpha testing begins. The testing staff 

uncovers defects and the developers fix them. A common variation is to 

have the alpha testing phase spread out and interspersed into coding and 

unit testing, in order to minimize the total time to do both. 

When the new software is sufficiently stable, the organization will 

release a beta testing version both internally and to select customers so 

that they can get an early look at the software, try it out in the field, and 

suggest improvements. At the end of the beta testing period, the 

company will make the new release generally available. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



52 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

Throughout the testing phases, management keeps a close eye on 

defect arrival rates to determine if the end-dates remain feasible. 

The software vendor will iterate such a release cycle many times 

during the lifetime of a commercially successful software product. 

After the initial release, typical lifetimes would exceed five years 

and have at least ten or more distinct follow-on releases, each of which 

adds significant functionality to the product. Follow-on releases would 

be spaced anywhere from six months to a year or more apart, closer in 

certain situations. 

Each feature release will require ongoing maintenance, meaning that 

customers who take a release will have made available to them periodic 

point releases that fix any problems they may encounter. These point 

releases are pure corrective maintenance, and contain no new features. 

Requirements gather is outside of the release cycle, and proceeds at 

a constant pace throughout the lifetime of the software. Product 

management will consider those features that do not make it into the 

current release for the ones following. 

 

R1.0 R1.1 R1.2 R2.0 

Continuous 
requirements 
gather 

Initial release 

Follow-on releases 

R1.0.1 

R1.0.2 

R1.0.3 
R1.0.1a 

point releases 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 53 

Copyright © 2012 by David A. Penny 

3.3. SaaS Lifecycle 

The typical lifecycle for Software-as-a-Service differs from the 

traditional lifecycle described in the previous section. 

The SaaS lifecycle is more linear and continuous. Agile teams will 

pick up a set of features to work on and deliver a completed set of 

functionality within a two or three week sprint. Specification and 

design, coding, and alpha testing are generally handled on a feature by 

feature basis and attain 90% closure by the end of a sprint. Sometimes 

several such sprints may be chained together, followed by a 

stabilization sprint to ensure the software is ready to be put into 

production. 

 

This is repeated continuously throughout the life of the software. This 

may also be mixed with the more traditional lifecycle when a very large 

change needs to be made. 

For the sake of longer term planning, all the features that the teams 

will work on during a given time horizon will be planned out such that 

elapsed time, effort required, and effort available will be correctly 

balanced. 

sprint sprint sprint stabilization 

production 

new 
features 

new 
features 

agile planning horizon 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



54 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

3.4. The Agile Horizon Plan 

The central document used in managing the software is the agile 

horizon plan. Here we show a simplified example agile horizon plan 

below. A full version suitable for the traditional software lifecycle is 

shown in Appendix A on page 345). 

The horizon plan takes the form of a balance sheet. On one side are 

the available development resources. On the other side is the amount of 

work required to code all the features. For the plan to be valid, the 

available resources must balance the required resources. 

Simple Agile Horizon Plan 

Planning Horizon:  Jul.1—Sep.30 (64 workdays) 

Coding Ratio:  3:1 (48 coding days) 

Capacity:  days available 
 Fred 25 effective-coding-days 
 Lorna 33 effective-coding-days 

 … … 
 Bill 21 effective-coding-days 

 total 317 effective-coding days 

Requirement: days required 
 AR report 14 effective-coding-days 
 Dialog re-design 22 effective coding days 

 … … 
 Thread support 12 effective-coding-days 
 total 317 effective-coding-days 
 
Status: Capacity: 317 effective-coding-days 
 Requirement: 317 effective-coding-days 

 Delta: 0 effective-coding-days 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 55 

Copyright © 2012 by David A. Penny 

Planning Horizon 

The first section of the plan shows the duration of the planning 

horizon and the number of workdays available within that horizon. 

Coding Ratio 

The next section shows within that planning horizon the typical 

proportion of days available for coding and unit testing versus other 

activities that need to be carried out (such as specification and design 

work by coders, stabilization, and release preparation). A development 

shop will arrive at this ratio through historical measurement. 

Capacity 

Next comes the computation of the capacity to do coding work 

expressed in effective-coding-days. We explain this quantitatively in 

Chapter 4. For now, the units can be simply understood as the number 

of solid, 8-hour coding days (devoid of all other distractions) available 

for coding. 

To compute this measure we start by listing all the coders who will 

contribute to the plan. For each, we count workdays available for 

coding and apply a factor to convert to effective days. We then sum to 

come up with a total that represents the capacity available to put 

features into the release. 

Requirement 

Balancing the capacity to do work is the requirement for work to be 

done. For consistency with the capacity measure, we also express this 

in units of effective coding-days. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



56 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

To compute the requirement we list all the features that we wish to 

include in the release, attach a sizing to each, and sum them. The 

individual feature sizings are a combined estimate of the intrinsic size 

of the work item, an estimate as to which developers will work on the 

feature, and an estimate of how productive they will be with the hours 

they dedicate to the feature. For the purposes of the horizon plan, we 

combine these uncertainties into an aggregate feature sizing given in 

effective-coding-days: the total number of uninterrupted hours required 

to code and unit test the feature divided by a nominal eight-hour day. 

There is complexity here, such as what constitutes a feature, how to 

size them, how to deal with uncertainties in the estimates, and so on. 

We shall discuss all of these issues in detail later on. For now, it is 

sufficient to note that the end-result is a list of features understandable 

equally by software development and by the business stakeholders; not 

a list of tasks that software development alone can understand. 

Status 

At the bottom of the plan we bring together the capacity and the 

requirement, subtract them, and give a delta, the number of effective-

coding-days by which we expect to come in ahead of (positive 

numbers) or behind (negative numbers) our target date. 

Negative delta indicates a growing need to take action to re-balance 

the plan, either by extending dates, dropping features, scaling back the 

scope of certain features, or adding effective resource. Positive delta 

indicates that there is room in the plan to do more. 

We do not view positive delta as a contingency. We deal with 

contingency explicitly in the stochastics of the full plan, which we will 

discuss in Chapter 6. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 57 

Copyright © 2012 by David A. Penny 

For more traditional software lifecycles, we focus our planning efforts 

towards development cutoff. After this date, the die is cast. As we pass 

this milestone, our proactive control of the plan is reduced to either 

delaying the generally available release or shipping a poor quality 

product. 

To ship a good quality release on time, it is essential that the 

software company hit their planned development cutoff date and 

thereby maintain their planned course of testing and debugging. It is not 

reasonable to expect that if coding has taken longer than expected, then 

testing will take shorter than expected. Yet, many organizations will 

default to this behavior, holding end-dates firm despite slips in 

development cutoff, no doubt hoping for better-than-usual luck during 

testing. Long experience has shown that if the development cutoff date 

slips, it will be necessary to extend the end-dates both by the length of 

the slip plus by an extra proportionate amount of time for testing. 

Therefore, it is important to ensure that development cutoff does not 

slip, and manage the plan to that date accordingly. 

Though the sample horizon plan that we show here is simpler than the 

full horizon plan shown in Appendix A, it captures the essentials of 

agile horizon planning, which is a balancing of capacity and 

requirement. While we must consider many details and make a study of 

how to make agile horizon planning work in practice, we must not lose 

track of the simplicity of the situation. 

Planning in greater detail is a temptation we must avoid, as this 

extra detail is not justified by the precision of the capacity and 

requirement estimates. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



58 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

3.5. Implementation Planning 

When planning a release we are dealing at a level of abstraction above 

that required by the detailed plans used to get the job done. At a certain 

stage in the development cycle, we will need to plan all activities in 

detail. We must divide jobs into tasks, assign these tasks to individuals, 

sequence them appropriately, and track them. All of this requires 

detailed planning, or implementation planning. 

When we are doing agile horizon planning, this level of detail is 

counter-productive. What we are seeking is a planning method that 

gives us a minimum of complexity while losing the least planning 

accuracy. In this way, the horizon plan becomes easier to cope with: it 

is easier to put together, easier for developers and business stakeholders 

to understand, and easier to keep up-to-date on a regular basis. 

We have designed the agile horizon plan to be amenable to rapid 

"what if?" analysis: "what if we added this feature?", "what if we took 

away that feature?", "what if we moved the date out?" We have also 

designed it to be easy to keep up-to-date on a weekly basis so that at all 

times we have an understandable statement of the status. If the status is 

"behind schedule", the what-if capabilities of the agile horizon plan 

provide us with a mechanism to consider plan adjustments. 

The biggest fault with planning is not the shortcomings of a 

particular planning methodology, but rather either not planning at all, or 

making an initial plan but then not tracking and adjusting it. A 

simplified agile horizon planning method addresses these issues. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 59 

Copyright © 2012 by David A. Penny 

We view the agile horizon plan as an abstracted version of the 

implementation plan. It comes to the same conclusions, but is stated 

and manipulated in summary form. It should always be the case that if 

we can put together a valid agile horizon plan (one that appropriately 

balances capacity and requirement), then we can produce a valid 

implementation plan (one that gets all the tasks done with the planned 

resources by the planned end-date). 

To serve the abstraction we take shortcuts and make assumptions 

when coming up with the agile horizon plan. These simplify the 

planning. We have found that these simplifications do not reduce the 

validity of the plan. In other words, even given the simplifications there 

is little chance that a detailed implementation plan will contradict the 

agile horizon plan. 

That having been said, I consider it to be entirely unnecessary to carry 

the baggage of a more detailed implementation plan in most 

circumstances, and find that agile horizon plan combined with agile 

development methods render a detailed implementation plan an 

unnecessary burden. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



60 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

3.6. Eliciting Potential Requirements 

Closing on an agile horizon plan involves first identifying the set of 

potential requirements for the time horizon: a wish list. These potential 

requirements are such that we can reasonably either include them or 

omit them from the software. We state them at the level of business 

requirements. That is, features that have a business benefit when we 

implement them into the software. The benefit is usually to the 

customer, but it can be to the software vendor in the case of 

architectural enhancements that make the code easier to deal with going 

forward. 

 

 

Potential Requirements 
Agile Horizon Plan 

? 

 

We can imagine the potential requirements as each being unique, 

and all contained in a large bucket. Agile horizon planning involves 

selecting a subset of features from the bucket for delivery within the 

planning horizon. 

For the first release, it takes effort to concisely define a set of 

potential requirements. First, we must model the domain, for instance 

using use cases and UML. Then we can define a set of potential 

requirements. As well, in a first release, we ought to develop at least an 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 61 

Copyright © 2012 by David A. Penny 

architectural concept we think will be required for subsequent releases. 

Therefore, the first release requirements usually come down to a 

minimum set of features, with a maximum amount of architectural 

work. This limits the scope of planning activities. 

For follow-on releases, the job gets easier. The problem here is not so 

much eliciting requirements as keeping track of them all. 

Coming out of the first release effort is a set of features that we put 

off together with some significant areas where we know we could 

improve the architecture. These form the basis for a wish list of 

potential requirements for the next planning cycle. When users start 

applying the software to practical problems, they have many sensible 

ideas for improving it. This adds to the wish list. 

For the follow-on development, the problem is to keep track of the 

wish list, prioritize it, size it, and decide which features will make it 

into the next planning horizon. 

3.7. Sizing Potential Requirements 

Once product management has identified and prioritized the wish list, it 

will be necessary to determine the merits of each potential feature by 

means of a cost-benefit analysis. The benefit is what incremental 

revenue or reduced costs the proposed feature will bring. The cost is 

using the development staff to implement the feature. This has both a 

financial cost and an opportunity cost. The opportunity cost is the 

benefit of other software the team might have produced during that 

same time. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



62 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

For software development, cost is almost entirely proportional to the 

number of people we have working. Thus, estimating cost requires 

sizing the potential feature or architectural enhancement in units of 

person-days. For example, a potential requirement may take 30 

effective person-days in total to implement. 

To size a feature a developer will first seek to understand the 

specification for the feature and how she will add it to the software. If a 

specification and design is available, she will use it. Otherwise, she will 

take an educated guess as to the nature of the specification and from 

that work out a rough design. She will then divide the implementation 

into component tasks, and estimate the time she will take to produce 

debugged code for each component task individually based on her prior 

experience with the code. Summing the timings for the component 

tasks, she will arrive at an overall sizing for the feature. 

The software organization can improve sizing accuracy over time by 

conducting post-mortems that compare estimated to actual sizings. This 

requires that the company keep track of the sizings throughout the 

project, and that all the developers track the time they spend working 

on the various features. A few such iterations can greatly improve 

sizing accuracy. 

 

 

30 36 43 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 63 

Copyright © 2012 by David A. Penny 

Another consideration when sizing is the precise nature of the units that 

we use. Does the estimate include testers and documenters? Is 

management overhead included? Are days seven hours or eight, or as 

long as a developer is willing to work? Is it dedicated time or time 

where other work activities are expected to interfere? 

Is 30-days an average-case estimate or worst-case estimate? If it’s 

worst case, what is the confidence interval: will we expect to come in 

under 30 days 90% of the time, 95% of the time, or something else? If 

it is average case, then what are the best and worst cases? Are they 

symmetric? 

There are many details surrounding the use of sizings. If we neglect 

any one of them, the results may be far off. We consider these issues in 

detail in Chapters 5 and 6. 

A shortcut we take for agile horizon planning is to size explicitly only 

the coding work associated with a feature. We shall see later that we 

size other tasks, such as system testing, documentation, specification, 

and design, indirectly from the code sizings. 

3.8. Sizing the Available Resources 

While feature sizings estimate how much coding work is required for a 

candidate agile horizon plan, resource sizing estimates how much 

coding person-power is available to do that work. 

We start by examining the pool of capable developers available to 

work on the software within the planning horizon. For follow-on work 

within the next planning horizon this is often limited to those who have 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



64 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

experience with the code. Most others will use as much of the other 

developer’s time for training as they will in producing useful work. 

For each potential developer we estimate when they are free to start 

(at least partially) working on the plan, and when they are no longer 

available. During this time, we count the available workdays and 

deduct any vacation the developer indicates they will be taking. 

For each developer we then estimate a work factor. This factor 

converts 8-hour workdays into dedicated, uninterrupted hours available 

to work on putting new features into the next release. This is typically 

on the order of about 0.6 or so, meaning that for each workday in the 

release, they can on average spend 8  0.6 = 4.8 dedicated hours putting 

features into the release. This work factor accounts for other assigned 

tasks, sick days, corporate functions, meetings, training, and a poor 

work environment. On the positive side, it accounts for extra hours 

spent working evenings and weekends. We combine all of these things 

into this one work factor. 

The result of all this estimation is the average, dedicated number of 

developers available to us. The units are "ideal developers" who never 

quit, are available for every workday, and work an uninterrupted eight 

hours putting new features into the release. We will call these ideal 

troops "dedicated developers" (no disrespect intended to those 99% of 

developers who, under this definition, are not considered "dedicated"!). 

If we have a pool of ten developer bodies available to us, it is usual 

for the average number of dedicated developers per day to be as low as 

four or so. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 65 

Copyright © 2012 by David A. Penny 

3.9. The Capacity Constraint 

Once we have an estimate for the average number of dedicated 

developers available during a given planning horizon, the planned 

capacity we have for coding features is that number multiplied by the 

effective number of workdays dedicated to coding during the planning 

horizon.  

For a traditional release cycle, that is the number of days in the 

coding phase. For a more continuous SaaS-based release strategy, that 

is a pre-estimated fraction of the total workdays in the planning 

horizon. In other words, one can either concentrate the coding in a 

phase, or spread it out, but either way not all of the workdays go to pure 

coding work. 

As for feature sizing, we give feature capacity in units of dedicated 

person-days. We can think of our available capacity as a rectangle. The 

height of the rectangle corresponds to the average number of dedicated 

developers. The base of the rectangle corresponds to the number of 

effective workdays. The capacity to do work corresponds to the area of 

this rectangle, measured in units of dedicated person-days. 

 

1 person-day 

effective workdays 

p 
e 
r 
s 
o 
n 
s 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



66 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

On the other side of the balance sheet are the sizings for the features 

we could add to the software. We should think of the area of each of the 

features as its sizing in effective person-days. 

The basic agile horizon planning problem is to choose a set of features 

that just fit into the planning horizon. Ensuring the features fit is called 

satisfying the capacity constraint. 

The dimensions of planning are which features to include, and the 

length of the horizon plan. The number of developers is too constrained 

to be of much use for next-horizon planning. 

When we have a plan that balances people, days, and features 

according to the capacity constraint, we have a partially valid agile 

horizon plan: "Partially" because we need to consider other resourcing 

and time using a method of ratios. 

 

effective workdays 

p 
e 
r 
s 
o 
n 
s 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 67 

Copyright © 2012 by David A. Penny 

3.10. Ratios 

As much as other, non-coding activities are important, the target of our 

efforts must in the end be debugged code with automated tests.  

Moreover, coders are usually the scarce, rate-limiting resource in a 

plan. This is especially true for follow-on work where we are 

constrained by the availability of developers familiar with the code 

base. Coders also tend to be the most expensive type of resource. 

By consequence, when planning it is worthwhile for us to devote the 

majority of our attention to the coding activities of the project (which, 

for future reference, such term shall always include the development of 

automated tests as well). For this reason, we size explicitly only the 

coding activities involved with adding new features, we look carefully 

at the amount of time available for coding, and we carefully consider 

the number of coders who are capable of working with the code. 

However, not devoting sufficient time or resources to non-coding 

activities can have just as bad consequences as for coding; all the same, 

explicitly planning these other activities with the same care as the 

coding is not necessary. The complexity that it adds is not worth the 

increase in accuracy it brings. 

The reason for this is that with other, non-coding activities such as 

system testing, documentation, and the up-front specification and 

design work, there is latitude regarding how much we need to do. This 

latitude is not present for coding. To implement a given set of features 

into the release, all of the necessary code must be finished. However, 

for specifying, designing, documenting, and system testing a given set 

of features it is never clear exactly when enough is enough. Therefore, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



68 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

for these activities we have a greater ability to accept a more fixed 

deadline and do the best job possible within the constraints given. 

Nonetheless, the agile horizon plan must take into account the amount 

of time and number of people available for non-coding activities. To 

account for this time and these resources, we require that they be in 

certain pre-determined ratios to the amount of coding time and the 

number of coding resources. 

In order to plan for the required test and documentation resource, we 

use a method of ratios. We have found that ratios of about 3:1 coders to 

testers, and 4:1 coders to documenters are reasonable. For example, if a 

plan calls for 12 coders, we must have 4 testers and 3 documenters 

available to us. In practice, the appropriate ratios will differ from 

product to product and company to company, and so we must use 

experience coupled with historical data to determine the situational 

appropriate ratios. 

We assume that we deploy these resources throughout the agile horizon 

plan. In the case of traditional release cycles, in order to smooth out 

resource utilization and to shorten the inter-release time gap, we 

 1 CODERS 

1:3 TESTERS 

1:4 DOCS 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 69 

Copyright © 2012 by David A. Penny 

overlap releases, starting specification and design on the next release as 

the previous one goes into beta test. 

This same overlapping of releases also serves to smooth the use of 

coding resource. The same can be said on a feature by feature basis in 

the case of a SaaS lifecycle. 

For a well-run development effort, we find that coding work drops off 

during beta testing as the defect discovery rate drops off. At the same 

time, demand for coders to work on specifications and designs 

increases steadily throughout the specification and design phase as we 

get more into the details. 

In practice, overlapping of releases in the manner indicated above 

allows us to have a smooth deployment of both coding and non-coding 

resources. 
 

developers 

test & docs 

code 

beta previous 

spec. next alpha beta 

spec. next  

 specification 
& design 

alpha 
test 

code & 
unit test 

beta 
test 

specification 
& design 

code & 
unit test 

R1.2 

R1.3 

requirements gather 

maintenance 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



70 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

To determine the lengths of the non-coding phases in traditional release 

cycles, we again use ratios. In practice, we have found that the 

following ratios of working days in each phase are realistic.  

As an example, if we assume coding takes 90 working days, then we 

estimate that specification and design head-start phase will take 60 

working days, and the entire release cycle 240 working days (about one 

calendar year). Again, the ratios will differ from project to project and 

company to company, and, so again, we must use experience coupled 

with historical data to determine the situational appropriate ratios. 

In the case of a more continuous release method, we use an overall 

ratio of coding days to other days, typically in the range of 3:1 or 3:2 or 

so. These "other days" are considered overhead days that account for 

release preparation, stabilization sprints, delayed start sprints due to 

lagging specification and design work, and so on, but spread all across 

time and all across developers. It is important to measure the total 

number of days spent coding versus the total number of days spent on 

other related activities to hone in on the correct ratio for any specific 

organization, software product, and release process. 

Using such ratios, we work out the number of workdays within the 

overall planning horizon available to do coding. The effort within those 

coding days is planned explicitly using the capacity constraint, and is 

controlled by determining the feature content delivered within the 

planning horizon. 

 

specification 
& design 

alpha 
test 

code & 
unit test 

beta 
test 

3 2 2 1 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 71 

Copyright © 2012 by David A. Penny 

Therefore, in addition to satisfying the capacity constraint, two further 

requirements for a valid agile horizon plan are that the number of non-

coder resources is in appropriate proportion to the number of coders, 

and that the number of non-coding days is in appropriate proportion to 

the number of coding days. If we find on any given planning cycle that 

any of these ratios are excessively optimistic or pessimistic (e.g., we 

found that the documentation was of poor quality due to lack of time 

and resources), then we must adjust the ratios for the next planning 

cycle. 

3.11. Shipping the Release 

For a traditional release cycle, once we are at the end of the coding 

phase, we have done everything we can to ensure the release includes 

all intended features and will come out on time. We must now monitor 

the stability of the release to ensure that we can ship on schedule. 

 
 

alpha 
test 

beta 
test 

GA 
release 

first point 
release second 

point 
release 

third point 
release 

defect arrival rate 

shipping threshold 

 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



72 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

We do this by tracking the defect arrival rate: the rate at which we 

find defects measured in new defects discovered per unit time. Ideally, 

this statistic should decline during alpha test, and decline further 

(though at a lesser rate) leading up to the ship date. After the ship date, 

it should be tolerably low. The company should have policies regarding 

what arrival rate constitutes "tolerably low". 

After the GA release, there will be sequence of maintenance point 

releases scheduled for once a month or so. During this maintenance 

period, the defect arrival rate should continue to decline. 

To determine whether the software is on-track for its beta and GA 

releases, management compares the defect arrival rate with historical 

values for the same product. If the arrival rates are overly high or not 

declining sufficiently, we should consider postponing the ship date. 

To avoid this problem going forward, the company ought to use this 

new baseline data in determining appropriate coding to test ratios for 

future releases. Of course, they should also be thinking of ways to 

decrease the total number of defects that they inject into future releases. 

However, management would be unwise to count on such 

improvements until they actually see them. Thus, the company should 

adjust their ratios nonetheless. 

For SaaS based releases, there is often a stabilization time that comes 

about when we start to notice that defect arrivals are too high. 

However, these stabilization sprints will typically be scattered 

throughout the planning horizon in order to keep the software in 

continuous good repair. However, the sum total of all these stabilization 

days must be counted as "non-coding" time and our ratios set 

accordingly to take them into account. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Planning Overview 73 

Copyright © 2012 by David A. Penny 

3.12. Summary 

In this chapter, we presented an overview of the agile horizon planning 

process that we will describe in detail in the next several chapters. 

We began by describing the business context, iterative release cycle, 

and overall lifecycle typical of a commercial software vendor company, 

and another lifecycle more applicable to continuous release SaaS 

environments. 

We then presented a simplified version of an agile horizon plan, 

stressing its essence as a balance sheet with feature sizings on one side 

and available resourcing on the other. We emphasized how the heart of 

agile horizon planning is keeping requirement and capacity in balance 

with the agile horizon plan acting as our scorecard. 

We continued by discussing the relationship between the agile 

horizon plan and the implementation plan. An implementation plan is a 

document containing detailed task breakdowns, task orderings, and 

assignment of personnel to tasks. We can view the agile horizon plan as 

a higher-level abstraction of the implementation plan. We intend that if 

the agile horizon plan is valid then we can produce a valid 

implementation plan in due course. 

We then went on to introduce the three cornerstones of agile horizon 

planning: eliciting potential requirements, sizing those requirements, 

and estimating how many dedicated developer equivalents we will have 

available. With this information, we produce the plan guided by the 

capacity constraint that governs the relationship between time, 

resources, and features. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



74 Agile Horizon Planning Overview  

Copyright © 2012 by David A. Penny 

Next, we discussed additional validity constraints on the plan 

involving the use of ratios that relate effort and time for coding days to 

effort and time required for other purposes. 

We then described how, after the code is complete, it is necessary to 

track defect arrivals, comparing them to historical values to determine 

whether it remains feasible for the release to be made generally 

available on its scheduled date. For SaaS-based lifecycles, we stressed 

the need to monitor this continuously and introduce stabilization sprints 

where required to bring these values back into line. 

The basic approach to agile horizon planning described here works well 

in practical situations. It is sufficiently lightweight that the fast-paced 

software organization is not slowed down and yet sufficiently rigorous 

as to make a real difference in how the company manages its software. 

The approach is an enabler that allows marketing product management 

and software development to come to terms, dividing their 

responsibilities in a way that fosters a good working relationship and 

results in a successful outcome for both the software vendor and its 

customers. 

Putting the approach into practice is straightforward, requiring only 

a relatively small commitment as compared to other areas of process 

improvement. As far as tool support goes, a company can get by with as 

little as one internal web page per product to hold its horizon plans. 

While the basic process is simple to understand, there are pitfalls 

that can sabotage our efforts. The following chapters 4 through 8 are 

devoted to a careful study of the details required to make agile horizon 

planning work in practice, and to some of the larger organizational 

issues. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

4. The Capacity Constraint 

A good plan respects always the "art of the possible". It may push up 

against the limits of what is reasonably possible, but if these limits are 

broken outright, the plan becomes irrelevant. 

As we have seen from the previous chapter, the art of the possible is 

governed by a relationship between the number of people we have, the 

amount of time they use, and the effort involved in putting features into 

the release. We call this relationship the capacity constraint. In this 

chapter, we will talk in general terms about it and some of the 

considerations surrounding it. 

4.1. A Geometric Analogy 

As we mentioned previously, the purpose of agile horizon planning is 

to answer the following three questions and no more. 

 

The difficult part is to ensure the "what", "when", and "how many" 

are in balance. We primarily use the capacity constraint to determine if 

these things are in balance. 

 What are we building? 

 By when will it be ready? 

 How many people will it take? 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



76 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

To help explain the capacity constraint, we use a rectangle as a 

geometric analogy. 

The number of people working is the height of the rectangle. The 

number of days is the length of the base. The number of person-days it 

takes to implement all the features corresponds to the area.  

For a rectangle, the area is the base times the height: 

 area = base  height 

For software releases, the analogous relation holds: 

 features = time  people 

The more time we have the more features we can put in. The more 

developers we have (within reason), the more features we can put in. 

For a given set of features, if the number of developers decreases, the 

time must increase. This is all common sense. 

In practice, the dimensions of planning are the base and the area: time 

and features. The height, the number of developers available, is not 

usually something we can adjust easily. It is a given, and tends only to 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Capacity Constraint 77 

Copyright © 2012 by David A. Penny 

shrink due to unexpected personnel losses (had the losses been 

expected, we would have planned on them). 

The reason it is difficult to increase staffing is that only developers 

who understand the code base are useful to us. We cannot hire these 

developers; we must train them. Unfortunately, the act of training them 

uses as much, if not more, productivity than what they contribute 

during their training period. 

Increasing the strength of the development team operates on a 

longer-term planning horizon than the next release. We must address 

these sorts of issues in the software development department’s annual 

business plan, which we will cover in Chapter 16. "Business Planning", 

on page 323. 

The key to planning is that time and features are dependent on one 

another. With a given a set of developers, if we try to set the base and 

the area independently, more than likely we will wind up with features 

overflowing the sides of our rectangle. 

This plan violates the capacity constraint. When this happens, we must 

take action. We must either increase the time to accommodate the 

desired features, or cut features from the plan. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



78 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

A typical mishap is show below. Here one or more developers have left 

the team leading to a violation of the capacity constraint.  

Assuming it is impossible to replace these developers in the short 

term, we have three options. The first option is to cut features from the 

plan, holding firm to our dates.  

The second option is to hold firm to our feature set, and move the 

dates out. 

The final option, and the most practical, is to combine the two, 

cutting the less essential features and moving the dates out slightly. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Capacity Constraint 79 

Copyright © 2012 by David A. Penny 

The following diagram represents another mishap. This could represent 

either additional features coming into plan, or a re-estimation upwards 

of the amount of effort we require to get the remaining features 

implemented. 

Whatever the cause of the violation of the capacity constraint, the 

reactions are the same. We can either cut features, extend dates, or 

both. 

Occasionally, good things happen. In the diagram below a developer 

who knows the code base has come back to us. We can now move in 

the dates, add features to the plan, or do both. 

Whatever the causes or reactions, maintaining the integrity of the 

capacity constraint requires always that 

features  =  time  people 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



80 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

4.2. Organizational Issues 

So far, this has all been common sense. Unfortunately, the trouble with 

common sense is that it is not very common. 

Divergences from common sense will generally take one of two 

forms. The first form is not even trying to estimate how long features 

will take to implement, or how much actual time developers have 

available to work on new features. The second form is to deliberately 

overstuff the plan in hopes that the developers will rally and get it done 

on time anyway.  

Closely related are the two forms of divergence from common sense 

subsequent to the initial planning. The first is to not track the plan, 

blithely assuming that everything is going to plan. The second is to 

know that something significant has just happened (a feature has just 

been added to the plan, a feature came in very late, or a developer left 

the team), and still take no action to adjust the plan. 

This last can arise all too easily, and stems from a lack of 

appreciation for the true importance of the capacity constraint to the 

software organization. 

At a certain point in time, the company closes on an initial plan. 

Assume that development signs off that this is a reasonable plan. As 

work proceeds, the developers may realize that their initial estimates 

were off for one reason or another. When they bring up this fact, the 

response is sometimes, "You agreed to the plan. The business is 

counting on it. We’ve made commitments around the plan. Don’t tell us 

your problems. Get it done anyway, that’s what you’re paid for." 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Capacity Constraint 81 

Copyright © 2012 by David A. Penny 

While this attitude is highly "accountability-driven", it is counter-

productive. 

The software company as a whole must respect the fact that the 

capacity constraint is central to its business. In other words, the 

capacity constraint is not a problem for development to overcome; it is 

a fact for the software company to deal with. 

Development is the messenger of the bad news, but the company 

must rally to solve its problems. This typically means facing the 

situation squarely, re-planning, and mitigating as best as possible the 

business consequences. There is no choice. 

In fact, it is precisely in these situations where the strength of the 

business managers can shine through. Developers can let us know the 

bad news in a blunt way. However, this is not the most appropriate way 

to pass on the news to our customers. The business side of the operation 

– sales, marketing, the CEO – must spin things and take concrete action 

to minimize the impact of the change in plan to the business. If the 

attitude is one of denial it will be too late to do any of these things 

when the inevitable happens. 

Better still, the business can understand the risks up front and take 

pains to mitigate their business exposure before the plan slips by setting 

expectations lower and then over-delivering on them. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



82 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

4.3. Setting Expectations 

Software companies sometimes frustrate their customers by saying very 

little about future releases. This is sometimes the company’s reaction to 

having made previous commitments on which they failed to deliver. 

However, customers will not be satisfied with this approach, and the 

successful business must give out certain information. 

On the other hand, it is also surprising how many times a software 

company will come up with an initial plan and then let their customers 

and prospects know every detail of the plan. A proviso is always given 

that the plan is "subject to change". The trouble is, expectations have 

been set. 

In the software business, client and market expectations are key to 

everything. When we release our plan, we set expectations. If we fall 

short of those expectations, there will be unfortunate consequences. 

The software company must set expectations in such a way that they 

can be satisfied. This does not mean they have to be completely tight-

lipped about their next release. This will backfire also. Rather they must 

make general statements about the release, and get into specifics as 

little as possible, and only when there is a compelling reason to do so. 

The company must only say as much as it takes to satisfy their 

customers and prospects, and no more. In this way, they minimize the 

number of commitments they must make and retain flexibility in 

planning that will be required as events unfold. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Capacity Constraint 83 

Copyright © 2012 by David A. Penny 

4.4. A Web of Commitments 

One of the most important things a company can do is to respect its 

commitments. In this way, the company will garner the respect, 

admiration, and goodwill of its customers and partners. 

Many customers, and for good reasons, would rather deal with a 

software company that has poorer software but honors its commitments 

than deal with one with better software that does not. This goodwill can 

act as a valuable buffer for the business when times are bad. 

The reason for respecting commitments is not solely moralistic. 

There is a good deal of pragmatics involved as well. 

When the software company gives its customer a commitment, the 

customer turns around and gives commitments themselves. For 

example, if a software vendor promises to provide a new release of its 

financial accounting software with a certain set of new features by a 

given date, the customer will start making plans around that. The 

purchaser in IT will tell his boss that he can expect the new business 

functionality to be up by a certain date. The IT department promises the 

business side this new functionality. The business side promises its 

partners that new information will be available by a certain date. It goes 

on and on, extending a surprising distance. 

A "web" of further commitments is built around the initial 

commitment made by the software vendor. If the software vendor 

reneges on their commitment, everybody looks bad, misses their 

bonuses, misses their revenue targets, loses that promotion, upsets their 

customers, upsets their bosses, and so on. 

This is hardly the way to treat loyal customers! 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



84 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

4.5. Managing the Plan 

The key to avoiding these sorts of issues is to go into a planning cycle 

with a good plan and track that plan as it unfolds. 

 The plan will identify dates by when specified new features will be 

made available. The plan will balance capacity and requirement for 

both the coding activities (planned explicitly) and the non-coding 

activities (planned using ratios). The company will formulate the plan 

in such a way that there is a high likelihood of achieving it. 

This agile horizon plan, so constituted, will act as a document that 

defines what the company is committing to itself to do at the current 

instant in time. However, as external and internal events unfold, the 

company will update the plan to reflect these events, and re-balance the 

plan once it leaves the comfort zone. 

The company will use the agile horizon plan internally by its various 

groups to plan their activities. Development will do detailed 

implementation planning based on the plan. Documentation will 

formulate what changes they will need to make to their publications. 

Client services will determine new training needs both for their own 

support people and for their customers. Testing will develop their test 

plans and test cases. Marketing will begin preparing collateral materials 

(brochures, white papers, advertising). Product management will brief 

sales on the new features and their benefits. In short, the activities of 

the entire company will coalesce around this plan. 

Development will indicate their status by updating the agile horizon 

plan on a regular basis. As the plan delta holds at zero, the company 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Capacity Constraint 85 

Copyright © 2012 by David A. Penny 

knows that the plan is on track. If the delta drops negative, management 

will understand there to be a growing need to re-balance the plan. 

Externally, the company will use the agile horizon plan as a guideline 

for determining what to say about new functionality being made 

available. 

While the plan gives specific expected end-dates, in the early stage 

the software company will only announce availability in general terms, 

such as by a certain quarter. As the end-dates get closer, and as 

customers require more certainty, the company can tighten its 

externally announced dates. The company can do this safely because as 

they get closer to their end-dates, the probability of hitting the planned 

dates in the balanced horizon plan rises. 

Early announcements prepared by marketing will give the general 

themes of the production releases, but not disclose specific features and 

functionality. This is both to retain competitive advantage, and to avoid 

setting specific expectations as much as possible. 

By means of client services, certain customers will be demanding 

features. Where necessary, and if in-plan, these features can be 

transformed into commitments, and marked accordingly on the plan. If 

subsequent to this the company must drop any features from plan, those 

committed to explicitly must be the last to go. The company does the 

same to manage commitments required by sales to close new deals. 

From the external point of view, the operative concept is to say only 

that which is required and no more in order to retain flexibility. This 

flexibility is required in case uncertainties in the plan go against the 

company, to address issue raised by customers, to enable the inclusion 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



86 The Capacity Constraint  

Copyright © 2012 by David A. Penny 

of functionality required to close new sales, and to give the company 

room to react to competitive threats and market opportunities. 

Thus, the well-run software company embraces the concept of agile 

horizon planning, and orients its activities around it. 

By contrast, the poorly run company rarely knows what it is 

building, or when it will be ready, yet makes more commitments 

(which it cannot meet) than does the well-run company. Moreover, it 

finds itself constantly hampered by these commitments and therefore 

unable to effectively react to customer and market conditions. It often 

does not realize it is missing its commitments until it is too late to do 

anything about it. The result is dissatisfied customers, missed 

opportunities, and, ultimately, a failed business. 

In order to improve its ability to engage in well-planned feature 

releases to the field, a software company must adopt a horizon planning 

mindset. However, having only a general idea of the horizon planning 

process is insufficient. The company must have a solid, definitional 

basis on which to base agile horizon plans so that there be no confusion 

regarding its terms of reference. Thus, the company must adopt a 

quantitative view of their plans. 

In the next chapter, we will again discuss the capacity constraint, but 

this time quantitatively, giving the precise definitions that will enable 

the willing software company to put the ideas into action. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

5. The Quantitative Capacity 

Constraint 

Up to now, we have looked at agile horizon planning qualitatively, 

examining the context, benefits, and overall process. In this chapter, we 

begin to look at quantitative definitions for the terms we have been 

using informally up to now. 

While it may seem excessively detailed, experience has shown that a 

rigorous definition of the numerical quantities involved is necessary to 

apply agile horizon planning in practice. Only with precise definitions 

can we determine the validity of an agile horizon plan. Without these 

precise definitions, there is room for interpretation that can lead us to 

believe that our plan is balanced when in fact it is anything but. 

To avoid this situation, and to eliminate any questions of 

interpretation, we present a quantitative formulation of the capacity 

constraint here, with rigorous definitions of all the quantities involved. 

To avoid confusion, for the bulk of the chapter we will 

quantitatively treat a planning cycle where all coding is concentrated 

into a single coding phase. Necessary modifications must be made 

when dealing with other methods of release, such as a more continuous 

SaaS-based release approach. We will end the chapter with a 

demonstration of how to modify the capacity constraint accordingly. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



88 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

5.1. Basic Definitions 

We have seen previously that a rectangle filled with features provides 

us with a visual analogy for the capacity constraint. 

The base of the rectangle is the number of working coding days 

available over the course of the planning horizon. We will refer to this 

quantity as T. 

The height of the rectangle is the average number of dedicated 

developers available to us during each of those T days. We will refer to 

this quantity as N. 

Therefore, the total number of dedicated developer-days available to 

us in the plan is N  T. 

We fill the interior of the rectangle with features. We will refer to 

the sum of all the individual feature sizings (expressed in dedicated 

developer-days) by the quantity F. 

Expressed in these terms, the capacity constraint requires that 

F = N  T 

or, in words, that the requirement to get work done (F) is exactly 

balanced by the capacity to do work (N  T) 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 89 

Copyright © 2012 by David A. Penny 

5.2. Post-Facto Considerations 

In formulating a precise definition for the numerical terms in the 

capacity constraint, we will adopt a post-facto (after-the-fact) mindset. 

In other words, we will define the quantities with a view towards 

gathering certain metrics during the time horizon in question, and then 

computing realized values for N, T and F using these metrics. 

Even though when we are planning we will need to estimate these 

quantities in advance, adopting a post-facto definitional framework is a 

good way to proceed for two reasons. 

Most obviously, we will gather these metrics during the planning 

horizon, and we will want to compute these numbers so that we can 

compare them to our initial estimates. It is only by closing the loop on 

our estimates that we can improve them going forwards. 

A second reason is for the sake of clarity in estimation. With good 

post-facto definitions we know exactly what it is we are trying to 

estimate. 

The definitions for N, T, and F will be such that after we have 

completed a release, if we were to perform a post-mortem we would 

find that the capacity constraint held. That is, if we were to measure the 

average number of full-time equivalent developers who worked on the 

release (N), count the number of working coding days they had on the 

release (T), and examine time logs to determine the total effort put into 

coding all features (F), we would find that F = N  T. 

It would not matter if the release were a disaster or a great success. 

After the dust has settled, we will always be able to verify that the 

capacity constraint held. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



90 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

This does not happen by coincidence, it happens by definition. The 

capacity constraint is a true constraint. It is not a suggestion that we 

ought to balance the capacity and the requirement. It is a law of nature 

that constrains us to being able to put into a plan only as much effort on 

features as we have person-power available to us, no more and no less. 

However, making things work out so that, post-facto, F = N  T 

always, takes a certain precision of definition. If we do not make the 

effort and define these terms precisely, the constraint would not hold, 

and, by consequence, we could make errors in our planning. It is well 

worth the effort in being explicit and making our definitions rigorous. 

With that said, let us now define N, T, and F in detail. 

5.3. Number of Workdays, T 

Let us start by defining the simplest quantity, T. 

T is the number of full-equivalent working days from the start of 

coding to the end of coding. For example, if we intend to start coding 

on December 10, 2007 and finish on February 8, 2008, then there are 

T = 39 working coding days (this excludes weekends and the time from 

Christmas to New Year’s). 

It will not necessarily be the case that all developers work all of 

these T days. Some may have vacation, or some may take sick leave. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 91 

Copyright © 2012 by David A. Penny 

This does not matter. Only if we know with certainty that no developers 

can work on a certain day should we remove that day from T. 

What about developers working weekends and holidays? As a rule, 

statutory days off should never be included in T. If developers persist in 

working days not included in T, the extra work will be taken into 

account elsewhere. T can be fractional in those cases where, for 

instance, all developers have a half-day off. 

5.4. Developer Power, N 

From the simplest, T, let us now move on to the most subtle, N. 

N is the average number of dedicated developers per day working 

during the period T. The term "dedicated developers" takes some 

explanation. As a simple example of N, say we have five developers 

available for every one of the T = 39 days from the previous example, 

each working 8 uninterrupted hours per day adding features to the 

release, then, under these circumstance, N = 5. 

Central to the definition of N is the notion of a dedicated developer. A 

dedicated developer is one who works 8 uninterrupted hours for every 

one of the T days of the coding phase doing nothing but adding features 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



92 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

to the release. A dedicated developer is an idealization that does not 

exist in reality. 

The reason for this is that we do not assume that body time is the 

same as dedicated time. Body time is the time during which a 

developer’s body is available to work each day. Let us assume that one 

workday consists of 8 body hours. That is a 9 to 6 job with one hour for 

lunch. Dedicated time is the uninterrupted time during the day used to 

get new features into the release. Depending upon what else is on the 

go, this might be, for example, only 4 hours. 

The word "uninterrupted" is important. Consider two developers. 

They both come to work for 8 hours. They both are doing something 

else for 4 of those hours. If the first developer had his 4 hours of feature 

work all in one adjacent chunk of time, then the number of 

uninterrupted hours he worked was 4. If the second developer had her 4 

hours of feature work come in fits and starts throughout the day, she 

may have gotten the equivalent of only 2 hours uninterrupted work 

done because of all the distractions. Her dedicated time is therefore 

only 2 hours. 

For a developer to have fewer dedicated hours than body hours does 

not necessarily carry a negative connotation. The developer’s manager 

may be asking him to be doing other important things during the day. 

This serves to reduce the amount of dedicated time available for the 

release, but reflects well on the developer. 

Given that each developer understands what a dedicated hour is, and 

given that the climate of the organization is such that they have no fear 

in being honest about reporting it, then it is possible to compute a post-

facto N for the project.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 93 

Copyright © 2012 by David A. Penny 

To do this, each developer must carefully track all the dedicated 

time spent adding new features into the release during the T day coding 

phase. Say there are a total of n developer bodies working during the 

coding phase. For the i
th
 developer, 1  i  n, we will call the measured 

number of dedicated hours hi. We then have, 

 

 

T

h

N

n

i

i






8

1  

In words, we sum all the hours spent over all of our pool of n 

developers, divide by 8 hours to convert dedicated hours into dedicated 

days, and then average the result over the T days of the coding phase by 

dividing by T. The result is the average number of dedicated developers 

deployed per day during the coding phase. 

If each developer actually spends 8 dedicated hours for each of the T 

days, then N = n. The simple example at the start of the section 

assumed this. It is unlikely to happen in practice. 

5.5. Attributing N 

For estimating N in advance, the numerical formulation given above is 

not very useful. It is difficult to estimate hi, the total number of hours 

that we expect a given developer to work during a release cycle, in 

advance. Moreover, if we find that our measured hi differ widely from 

our estimated ones, it is unclear how to go about attributing the 

estimation error. To make the capacity constraint more usable, we need 

to develop a breakdown of N in which the terms are more intuitive. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



94 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

 An improvement is to think in terms of a work factor, wi that for the i
th
 

developer converts body days into dedicated days. 

For example, a typical work factor might be 0.5, indicating that a 

developer can, on average, find half a dedicated day, equal by 

definition to 4 dedicated hours, each workday. It is easier to estimate a 

work factor than to estimate the total number of hours a developer will 

work during the release cycle. 

A developer’s work factor will be applied to the number of days 

they, in particular, were expected to have worked during the T day 

coding phase. For the i
th
 developer we will call this quantity ti. 

This quantity is always less than T. We subtract from T any days not 

allocated (at least partially) to the project, and any vacation days taken 

during the time allocated. Here vacation days mean discretionary time 

off that the developer does not intend on making up. Another way of 

stating ti is as follows, 

where di are the number of days at least partially allocated to the coding 

phase of this release, and vi are the number of vacation days taken 

during that time. This leads to the following definitions for wi and N. 

If we substitute wi into the equation for N, we’ll get back the original 

equation for N. 

Let us now look at some examples that illustrate these definitions. 

T

wt

N

t

h
w

n

i

ii

i

i
i











1

8

iii vdt 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 95 

Copyright © 2012 by David A. Penny 

 

Assume that the coding phase is T = 39 workdays long. A certain 

developer, Bob, tells us that he had 35 workdays on coding the release 

(he started 4 days late because of other projects), and then took 5 days 

of vacation. Bob’s workdays were therefore 30. 

Say Bob called in sick for two days. That does not affect these numbers 

in any way. The workdays are still tbob = 30. The hours lost during those 

sick days will go to reduce Bob’s hours (hbob) and hence his work 

factor, (wbob) but not his days worked (tbob). The only thing that can 

reduce days worked is taking extra vacation (vbob), or re-assigning Bob 

to different projects (dbob). 

Say Bob took a morning to run some errands and an afternoon to see 

Star Wars Episode 3. These were not vacation days, but rather time he 

intended to make up. Again, even though Bob was not at work for the 

equivalent of a day, the workdays are still 30. The non-vacation time-

off day he took reduces his hours and therefore his work factor. 

Say Bob makes up the time on a Saturday. Say even that Bob has no 

life whatsoever and works every weekend as well as during the week. 

Even though Bob worked all these extra days, the workdays in the 

formula remain at 30. The extra time gained goes to increase Bob’s 

measured hbob, and hence increase his work factor, wbob. 

30535

5

35

39









bobbobbob

bob

bob

vdt

v

d

T

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



96 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

If Bob took one fewer or one more vacation day, this would affect 

vbob. If we take Bob off the release prematurely so that he can work on a 

different project this would affect dbob. 

Bob tells us that during the release cycle he put in a total of 120 hours 

of dedicated time on new features in the release (hbob = 120). This 

number should include all dedicated time, including dedicated time 

during the workday and dedicated time working after hours and 

weekends. Bob’s average number of dedicated hours per workday over 

his 30 workdays is therefore 
120

/30 = 4. Dividing to convert dedicated 

hours into 8-hour dedicated days, we get that Bob’s work factor is 
4
/8 = 

0.5. 

Work factors can theoretically be greater than 1. If a workaholic 

developer tells us that their average was 12 hours of dedicated time 

each workday, then their work factor would be 
12

/8 = 1.5. 

Unexpected days off, sick days or family emergencies, will reduce 

wi. Discretionary days off, planned vacation, will not. If a developer 

takes off the morning but then works late at home, this has an entirely 

neutral effect. Vacations are those days that are gone, not those that the 

developer makes up. 

Note that some developers will be able to accomplish more in a 

dedicated hour than others. We do not consider this in the work factor. 

We consider this in the feature sizings later on. 

5.0
308

120

8

120











bob

bob
bob

bob

t

h
w

h

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 97 

Copyright © 2012 by David A. Penny 

When we go beyond the initial, simple definition of N to include di, vi, 

and wi, what we are doing is defining quantities that help us to attribute 

the contributors to N in an intuitive fashion. If we have a pool of 20 

developers working on our release, there are then 20  3 = 60 

individual contributing factors: di, vi, and wi for each of the 20 

developers. 

Attributing N in a fine grained, intuitive fashion will later enable us 

to hone in on the causes of estimation error and understand those 

factors that reduce our developers’ productivity. 

There are many alternative ways of dividing N into contributing factors. 

For example, say that sick days taken by developers were of particular 

concern to the organization. Then we might introduce an si analogous to 

wi which is the developers propensity for sickness (si = 0 is perfectly 

healthy, si  = 1 is deceased). 

The details of any particular attribution of N should be suitable to 

the needs and concerns of the developing organization. The particular 

division we described in this section is a reasonable possibility that has 

proven effective in practice. In any case, the exact formulation is less 

important than having some division that is rigorously defined and self-

consistent. 

5.6. Factors Affecting wi 

In our experience, a typical factor for a developer not yoked with any 

management chores, working on only the one product (new features in 

the next release and maintenance on previous releases), and in a good 

working environment, will have a work factor of around 0.6. The 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



98 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

reason that a developer’s factor is typically less than 1 is intuitive. 

During the day, most people need to do more than only work on new 

features for the next release. 

While there are different schools of thought on the issue of who does 

maintenance on previous releases, one common and efficient approach 

is to have developers simultaneously work on new features in the next 

release and fix defects in the previous release. If this is the case, then 

this is a large contributor to reducing the work factor (although, as was 

mentioned earlier, there is no negative connotation associated with 

this). 

If we factor in training, team leader duties, company parties, 

meetings with clients, time spent reading this book, and so on, pretty 

soon we are down to only about 2 or 3 hours of dedicated time left out 

of the 8-hour workday. 

Say there are 3 hours left. With those scant 3 hours, if the phone 

keeps ringing, if people keep dropping in on us, if those 3 hours gets 

spread willy-nilly across the 8-hour day, then we will get considerably 

less development done than if we can closet ourselves away for 3 solid 

hours with no disruptions. For this reason, those 3 hours turn into an 

effective 1 hour of dedicated time. 

Say that we have 16 developers like this working on our release. 

That is, each of the 16 developers has only 1 hour of dedicated time 

available each day. Each of their work factors is therefore 
1
/8 and  

N = 16  
1
/8 = 2. Our 16 developers just got reduced to 2! Factors like 

this are not unheard of, and they can cripple our productivity. 

This illustrates why it is worthwhile for an employer to do 

everything they can to get their developers’ work factors up. For 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 99 

Copyright © 2012 by David A. Penny 

example, private offices with doors that close, the ability to turn off 

phones, fewer and more focused meetings, and so on. It is also good to 

have the developer work on only one project at a time. Working on two 

different projects at the same time will typically more than halve the 

work factor for each project, owing to the overhead of switching 

between the two. DeMarco & Lister have an excellent discussion of 

these topics in the book Peopleware, [Dorset House, 1987]. 

5.7. Effort, F 

 

 

Let us now go over to the other side of the capacity constraint and 

define F, the total number of dedicated 8-hour person-days required for 

coding all the features into the release. In our geometric analogy, F 

corresponds to the area that we are trying to fit into the rectangle 

defined by N and T. 

In practice, F is something we have to estimate ahead of time. After the 

fact, however, it is relatively easy to measure. 


k

kfF

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



100 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

Where fk is the effort required to put the k
th
 feature into the release 

measured in dedicated days (1 dedicated day = 8 dedicated hours). We 

measure it by asking the developers (after they are all finished) how 

many dedicated work hours in total they spent during the coding phase 

on the k
th
 feature. We then divide by 8 to get the total number of 

dedicated workdays they spent on the feature. We do this for each 

feature and then sum to get F. 

The measured fk should include all work done during the coding 

phase by the developers in regards to that feature, and not just coding 

work. In particular, we should include any extra specification work and 

extra design work. The implication for a priori estimation is that we 

should estimate all work that we would expect to go on during the 

coding phase, and not purely the coding work. Ideally, if we complete 

all the specifications and designs on time, this will be only coding and 

unit testing work. 

5.7.1. Common Work and Abandoned Features 

In measuring a post-facto fk, it will sometimes be the case that a 

developer does work common to two or more features. In this case, it is 

not possible for the developer to allocate the work to just one feature, as 

we have required. 

We try to deal with this ahead of time by either combining the 

features into one, choosing the most fundamental feature to bear the 

cost of the common work, or by explicitly listing the common work as 

an architectural enhancement "feature", whichever makes most sense. 

In the latter two cases, the agile horizon plan should indicate a pre-

requisite relationship amongst the features so that nobody gets the idea 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 101 

Copyright © 2012 by David A. Penny 

they can just delete the common work and still get the dependent 

features at the same estimated cost. 

If the common work was unexpected (which is usually delightful), it 

should be intelligently pro-rated to whatever features required it most 

and that remained in plan. This will involve the developer tracking this 

common time separately, and at the end of the coding phase pro-rating 

the work in a sensible fashion. 

Another difficulty occurs when a developer starts coding on a feature 

that we later abandon from the release. 

As this is an inefficient use of resource, we try to avoid this situation 

as much as possible. In particular, we have a rule that says only features 

that the developers have not yet started are liable for removal from 

plan. 

All rules have exceptions, however, and if we nonetheless abandon a 

feature in mid-development we deal with it by leaving the feature in-

plan in an "abandoned" state. We charge the developer’s time to-date 

against that feature, and we sum it at the end of the release cycle with 

all the other features to determine F. Naturally, even though it is in-

plan, the "abandoned" marker indicates the feature is not implemented 

in the release. These measures retain the integrity of the capacity 

constraint in the face of abandoned features. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



102 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

5.8. Developer Productivity 

Nowhere yet have we discussed the issue of who will be doing the 

work. Different developers have different levels of productivity. Some 

of this is due to different work factors, but some of it is due to other 

factors, such as training, experience, and raw talent. As well, a certain 

developer may be more productive on one kind of feature than on 

another because they are more familiar with that domain, that 

technology, or that part of the code. 

It is interesting that the post-facto capacity constraint does not care 

about this point. Everything evens out in the end. The total time spent 

on features will equal the total time available to work on features, no 

matter if we hire the best or the worst to do the work. 

Surely then, we are missing something in the capacity constraint? The 

problem only comes when we think of feature sizings as independent 

from who is doing the work. This is the usual approach, and is why 

academics suggest we do not size features in terms of person-days 

directly, but rather in terms of lines of code, function points, or some 

other metric. 

When we estimate a feature sizing in person-days, we are also 

making an estimate as to who will be working on the feature, and how 

productively they will use each dedicated hour during that work cycle. 

We have found that, in practice, estimating simultaneously who will 

work on the feature and how much time they will spend on it is 

eminently practical, and in fact more natural than indirect approaches. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 103 

Copyright © 2012 by David A. Penny 

In the common commercial software development situation, we are 

familiar with the capabilities of the developers, and they can participate 

in estimating the feature sizings. Developers are usually more 

comfortable saying how long they will take to implement a feature than 

in making some abstract sizing estimate (say in terms of function 

points) and then another abstract estimate as to how productive they are 

in coding function points into software. Likewise, technical managers 

are often quite comfortable estimating how long a particular individual 

will take to implement a feature. 

If, for some reason, the developer we were expecting to work on a 

feature is not available to work on it, and if the replacement takes much 

longer, then we consider this to be, in fact define it to be, a sizing error. 

Therefore sizing errors can come both from poorly estimating the 

amount of work involved in a feature, and from poorly estimating who 

will work on the feature and how productive they will be. 

The estimation framework we discuss here does not constrain the 

manner in which feature effort estimates should be arrived at. It only 

requires that, at the end of the day, that the development organization 

supplies an estimate in effective coder-days. 

The effort estimate therefore combines three independent variables:  

 The size of the feature (for example in lines of code or function 

points).

 Which coders will work on the feature. 

 The productivity of those coders working on that feature (in 

lines-of-code or function points per effective coder-day for each 

coder). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



104 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

If the estimate of any of these three things is inaccurate, the feature 

effort estimate will be inaccurate. For example, if the coder originally 

expected to work on a feature must be replaced by a different coder 

with a different productivity rating on that type of feature, it is an 

estimation error. 

If the organization has a preference for how to estimate feature sizings, 

it can use it to advantage, combining it with the agile horizon planning 

approach. 

5.9.  F = N  T 

 

 

Given the definitions to date, we will now have post-facto agreement 

between F and N  T. 

We defined N such that only dedicated time working on new 

features was included. Moreover, we defined it so that all dedicated 

work on new features was included. 

Similarly, we defined F so that it consists of all dedicated time 

working on new features, and only that time. 

Given these complementary definitions, it is not surprising that, 

post-facto, F = N  T. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 105 

Copyright © 2012 by David A. Penny 

The situation is analogous to accounting balance sheets. If you are like 

me, and you happen to be exposed to balance sheets, every time you 

look at a corporate balance sheet you are amazed how the assets always 

work out to be exactly the same as the liabilities plus the shareholders’ 

equity. 

Well, if you are an accountant, it is not that astounding. An 

accountant knows that these things are designed so that they must equal 

one another. If they do not it is because something on the assets side 

was not accurately reflected on the liabilities side: that there was an 

error in the book-keeping. This is the essence of double-entry book-

keeping. 

Similarly, we are using a sort of double-entry book-keeping to keep 

track of F (the assets) and N  T (the liabilities). Every hour that every 

developer spends working on new features in the release must appear in 

both F and in the computation of N. The way F and N are designed then 

requires that F = N  T. 

Only when we have this solid definitional basis for our quantities can 

we try to estimate these quantities in advance. If we defined the 

quantities inexactly, we would never be sure exactly what it was we 

were estimating. As it is, we know what we are trying to estimate, and 

after the fact, we can check to see how close our estimates came to 

what actually happened. In this manner, we have a firm basis for 

improving our estimation accuracy. 

Note that we do not estimate F and N directly. Rather we estimate 

each of the contributing fk , n, di, vi, and wi separately. After the fact, we 

then measure each of these quantities individually to attribute our 

estimation errors in a fine-grained manner. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



106 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

For example, our post-mortem might reveal that our estimate for wi, 

an employee's work factor, was off by a significant amount as 

compared to the actual. We then know to apply our effort to figuring 

out how to better estimate w in future. 

5.10. Proof of the Capacity Constraint 

As stated in the previous section, it is a requirement that post-facto 

F = N  T. In this section, we shall prove it mathematically. 

Assume that the i
th
 developer records the number of dedicated hours 

working on the k
th  

feature during the 24-hour period of the d
th
 working 

day. Call this quantity: hi,k,d. In practice, it is a good idea to implement a 

fine-grained time-tracking system that is capable of tracking this 

quantity. We discuss this in Section 12.6, "Effort Tracking", on page 

264. 

By definition, the time in effective coder days spent on the k
th  

feature is 

given by summing the time spent by all developers on all days on that 

feature expressed in effective coder hours, and dividing by a nominal 8 

to convert to effective coder days: 


i d

dki

k

h
f

8

,,
 (Equation  1.) 

Given that 


k

kfF  (Equation 2.) 

Hence, the time required for all features is: 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 107 

Copyright © 2012 by David A. Penny 

8

,,
 k i d

dkih

F   (Equation 3.) 

As we have seen in Section 5.4, N is defined as: 

 
T

wt

N

n

i

ii




 1  (Equation 4.) 

And, from Section 5.5, w for the i
th
 developer is defined as: 

i

i
i

t

h
w




8
 (Equation 5.) 

Where hi is the number of hours spent by the i
th
 developer on all 

features on all days: 


k d

dkii hh ,,  (Equation 6.) 

Combining Equations 4, 5, and 6 gives: 

T

t

h

t

N

i i

k d

dki

i























8

,,

 (Equation 7.) 

Simplifying yields: 

T

h

N i k d

dki

8

,,
  (Equation 8.) 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



108 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

or: 

8

,,
 i k d

dkih

TN  (Equation 9.) 

Substituting Equation 3 into Equation 9 yields 

FTN   (Equation 10.) 

which is the capacity constraint — Q.E.D. 

What this demonstrates is that each quantum of coder work on a new 

feature in the next release, hi,k,d, goes both to the right side and the left 

side of the capacity constraint, and serves as a check that our terms are 

well-defined in a consistent manner. 

The work quantum contributes to work done on each feature across 

all developers and all days. The work quantum simultaneously 

contributes to work done by each developer across all features and all 

days. The contribution to each side of the equation is equal, and 

therefore requires that the capacity constraint be maintained. 

5.11. Modifications for Continuous Release 

When using a different style of software release, the details of the 

definition of the capacity constraint will differ.  For example, for a 

more continuous SaaS release methodology the multiple teams of 

developers will work in sprints, taking time between the sprints to 

prepare for the next one, and inserting stabilization sprints from time-

to-time as the software quality warrants. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 109 

Copyright © 2012 by David A. Penny 

In such a case, we might choose to model it using the following 

modified quantitative capacity constraint: 

      

      

Where D is the number of workdays over the entire planning horizon, c 

is the coding factor which converts workdays into "predominantly 

coding days" (PCDs), and N is the average number of dedicated 

developers deployed across those PCDs. 

We can define a PCD in any number of ways. One way is to declare 

that a PCD for any individual coder is any day where they spend more 

than 1 hour coding new features. Alternatively, for each member of a 

team it could be any day management declares to be a PCD for that 

team. Or it could be defined for an individual coder as any day that 

coder declares to be a PCD. Any of these definitions will work, 

provided there is some way of recording it. The "1-hour" rule is 

particularly easy to measure given we are tracking time. 

Let Pi stand for the number of PCDs of the i
th
 coder (as determined 

using any of the methods discussed previously, but applied consistently 

to all coders), and let P (un-subscripted) stand for the average Pi over 

the n coders as follows. 

 

   
∑  
 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



110 The Quantitative Capacity Constraint  

Copyright © 2012 by David A. Penny 

Then the coding factor is computed as. 

     ⁄  

This is the average PCDs across the n coders in ratio to the total 

number of workdays in the planning cycle, which intuitively 

corresponds to a "coding factor" which takes into account all of the 

predominantly non-coding days spread throughout the planning 

horizon. Note that this same formulation can be used for the "Big 

Bang" release cycle as well, though there is no need to estimate c as it 

is planned. 

We must then redefine the work factor in terms of PCDs as follows. 

       ⁄  

Where hi is the total feature coding hours of the i
th
 coder. Any hours 

spent coding new features outside a PCD will go to increasing the 

coder's work factor, the same as would coding on a weekend, for 

example. Note that a coder's work factor is now influenced by the 

average behavior of other's, as this formulation implicitly includes how 

this coder's PCDs compare to all others. 

N is then simply the sum of the work factors. 

   ∑   

In this formulation of the capacity constraint, the things we would 

estimate on the capacity side of the equation are the work factors and 

the coding factor, whereas before we only estimated the work factors. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Quantitative Capacity Constraint 111 

Copyright © 2012 by David A. Penny 

5.12. Summary 

In this chapter, we assigned quantitative meaning to the capacity 

constraint that we had looked at only qualitatively until now. 

In attaching quantities to the capacity constraint, we conceptualized 

a division of the contributing factors that is intuitive, amenable to 

estimation in advance, and that provides us guidance in attributing 

estimation errors and in leading us to ways to improve productivity. 

Next, we will consider the capacity constraint from the estimation 

standpoint, which inevitably brings in interesting questions concerning 

randomness and probability. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

6. The Stochastic Capacity 

Constraint 

In the previous chapter, we gave precise, post-facto definitions for the 

quantities that make up the capacity constraint. While this is useful for 

measuring these quantities, the essence of planning is estimating them 

in advance. 

When we give an estimate, we never give a number and say we are 

100% certain that the number is accurate. For example, if we estimate 

the size of a feature to be 20 dedicated person-days, we are not saying 

that we are 100% sure it will actually take 20 person-days. Our best 

guess is that it will take this long, but it may take more or less time in 

practice. 

What is this 20 person-days, though? Is it an estimate we are 

confident in? Is it a pessimistic estimate? Is it an estimate that is 

optimistic? Is it an average sort of estimate? Sorting this out is very 

important to planning. 

A quantity whose value is uncertain, that depends on chance, is 

called a stochastic variable. Statistics provides the mathematical 

language for dealing with stochastic variables. In this chapter we will 

introduce statistics, discuss how to apply statistics to estimation and the 

planning problem, and look at some of the organizational issues when 

dealing with uncertainty in the planning context. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



114 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

6.1. Confidence Intervals 

At the heart of statistics is the concept of a confidence interval. To 

illustrate confidence intervals, we will use the familiar notion of 

flipping a coin. Of course, we will be flipping it 5000 times, so maybe 

it is not very familiar to you! 

When we flip a fair coin 5000 times, we would expect it to come up 

heads about 50% of the time, or about 2500 times. We know that it will 

not be exactly 2500, just more or less. 

However, what is the probability that it will be exactly 2500? The 

answer is that it is not very likely. To be precise, there is only a 1.1% 

chance that it will come up heads exactly 2500 times (not one more, not 

one less). 

What is the chance that it will come up heads something less than 

2500 times? This is a lot more likely. In fact, the answer is 50%. If we 

repeat this experiment repeatedly, then, on average, half the time we’ll 

get less than 2500 heads, and half the time we’ll get more. 

What is the probability that it will come up heads something less 

than 2530? This is a higher still at 80%. There is an 80% chance that 

the number of heads will be fewer than 2530. There is a 92% chance 

that it will be fewer than 2550. 

We call these numbers, the 50%, 80%, and 92%, confidence 

intervals. With 80% confidence, we can say that the number of heads 

will be less than 2530.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 115 

Copyright © 2012 by David A. Penny 

6.2. Stochastic Variables 

This above coin toss example illustrates the notion of a confidence 

interval. Confidence intervals are key to describing the more general 

notion of an estimate. 

As an example, consider estimating the work factor, wi, for a given 

developer. When estimating, wi is considered to be a stochastic 

variable: a thing that is described by a statistical distribution. For any 

range of values for wi, the statistical distribution gives the probability 

that the actual wi will be in that range. 

One way of describing a statistical distribution is by giving its 

probability density function. This is a curve where the x-axis covers all 

possible values for the stochastic variable, the y-axis are numbers 

bigger than 0, and the total area under the curve is precisely 1. The 

probability that the stochastic variable lies between two x-axis values, a 

and b, is the area under the curve from a to b. 

We show here one possible probability density function for wi. In 

this example, the probability of wi lying between 0.5 and 0.7 is 66%. 

This looks to be a realistic curve for wi. For example, the probability of 

 

0 0.6 1 2 3 

0.5 0.7 

area = 0.66 

3 

2 

1 

Probability density function for wi. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



116 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

wi being more than 1 is close to 0, and there is a finite probability it can 

be as low as 0. 

The fully accurate way of giving an estimate is to supply such a 

curve. Based on the shape of the curve, we know with great precision 

everything there is to know about the estimate. 

Getting someone to draw us a curve is not the usual way to ask them for 

an estimate! For one thing, nobody knows the actual distribution in 

such detail. Usually we make an assumption about the overall shape of 

the curve, choosing a shape that we can describe by a mathematical 

formula. We then ask for a few parameters that we can use to fit the 

curve. Because estimates are somewhat inaccurate, the relative error 

introduced by choosing from one of a set of mathematically tractable 

probability density functions is small. 

For example, we may assume that all w’s are adequately described 

by a bell-shaped Normal distribution. We can then ask our estimators to 

give us average case and worst case values for w. 

For average case we can be more precise by asking the estimator to 

pick a value that half the time will be higher and half the time lower 

that the actual value. Say they pick 0.6 for this value. 

For "worst case" we could ask for a value for which 95% of the time 

w won’t be that bad. Say they pick 0.4. Given these two numbers, we 

have enough information to precisely fit a Normal curve. If we do the 

math, the Normal curve is the one with mean  = 0.6 and standard 

deviation  = 0.12, also called N(0.6,0.12), and shown on the page 

following. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 117 

Copyright © 2012 by David A. Penny 

The standard deviation, , for a Normal distribution with mean  is 

defined such that there is an approximately 68% chance of the actual 

value lying in the range   . By convention, we give Normal 

distributions using the mean and this 68% confidence interval. There is 

no reason why we cannot give them using any two confidence intervals 

we choose. 

A Normal curve, while mathematically the easiest to deal with, may not 

be the best fit. For example, because a Normal curve is symmetric 

about the mean, the distribution above predicts a best case of 0.8 (that 

is, that 5% of the time the actual value of w will be greater than 0.8). If 

in reality the estimator believes the 95% best case value is something 

more like 1.0 we will need a skewed (tilted) distribution to represent w, 

and would have to move to something more complex than a Normal 

distribution. 

As well, Normal distributions never end. That is, there is a non-zero 

probability that w could be anything at all. This is not appropriate, as 

there is no chance of w being less than 0 or larger than 4.2. However, 

given the small probabilities of these events, it may be something we 

are willing to live with as a source of error. 

 

0.6 

 = 0.6 

 = 0.12  

0.4 

area = 0.95  

N(0.6,0.12) 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



118 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

6.3. Estimates 

From all this we see that an estimate is not such a simple thing. Say we 

ask a developer to estimate the effort required to implement a certain 

feature and get an answer of one week. Is that one week of just one 

person, or are more involved? Does he mean 5  8 = 40 hours of work, 

or is he assuming longer days and weekend work? Is he assuming those 

hours are dedicated only to putting this feature into the release, or are 

they just regular work hours? 

We address questions such as these with the rigorous post-facto 

definitions we gave in the previous chapter. 

Once we have answered these questions, we should then ask at what 

confidence interval is he giving the answer. Is that a 50% confidence 

interval? That is, is he assuming he will be under half the time and over 

half the time? Is it an optimistic, best-case sort answer? Something like 

about 20% of the time he would expect to come in under that time and 

80% over. Is it a conservative estimate? That is, would he expect to 

come in within that time 19 times out of 20? 

We address these questions by making certain that we use proper 

estimates, as described in this chapter, and not just a single-number 

"estimate". 

Depending on the answer to all these questions, that one week estimate 

could be anything from two days to one month at a 90% confidence 

interval! It is very important to clearly establish this sort of thing up-

front when doing estimates. The differences could be large. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 119 

Copyright © 2012 by David A. Penny 

6.4. The Capacity Constraint 

The capacity constraint is uncertainty embodied. T is fixed, but both N 

and F are uncertain. 

N and T define the shape and size of the rectangle. F is the "goo" we 

use to fill up the rectangle. 

We can imagine that the height of the rectangle, N, vibrates up and 

down, so we are never sure how much we can fit into it from moment 

to moment. At the same time, the goo is vibrating: we are never quite 

sure how big it is. There is uncertainty about the size of the rectangle, 

and there is uncertainty about the amount of goo we have.  

In other words, there is uncertainty in our capacity estimates, and 

there is uncertainty in our feature size estimates. 

Under these circumstances, all we can speak about is the chance of the 

goo fitting into the rectangle: the chance of getting all the planned 

features done by the planned date. 

For example, say we come up with a set of features and estimate that 

the total effort required, F, will be 400 dedicated person-days. Say we 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



120 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

then estimate that our resourcing, N, will be 10 dedicated developer 

equivalents per day. If we have 40 working days (T = 40) to get the 

release done, one would think we are fine, as we have 400 days of 

capacity and 400 days of requirement. 

However, we may not be fine. Based on what we have said so far, 

we do not have enough information to answer the question "with what 

probability will we come in within the T days". We will need to know 

the precise distributions for F and N to get any farther. 

6.5. Summing Distributions 

Both F and N are sums and averages over many contributing largely 

independent stochastic variables. In statistics, we cannot just add things 

up as we can in simple math. 

For instance, say our release is comprised of only two features 

whose sizings are f1 and f2, respectively. Each of these sizings is an 

estimate and hence has an associated statistical distribution. The 

question is, what is the distribution of F = f1 + f2? 

This is a difficult statistics question in the general case. If f1 and f2 

are Normally distributed, then we know that F will be Normally 

distributed as well. The mean of F will be the sum of the means of f1 

and f2. The standard deviation of F will be the square root of the sums 

of the squares of the standard deviations of f1 and f2. This is difficult 

enough. If f1 and f2 are not Normally distributed, it gets more difficult 

still. 

Suffice to say that we need statistical simulation software tools to 

come up with the distributions of F and N given estimates of the 

contributing factors. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 121 

Copyright © 2012 by David A. Penny 

Without the use of such software, we can still take into account 

estimates by using a quick but conservative rule of thumb. 

No matter the distributions of the constituents, we know that the 

mean of the result is the sum of the means of the constituents. In 

addition, we know that in practice the sum of the p% worst case 

confidence intervals of the constituents provides a worst case bound for 

the p% worst case confidence interval of the result. 

Using these facts, we can solicit mean and 90% worst case estimates 

for the contributing stochastic factors, and compute the results (non-

statistically) using both of these sets of numbers. These provide mean 

and 90% worst case estimates for the resulting distribution we wish to 

calculate. If we assume the result is Normally distributed, we can use 

these numbers to fit a pessimistic Normal curve for the resulting 

distribution. From this curve, we can compute confidence intervals for 

our resulting distribution. 

This is overly pessimistic, but is easy to apply in practice. 

6.6. The Delta Statistic 

Now that we understand how to get distributions for F and N, we can 

begin considering the planning problem: how best to choose the feature 

set and the dates. 

As a preliminary, we shall define a new quantity D(T), for delta. D(T) 

is a stochastic variable whose distribution depends on T. We define it as 

follows, 

   D(T) = N  T    F 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



122 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

We can determine this distribution if we know the distributions for N 

and F. 

From an a priori estimation standpoint, we are interested in the 

probability that D(T)  0: the probability that all the features will be 

completed on or ahead of time. For small T, that would be a small 

chance. For big T, that would be a high chance. In settling on a T for 

our plan, we will want to first choose a confidence level, say 80%, and 

then pick a T such that D(T) is just positive with that degree of 

confidence. 

Let us continue our previous example to illustrate this. Assume F and N 

are both Normally distributed with means of 400 and 10 and with 90% 

worst case values of 500 and 8, respectively. The table following shows 

the value of D(T) for various T’s at the indicated confidence level. 

Of special interest are the points where the columns transition from 

negative to positive values. For instance, looking at the bottom of the 

last column we see that to be 95% certain of hitting the dates, we 

  confidence level 

  25% 40% 50% 60% 80% 90% 95% 

 30 -39 -77 -100 -123 -177 -217 -250 

 35 14 -26 -50 -74 -130 -172 -207 

 40 67 25 0 -25 -84 -128 -164 

T 45 121 77 50 23 -38 -85 -123 

 50 174 128 100 72 7 -41 -82 

 55 228 179 150 121 52 1 -41 

 60 282 231 200 169 97 44 0 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 123 

Copyright © 2012 by David A. Penny 

should plan for the release to take 60 days. Another way of saying this 

is that if we plan for T to be 40, then only 5% of the time will we be 

late by more than 20 working days. 

When we first used the numbers 400 and 10 for F and N, we blithely 

assumed T would be just 40. In fact, if we wish to be 95% certain of 

hitting our dates, we should make T = 60. This is a large difference. 

To be a bit less conservative, we can look at the 80% column and 

say that to be 80% sure of hitting the dates, T should be about 49 days 

(we interpolate for T between the two vertically adjacent cells where 

the value changes from negative to positive). 

If we are a gambler, we can look at the 25% column and set T to 

about 33 to have a 25% fighting chance of hitting the dates. 

6.7. The Initial Planning of the Release 

In practice, in coming up with a plan we start by picking a reasonable 

date for the release. For a traditional, shrink-wrapped software product, 

for instance, that might be somewhere between 6 and 9 months from 

the previous release date. This will imply a T, the number of workdays 

in the coding phase. To be concrete, let us use T = 70 days as an 

example. 

According to our risk preferences, we pick a confidence interval, say 

80%, and choose a set of features such that D(T=70)  0, 80% of the 

time. This defines the initial set of features and the initial dates for the 

release. There is an 80% chance of releasing those features by those 

dates. 

To hone in on the plan, we will iterate. If the features we had our 

heart set on did not quite fit, we would move the dates out a bit and 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



124 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

choose a broader feature set. If everything fits comfortably, then we 

might move the dates in a bit. 

If we were to look at the problem of optimal agile horizon planning 

mathematically, we would discover it to be extraordinarily complex. 

We would need to consider the benefit associated with promising 

various features sets on various dates, and actually delivering different 

features sets on different dates. Moreover, it is a dynamic problem as 

we can adjust the agile horizon plan as we go, making optimal 

decisions as we proceed through the agile horizon plan. Suffice to say 

that a mathematically optimal solution will always evade us, and so we 

must use intuition, experience, and good judgment for agile horizon 

planning. 

6.8. Adjusting the Agile Horizon Plan 

The initial agile horizon plan is a best guess at the features we can get 

into the next release, by the given date, with a certain contingency as 

captured by the confidence interval we are using. 

As development of the release unfolds, it may be that we will need 

to add extra features into the plan, or (less frequently) that certain 

features may no longer be required. It is also likely that we will adjust 

our estimates for how long various features would take, most often 

 

choose T happy? 

yes 

no 

done 

adjust T 

choose feature set 

adjust feature set 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 125 

Copyright © 2012 by David A. Penny 

upwards (human nature being optimistic in the case of feature 

estimation). 

To deal with such situations, it is good to have flexibility built into 

the plan. 

One way of achieving this flexibility is to start with a pessimistically 

high confidence interval (e.g., 95%). However, this has the problem 

that we would be very likely to be finished ahead of schedule. If we 

finish ahead of schedule, we can either release early or add some extra 

features into the release. 

Usually there is not much upside to releasing ahead of schedule. 

People will generally be upset that the plan was "overly padded". Even 

if it was a fixed price contract, the customer will be upset at being 

overcharged. 

The alternative is to then add extra features into the release. 

Unfortunately, if the agile horizon plan achieved its slack by using a 

high confidence interval, there will have been no planning or up-front 

work done for those new features. 

To avoid this situation, it is usually wise to have two confidence 

intervals in mind, and two feature sets. 

We divide the feature set into an "A-list" and a "B-list". The B-list 

are nice to have features that we can easily drop from the release should 

we find ourselves falling behind. The complement to this is the A-list of 

features without which the release is no longer meaningful. 

We should have a high degree of confidence that we can get the "A-

list" done on time. We should have a low degree of confidence that we 

can do the entire B-list on time as well. For example, we might plan to 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



126 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

a 95% confidence interval for the A-list, and a 40% confidence interval 

for the full list. 

To use this technique, it is necessary that no work on "B-list" 

features occur before "A-list" features. 

In practice, having a good-sized "B" list and being willing to use it 

is the best way of hitting our dates. It is remarkable how a company can 

hit the dates by dropping half the features and still have everyone 

calling the release a success. On the other hand, if a company misses its 

dates by even a few weeks, the release will be classified a failure, even 

if all the features originally planned for were included. 

6.9. Advanced Planning I 

While the basic planning method given in the previous section is the 

one that will be used in practice, it is instructive to consider other, more 

quantitative methods of planning. This will enable us to better 

understand what we are trying to achieve in the seat-of-our-pants style. 

In this section we’ll consider in more quantitative detail how to 

choose an optimal T. In the next section we’ll look at the even more 

difficult problem of choosing an optimal feature set. 

When we have a certain feature set in mind, choosing a date for the 

release is a tug-of-war between announcing its availability for an earlier 

date on the one hand, and possibly missing those dates on the other 

hand. 

This can be quantified using a benefit function, B(T,e). This is the 

benefit (positive or negative) associated with announcing a certain 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 127 

Copyright © 2012 by David A. Penny 

feature set for time T, but actually delivering it at time T+e (e for 

error). 

In theory, to estimate B we would start by assigning a value to 

B(T,0) for each T (it is understood that we have already settled on a 

given feature set). This is the benefit of announcing and then actually 

getting the release out on time, for various times. In general, the closer 

in is T, the higher is the value of this function (within reason). As T gets 

out farther and farther, the benefit goes down. 

B(T,0)  B(T+e,0) for e 0 

For each of the T’s, we then need to assess the effects of delivering 

either earlier or later than we said. That is, of taking into account non-

zero values for e. 

Earlier is always either the same benefit or more (if it was less, then we 

could just wait and deliver on time). 

B(T,e)  B(T,0) for e  0 

Generally, promising it earlier and delivering on time is better than 

promising later and delivering it at the same time. 

B(T+e,0)  B(T,e) for e  0. 

These two considerations imply the following bounds on B(T,e) for 

negative e (being early). 

B(T,0)  B(T,e)  B(T+e,0) for e  0. 

For positive e (being late), we have similar considerations. For an 

ethical software company, being late is always worse than promising 

late, but being on time.  

B(T,e)  B(T+e,0) for e  0. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



128 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

Unfortunately, not all software companies are ethical, and will perceive 

a benefit in promising something for earlier than they can possibly 

deliver it. In these cases, mostly the same benefit can be had by 

announcing a later date (or no date at all) earlier on, which is ethical, 

rather than announcing availability for an impossibly early date (which 

is not – but at what confidence interval does it become so?). This 

implies an upper bound on B(T,e) for positive e. Ominously, there is no 

lower bound! 

Using these bounds as guidelines, it is theoretically possible to fill in a 

guess at B(T,e) for many possible values of T and e. Once we have B, it 

is then possible to solve for T. T is the value that maximizes the 

expected benefit over the possible range of values for e. 

Before we can give the equation, we need to define the function 

P(t). This is the probability that D(t) = 0, or in words, the probability 

that we can deliver the feature set at time t. We can get this from the 

distributions for F and N. The equation for T is then, 

In the square brackets is the expected benefit of announcing at time t 

but delivering at a wide range of possible times. B(t,e) is how well we 

can expect to do promising at t but delivering at time t+e. P(t+e) is the 

probability of actually delivering at time t+e. The sum of the product of 

the probability and the benefit over all possible values for e is the net 

expected benefit. 

We should choose a T that maximizes this net expected benefit. 









 



 te
t

etBetPT ),()(max

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 129 

Copyright © 2012 by David A. Penny 

While all of this is fine in theory, one would not advocate taking such a 

quantitative course in practice. For one thing, this is an extreme 

simplification of the planning problem and ignores some of the best 

planning options that are available (as discussed in the next section). As 

well, as we proceed through an agile horizon plan everything changes 

as we go, and we would have to continuously re-estimate B and P. 

In practice, and stripped of the mathematics, the lesson is that we 

should always be aware of the risks of coming in late. We should 

choose a date and arrange our commitments in such a way that we 

won’t be unduly punished if we miss our dates. This may mean moving 

the date a bit farther out, to both reduce the probability of being late, 

and the harm if this does happen. 

6.10. Advanced Planning II 

In the previous section, we assumed that the feature set was chosen, and 

we were trying to decide on an optimal T. Even if we were running late, 

we would stick to our guns and deliver the original feature set. This is 

unrealistic. In practice, we have a wonderful planning tool available in 

our choice of feature set and the related choice of what features to drop 

if we start getting into trouble. 

To quantify this, the benefit function should be re-stated as follows. 

Let 

B(F1, T, Fi, e) 

be the benefit associated with announcing feature set F1 for time T, but 

actually delivering feature set Fi at time T+e. This formulation of B 

raises the possibility of trading out features for time as the release cycle 

proceeds, and is considerably more realistic. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



130 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

In practice, the dimensionality of this new B is too high to be useful 

in any practical sense. It does, however, capture the essential planning 

variables: features and time. 

To work with this new formulation of B, we identify a sequence of 

feature sets from F1, the complete feature set, to Fm, the minimum 

feature set we would still be willing to ship. Each succeeding feature set 

would lop off more features (or reduce the scope of features). 

The assumption is that if we start getting behind, we would make some 

compromise between moving the dates out a bit, and reducing the 

feature set a bit. 

The general planning problem is to pick an initial feature set, F1, and 

an initial date, T, to maximize our expected benefit given that we will 

make optimal choices down the line in trading off dropped features for 

late dates. 

We won’t be giving any equations for this, as it is a very difficult 

thing to quantify mathematically. This difficulty goes a long way 

towards explaining why planning remains very much an intuitive, seat-

of-the-pants effort. 

F1 The complete feature set.

F2

F3 Reduced feature sets.

…

Fm The minimum feature set.

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 131 

Copyright © 2012 by David A. Penny 

Experience dictates that it is unwise to stuff the release full to the brim 

with "must-have" features. We should always remain cognizant of an 

"A" list and a "B" list of features. The "A" list comprises the feature set 

in Fm: those features that we simply cannot drop and still ship a 

meaningful release. The "B" list comprises all those features that bring 

Fm up to F1: those features we would be willing to drop if necessary. 

A good agile horizon plan will have a balance of "A" list and "B" 

list features, and will balance the relative size of the "B" list with the 

tightness of the dates. 

6.11. Appreciating Uncertainty 

In order to plan well, one must have a good gut-feel for probability and 

statistics. Unfortunately, not many people really appreciate probability 

and statistics all that well. 

Two types of people who do have this understanding are successful 

financial traders and successful gamblers. Gamblers have it a bit easier 

than traders. Gamblers at least know the probabilities going in. Traders 

have to first guess at the probabilities, and then act accordingly. 

Both groups will tell you that the most important lesson to learn is 

not how to make money, but how not to lose it. That is, knowing when 

to cut your losses. 

By plying their trade day-in and day-out, they develop a feel for 

probabilities. They know they are almost as likely to lose as to win. 

They do not distort the odds based on false optimism. 

So, what does all this have to do with agile horizon planning? Every 

plan is a gamble. In most types of plans, we never see any elements of 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



132 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

uncertainty. Yet, they abound. Somehow, it seems shameful for us 

software professionals to have to admit that we do not know something 

with certainty. 

When plans start slipping the first thing we do is blame the estimates. 

We say that an estimate is "bad". Actually, that is not even a 

meaningful statement. We give honest estimates with the understanding 

that almost anything can happen. Each estimate is its own little 

statistical experiment that we will never repeat again. There is a finite 

probability that almost anything can happen. 

To be fair, if every estimate in the plan is off we can do some 

statistics and see that the chance of them all being so far gone is 

practically nil. If this is the case then we can say that the developers 

doing the estimation are almost certainly not very good at it. 

Nonetheless, we should probably not be as quick as we usually are 

to blame the estimate and point fingers at the developer who gave it. 

Bad luck happens, on average, half the time. Moreover, we take a lot 

more notice of the bad luck than of the things that go right. 

Where the gambler comes in is in our reaction when bad luck does 

hit us. 

When a feature is slipping, there is a very human tendency not to "take 

our losses". It is a lot like a failing gambler. When things start slipping, 

hopeless optimism sets in. After all, there is always a chance that the 

plan will recover. True enough. However, is it a good bet? By taking 

the optimistic approach we do not have to admit to our losses right 

away. We do not have to admit, "We were wrong" just yet. There is still 

a chance that things can turn. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 133 

Copyright © 2012 by David A. Penny 

The problem is, most people involved in agile horizon planning do 

not have the finely honed skills of the professional gambler or trader. 

They do not really understand at a gut level the implications of, for 

instance, a 25% chance. They will often err on the side of optimism. 

The good gambler, on the other hand, knows when to cut his losses, 

announce that the software will be late, and deal with the business 

consequences immediately. More often than not, holding onto a slim 

chance will drive us deeper and deeper into the hole, like the 

compulsive gambler who winds up losing his life’s saving on the one 

chance that he can recoup his losses and come out a hero. 

On the other hand, when the business is at risk of failing entirely, 

the 25% chance may be the best bet around. Again, the experienced 

gambler will know which situation applies, and act accordingly. 

Aggressive plans are another example of statistics at work. We all 

know of projects where nobody in development thought the thing could 

reasonably come in on time, and yet the business presses on regardless 

with the doomed deadline. It is not necessarily true that anybody is 

acting irrationally, just optimistically. 

Ask the developers the chances of the project coming in on time and 

they will say, "Poor: 60% at most". Ask the entrepreneurial CEO the 

same thing and he will say, "Looks good" (thinking to himself that 

there is least a 60% chance). 

This sort of divergent thinking is responsible for a lot of tension 

between the business side of a software organization and the 

development department. 

Entrepreneurs, by their nature, are risk-takers. Most software 

developers, on the other hand, are risk averse. When an entrepreneurial 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



134 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

CEO insists on a date and a feature set, and the developers cannot see 

how it can possibly come in, what might be happening is that different 

risk tolerances are coming into play. 

The entrepreneurial CEO enjoys risk and is eager to take it on. The 

software developers dislike risk, and are eager to avoid it; they may 

even be de-motivated by it. If both sides could explicitly agree on the 

risk they are taking, they could largely eliminate this tension. 

The best practical advice is to state the chances explicitly and discuss 

them in advance. If the company decides to take a chance, it should not 

start blaming the estimates when things go bad. Rather, management 

should know when to take their losses and re-plan. Remember, even 

when planning to hit the dates 80% of the time, we should still expect 

to miss the dates or drop features 20% of the time. 

6.12. Loading the Dice 

Up to now, we have been treating the capacity constraint as purely 

stochastic, like rolling a pair of dice. There is actually a key difference 

between these two things. Unlike for a pair of dice, the actions we take 

subsequent to planning a release have a major effect on the outcome. 

Up front, we treat as stochastic variables things like our ability to 

retain staff, the work factors, the number of raw developer-days we 

have, and so on. We also treat as stochastic our feature sizings. During 

the release cycle, however, we can actively manage these variables, 

thereby loading the dice in our favor. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 135 

Copyright © 2012 by David A. Penny 

It is analogous to the odds on a football game. The odds of a certain 

team winning may be 3-to-1 against. Everybody accepts, however, that 

an exceptional effort by that team can result in a win. It is just that in 

coming up with the odds most people are not expecting that exceptional 

effort. 

It is the same for planning software. When we give the odds, we are 

basing them on history and giving a realistic assessment of our future 

chances given our past efforts. This is entirely proper and prudent. 

However, when we take off our planning hats and put on our 

management and development hats, we should be expecting much 

better from ourselves than we have ever been able to achieve in the 

past. This is the right attitude going into a new horizon. 

By exceeding expectations and delivering more than anybody 

expected, we have added a new historical data point. Future estimates 

will consider this new-found productivity. 

There is a danger in confusing prudent estimation and optimistic 

attitude. A common pitfall is to make estimates based on expected 

productivity increases. This will usually lead to disaster. 

For instance, say a company has just instituted a new tool of some 

sort and expect to cut testing time in half. Should the company consider 

this in their planning? It would be unwise to do so. The company 

should base its plans on what it has achieved historically. If this new 

tool pans out in practice, they can adjust their estimates downwards on 

the next planning cycle. 

We should always be aggressively seeking productivity increases, 

and we should be highly confident of achieving them based on our 

course of action. These expected productivity increases should not, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



136 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

however, be taken into account in planning. Planning should use what 

we have proven in the past. There are simply too many things that go 

wrong to prudently count on any sort of productivity improvement 

during the planning. 

Nonetheless, the goal in execution is to always do better than the plan 

would indicate. The best guide in achieving this is in looking at the 

planning itself, and concentrating our efforts where they will do the 

most good. 

For example, if the work factors appear to be particularly low, we 

should take measures to remove distractions from the developers. If the 

staff retention rate seems low, we should take measures to ensure our 

developers do not quit on us. 

In a pinch, if the number of vacation days during the release cycle 

seems high, we can ask developers to put off their vacations until after 

the release cycle is done. We can even attempt to increase the work 

factor by asking for weekend and late night work. In general, these 

sorts of measures are counterproductive in the end, but they may help 

us out of a tight spot. 

Even on the feature sizing side of things, there are measures we can 

take. A clever design can reduce the sizing considerably over that of a 

more mundane design. In one instance, the chief architect came up with 

a brilliant software design that had two features use one common 

implementation. During planning, everybody thought these features 

were entirely independent of one another. The net result of this clever 

action was therefore to cut 20 days out from the feature sizings. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Stochastic Capacity Constraint 137 

Copyright © 2012 by David A. Penny 

Recall also that developer productivity, the efficiency with which 

one dedicated hour is used, is included in feature sizings. By helping 

less experienced developers at key moments, it may be possible to 

increase their net productivity drastically. A team approach to 

implementing the features, where each developer helps where they are 

best able, can increase net productivity and therefore act to reduce total 

feature sizings. 

Even though when planning we will count on only what has been 

achieved historically and base estimates on that, it is nevertheless also 

necessary to work hard to ensure that we take every measure possible to 

improve our chances as we go. 

It is a subtle thing to only count on what has been achieved 

historically with one part of our brain, the planning part; while 

simultaneously expecting to improve things with another part of our 

brain, the getting it done part. 

To confuse the two, however, is to set ourselves up for failure. 

6.13. Summary 

To use the capacity constraint in practice, we need to understand it not 

only from a rigorous, post-facto definitional framework useful when 

collecting statistics, but also from an a priori, estimation standpoint 

useful for planning a release ahead of time. 

We began with a generic discussion of stochastic variables and 

estimates. We saw how these basic statistics concepts applied to the 

capacity constraint, where T (number of days) is fixed, but F (feature 

sizings) and N (average developers) are uncertain. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



138 The Stochastic Capacity Constraint  

Copyright © 2012 by David A. Penny 

In applying statistics to the capacity constraint, we discussed the 

problem of combing fine-grained stochastic variables into distributions 

for F and N, and ultimately how to arrive at a distribution for the delta 

statistic, D(T) = N  T    F, whose confidence intervals tell us our 

chances of hitting a planned date as determined by T. 

Using the delta statistic, we discussed the problem of planning 

software releases. We described how it is useful to plan such that we 

have a high degree of confidence in delivering an "A-list" of features by 

the planned date, but a low degree of confidence in delivering a "B-list" 

in addition. If the release begins slipping, we can sacrifice the "B-list" 

to maintain a firm delivery date. 

We closed by discussing various issues regarding the management 

in the presence of uncertainty. In particular, we discussed the idea, 

well-known to successful financial traders and gamblers, of "taking our 

losses" as opposed to hanging-on and hoping for a recovery. We also 

discussed the difficulties of simultaneously planning for average case 

productivity while managing in such a way to achieve better 

productivity. By managing in this manner, we effectively "load the 

dice" in our favor. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

7. Software Releases 

For agile horizon planning to have meaning, a software company must 

be committed to the notion of distinct, well-spaced planning horizons of 

their software. Without this commitment, the agile horizon planning 

process has no opportunity to become established, and its benefits are 

lost. 

In this chapter we will discuss obstacles to establishing such a 

culture, and what can be done to overcome them. We will discuss the 

tradeoffs between having well-spaced planning horizons on the one 

hand, and being responsive to customers’ needs on the other. By the 

end of the chapter, the reader should appreciate the need for horizon 

plans, and understand how to mitigate the negative effects this can have 

on responsiveness to customers’ needs. 

Implementing a sound horizon planning process is a culture shock for 

the young software company. The entrepreneurial startup considers 

itself agile and fast moving, responsive to the changing business 

situation and the needs of its customers. This culture leads to the 

situation where the company will release an unplanned continuous 

sequence of changes to its software. The company identifies these 

"dribbling releases" by the hour of the day they built the software. The 

company will typically be incapable of re-creating a previously-shipped 

build. Indeed, the company sees the idea of going back to a previous 

build as a step backwards. 

While this dribbling release approach will work to a certain extent, 

as the company grows, continuing these practices will result in 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



140 Software Releases  

Copyright © 2012 by David A. Penny 

inconsistent quality, the inability to deliver on promises, and ultimately 

dissatisfied customers. Solid release methodology will go a long way 

towards clearing up these quality and control problems. 

Thus, the first commitment a company must make is to abandon the 

idea of dribbling releases, and adopt the idea of planned and disciplined 

feature release to the field. Without this commitment, the software 

company cannot improve its practices. 

For the bulk of this chapter, we will discuss larger feature releases, 

where the cost of shipping a release is relatively high (shrink-wrapped 

and enterprise software, for example). Towards the end of the chapter 

we will discuss more continuous release methods applicable to SaaS. 

7.1. Concepts & Terminology 

Let us start our discussion of releases by defining some basic concepts 

and terminology. 

The first definition is that of a feature release, or just release of a 

software product. A release is an abstract thing. It does not correspond 

to any CD-ROM that customers can buy or file that they can download. 

Rather it is the notion of an effort whose goal is to make available 

within a software product a well-defined set of features. This set of 

features is realized by the feature release’s initial release and its 

subsequent maintenance releases. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 141 

Copyright © 2012 by David A. Penny 

Looking at the example following, the feature release R3.2 corresponds 

to the vertical line and all the dots on it. The dots correspond to 

concrete software deliverables. 

In this example, the software vendor uses two digits for the release 

number (as in R3.2) to correspond to the commonly used marketing 

practice of having major feature releases (such as R3.0) and minor 

feature releases (such as R3.2). From the point of view of agile horizon 

planning, they are the same. The reason for the distinction is so that 

marketing can choose to emphasize significant new functionality when 

they so choose (and, possibly, charge extra for it). 

The first customer-visible artifact of a release is typically its beta 

release, intended for customers and partners to have an early look at the 

new or enhanced software. Those taking the beta understand that the 

software vendor will not maintain it, and hence that they should not 

attempt to use it in production. Often the software vendor will have its 

beta testing partners sign an agreement to this effect. There may be one 

R3.2 (feature release)

R3.2.0 (initial release)

R3.2.1a (patch release)

R3.2.1

R3.2.2

R3.2.3

R3.2.4

R3.2.5

(point releases)

(beta release) R3.2B1

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



142 Software Releases  

Copyright © 2012 by David A. Penny 

or more beta releases. In the example, there is only one beta, designated 

R3.2B1. 

After the betas comes the first generally available release. In the 

example, it is designated R3.2.0. Once this release is available, the 

software vendor, by default, will ship this release to all new customers. 

This also implies that client services will be capable of answering 

questions about the release, offer training on this new release, 

consulting, and so on. Marketing will need to update its product 

literature to reflect this new release, and all the sales people will have to 

begin selling the benefits the new release. The vendor will also begin a 

campaign to get all its existing customers to upgrade to this new 

release. 

Following on from the initial release are a series of maintenance 

releases that fix everything that is wrong with the dot-0 release. There 

are two types of maintenance releases: point releases and patch 

releases. 

Point releases are regularly scheduled occurrences (for example, once a 

month) whose purpose is to collect all the defect corrections since the 

last point release. In the example, the point releases are R3.2.1 through 

to R3.2.5. 

Point releases should contain only defect corrections, not new 

features. Simultaneous with putting out a sequence of point releases 

that fix defects in the previous release, the company will also be 

working through the release cycle for its next feature release, with one 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 143 

Copyright © 2012 by David A. Penny 

development team typically dividing its time between these two 

activities. 

Patch releases are unscheduled events, and will occur when a customer 

requires an urgent fix to correct a defect that makes the software 

unusable by them. A customer will require a patch rather than a point 

when the defect has not yet been corrected in any previous point 

release, and they can’t wait for the next scheduled point release. 

If the software is mission critical, the customer may request a patch 

to the point release they are currently using in production rather than to 

the most current point release. They do this to minimize the possibility 

that the patch introduces unforeseen problems. 

Referring to the example, R3.2.1a is an example of a patch release. 

The vendor released it after the second point release, R3.2.2, was 

already available. Patching R3.2.1 involved retrieving its source code 

and build environment, putting a targeted defect correction into that 

code base, re-building, doing a targeted testing of the patch, and then 

shipping it. Once the developers finish the patch, they will apply the 

same defect correction to the next scheduled point release (R3.2.3 in the 

example). 

The release numbering scheme and terminology applied to these 

concepts will vary from place to place. What is important is that the 

concept of distinct feature releases, each having a maintenance stream 

is in effect. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



144 Software Releases  

Copyright © 2012 by David A. Penny 

7.2. New Releases 

Once the "dot-0" point release for a new feature release is available, the 

software company should not continue to ship older feature releases to 

new customers. 

Sometimes the company must do this if the first few point releases 

are unstable. However, this is an embarrassment to the vendor, and is a 

nuisance to their new customers who will not receive the newest 

features and will have no desire to upgrade in such a short time. In all 

likelihood, the vendor should not have released such defective software, 

but rather issued another beta instead and continue stabilizing until the 

defect discovery rate was sufficiently low to allow them to confidently 

ship the new release. 

Many would consider it bad business practice, and even unethical, to 

knowingly ship a defect-prone release just to hit a promised first release 

date. At the very least, it is bad management. 

When the new release is generally available, the software vendor 

should begin a campaign to get their existing customers to upgrade. 

As we shall see later in the chapter, it is in the software company’s 

best-interests to minimize the number of distinct feature releases that 

are simultaneously in the hands of their customers. As well, there is 

sometimes a potential for increased revenue associated with getting 

customers to move onto a new release. Thus getting existing customers 

to move on is a priority for most software vendors. 

The typical software license agreement that customers will sign entitles 

them to receive a certain feature release of the software along with 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 145 

Copyright © 2012 by David A. Penny 

maintenance releases for some fixed period. Some licensing agreements 

will specify how quickly the software company must respond with a 

maintenance release in the case of various severities of defect. This is 

called a Service Level Agreement (SLA). 

According to the licensing agreement, new feature releases may or 

may not be chargeable. Often this is at the discretion of the software 

vendor, who can distinguish non-chargeable minor feature releases 

(e.g., R3.2) from chargeable major feature releases (e.g., R4.0). 

In any case, for bigger-ticket software, there will usually be an 

annual maintenance fee, typically some fraction of the initial licensing 

fee (e.g., 20%), which entitles customers to help desk support, 

maintenance releases, and new minor feature releases. 

Software vendors will often limit the amount of time they agree to 

support an older feature release. Typical terms might be "up to one year 

after the next feature release is made available". This limits the number 

of simultaneous feature releases that are in the field. 

Whether or not new releases are chargeable, the software vendor 

must make it a priority to get their existing customers to upgrade to the 

latest release. The most basic way to do this is to make the new release 

a sufficiently large step-up from previous releases that the customers 

wish to do so. This combined with good marketing of the new release 

and favorable licensing terms in the case of an upgrade, are effective 

tools. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



146 Software Releases  

Copyright © 2012 by David A. Penny 

7.3. The Cost of Feature Releases 

For many types of software, each distinct feature release of a product is 

costly. There is considerable overhead associated with each one: 

extensive system testing, new marketing collateral, launch events, press 

releases, customer and partner briefings, new training courses and 

materials, CDs to burn, and so on. An unexpectedly large cost, 

however, is the increased maintenance burden that occurs when the 

company supports simultaneous feature releases in the field. 

When a tester or a customer finds a defect, development must fix it 

in all feature releases then extant in the field. This first requires that the 

company determine in which feature releases the defect manifests. 

Once identified, development must then re-instantiate the complete 

source code and build environment for each feature release in turn, re-

build, verify the presence of the defect, decide what to change in that 

release to fix it, re-build, test, and release to system test. System test 

must then restore the regression testing environment for that release, re-

run their regression tests against the new point release, and then test the 

new fixes to verify that development has corrected the defect. The 

company can then make available the new point releases. 

Note that it is not the number of maintenance point or patch releases 

that are important. It is the number of simultaneously maintained 

feature releases that are costly. For maintenance releases, system testing 

consists simply of re-testing previously tested functionality via a suite 

of regression tests. There is not a lot of costly marketing or training 

overhead associated with maintenance releases. Most importantly, 

unlike feature releases, the issue of a new maintenance release does not 

imply a new maintenance stream where developers must fix defects. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 147 

Copyright © 2012 by David A. Penny 

There is usually no alternative but to deal with at least two 

simultaneous feature releases: the one currently in the field, and the one 

currently under development. As well, with nine months or so release 

cycles, there is usually at least one previous feature release under 

maintenance still in the field. Software companies should try to hold the 

line at these three feature releases, and not support any more owing to 

the maintenance costs involved. 

The ultimate result of increased maintenance costs, as we shall see, 

is the erosion of the company’s ability to respond in a timely fashion to 

changing market situations, exactly the opposite of what good agile 

horizon planning should bring. 

When considering the implications of an increased maintenance 

burden, accountants will think in terms of the average loaded cost of a 

developer, amounting to somewhere between $100K and $200K per 

year. Actually, the true cost lies elsewhere. 

When the maintenance burden increases, one of two things can 

happen. Either we have to hire more developers, or we have our 

existing developers do more maintenance and less new development. 

While the latter is not a monetary cost, it is an opportunity cost, and, in 

the software business, opportunity cost is what hurts us. 

The company can deal with monetary cost by raising more money. 

The company cannot deal with opportunity cost as easily. Opportunity 

cost means that the company cannot do the things the business requires, 

and means they might fall behind their competition or miss windows of 

opportunity. 

We cannot easily trade opportunity cost for monetary cost. The 

skills of the developers are unique. Only they fully understand the 

software. It takes many months to hire a new developer and bring them 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



148 Software Releases  

Copyright © 2012 by David A. Penny 

up to speed on the software. Moreover, during their apprenticeship they 

use up time from the experienced developers: more opportunity cost. 

Hiring developers that are more expensive or high-priced consultants 

helps a little, but surprisingly not all that much. What the company 

needs is experience working with their code, and they cannot hire that. 

This is the true cost of an excessive maintenance burden: the 

software vendor winds up losing responsiveness to the market as a 

whole. This negates the benefits they were attempting to realize through 

the proper planning of releases. 

7.4. Being Responsive to Customers 

From the previous section, we have seen that each new feature release 

is a costly undertaking. This argues for longer, well-spaced feature 

releases. However, while putting out a series of well-spaced feature 

releases that address the bigger-picture market needs is essential to the 

longer-term outlook, the software company neglects the needs of 

individual customers and new prospects at its peril. Unfortunately, an 

inevitable tension arises between a nine month (or longer) feature 

release cycle and being responsive to individual customers’ needs. 

There are good arguments both for and against a longer release cycle. 

In this section, we will consider some of the tradeoffs involved. 

Customers will upgrade to new feature releases only so often. 

Customers have a love-hate relationship with new feature releases. 

They love the new features, but they hate installing a new release. 

Apart from just the time-wasting mechanics of it, they get used to a 

particular release and learn how to work around its issues and exploit 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 149 

Copyright © 2012 by David A. Penny 

its broken features. When a customer installs a new release, they 

introduce subtle (and not so subtle) incompatibilities that reduce the 

productivity of their end users. Under these conditions, end-users see 

"improvements" as steps backward. As well, the way the software 

works has probably changed and so there is a new learning curve end-

users will have to climb. 

More significantly, in cases where it applies, if the customer has 

gone to some effort and expense to integrate the vendor’s software into 

surrounding systems, the customer’s IT department will be reluctant to 

undertake a project to upgrade the vendor’s software. They will insist 

on a cost-benefit analysis, comparing the benefits accrued from the 

upgraded software against the costs of upgrading. Many organizations 

outsource integration efforts to consulting firms. In this case, the cost of 

upgrading is concrete (and significant).  

The net result is that users are stickier on old releases then the 

software vendor would want them to be. If a customer is sufficiently 

powerful, they may even get the vendor to commit in writing to 

supporting an old release indefinitely. "Supporting a release," means 

putting out a continuous series of point releases and patch releases to 

correct defects. 

This behavior from users argues for a longer release cycle. The long 

cycle allows the software company to get significant new functionality 

into their product; hopefully enough new functionality that the 

customer base as a whole will wish to put up with the pain of 

upgrading. If release cycles are too short, there will be customers 

remaining on more of the previous feature releases, necessitating costly 

multiple maintenance streams. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



150 Software Releases  

Copyright © 2012 by David A. Penny 

A second argument for a longer release cycle, as we have discussed 

previously, is the overhead associated with shipping a new feature 

release: intensive system testing, a new release to maintain, new 

marketing collateral, new training courses and materials, new CDs to 

cut, and so on. This also tends to push release dates out farther. 

On the other hand, if an individual customer wants or needs some new 

functionality in the software, they may not be willing to wait for the 

next feature release. 

As well, market pressures may force us to get some new features out 

quickly; for example, to respond to a competitor’s move, or to respond 

to a shift in our customers’ regulatory environment. 

In cases where an annual maintenance fee is paid for the software, if 

release cycles are too long, customers may begin feeling as if they are 

not getting their money's worth from the maintenance fee. The 

customers may choose not to upgrade, but at least they will have the 

choice, and they will want that. 

Finally, a most significant reason to release quickly is a big prospect 

that refuses to sign the contract unless we put specific new features into 

the software for them. 

These pressures are very real, and will force the software company’s 

hand more often than not. 

There is therefore a tension between cost-efficient, long feature release 

cycles on the one hand, and customer responsive, short feature releases 

on the other. What can we do to reconcile these two points of view? 

Unfortunately, there is no easy answer. Because of the leveraging 

involved, it is never good to put out a new feature release (available to 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 151 

Copyright © 2012 by David A. Penny 

all) just for the sake of a few customers or prospects. The costs 

involved do not justify it. It only makes sense to deviate from the well-

spaced release cycle when market pressures demand it. In those cases, 

where there are severe competitive pressures, a shorter release cycle 

may be justified. If it is a one-off occurrence, in some such cases the 

vendor can instead extend the previous release cycle, and add in the 

extra functionality required by the market. 

Unfortunately, these considerations leave us no room to address the 

needs of individual customers and prospects. Satisfying their needs 

must involve shipping enhanced functionality outside of the regular 

release cycle. There are various mechanisms available to us to do this. 

We shall consider them in due course. However, before going to any 

lengths to satisfy their perceived needs, it is always wise to first 

understand if there is a true need there or not. 

7.5. Pushing Back 

When faced with the requirement to distort release cycles or insert new 

functionality outside of the regular release cycle, the first thing to do is 

to healthily resist such requests. In the software business, we call this 

"pushing back". 

Sales push for features that make their prospects happy. Client 

services push for features that satisfy their existing customers. 

Marketing pushes for features that make the products more marketable. 

With all this pushing, there is usually only software development and 

(hopefully) product management pushing back. 

In many cases, it is surprising what just a little push-back can 

accomplish. Often, others are just seeing what they can get away with, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



152 Software Releases  

Copyright © 2012 by David A. Penny 

and will back-off easily enough. In other cases, they are genuinely 

convinced that a big sale will be lost or a big customer will defect to the 

competition unless a new feature appears quickly. In these cases, it is 

often worthwhile to track the request back to its source. 

When we follow the trail back to the ultimate end-user requestor, 

they will sometimes tell you that the request is not very important. The 

urgency of the request; in moving up the client’s organization, over to 

your company’s sales person, up the ladder to the VP Sales, back down 

through VP Marketing, a side trip to the CEO, and then back down the 

management chain in Development; can easily become exaggerated. It 

is good advice to anybody managing a product, from development or 

product management, to always go back to the source. 

Pushing back will not always work, and we have to be careful that 

we do not push back so much that we are harming our own company’s 

best interests, but it is worth a try. 

7.6. Features in Maintenance Releases 

Given that we have tried pushing back and it did not help, it may 

ultimately be necessary to accommodate an important customer or 

prospect by adding features outside of the regular release cycle. 

One way of doing this is to slip these new (or changed) features into 

(what is billed as) a maintenance point release. In theory, maintenance 

releases should contain only defect corrections and modify no 

correctly-functioning customer-visible aspects of the software (such as 

file formats, GUI’s, customer API’s, program behavior, and so on). 

Putting a feature into a maintenance point release goes against this. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 153 

Copyright © 2012 by David A. Penny 

Especially when a company first adopts an agile horizon planning 

culture, there is a strong temptation to use maintenance releases as 

vehicles for shipping enhanced functionality to customers in this way. 

The advantage of this approach is that it avoids the overheads 

associated with new feature releases. In particular, it avoids the need to 

maintain a new feature release in the field. These advantages are 

tempting. 

Unfortunately, while tempting, putting features into point releases 

will lead to negative consequences that will ultimately cancel the 

advantages of sound agile horizon planning. Let us see how this 

happens. 

A basic rule of software is that we cannot introduce new code into a 

release without also introducing new defects. 

There are two reasons for introducing new code into the software: to 

correct a defect or to implement a feature. When correcting defects, we 

will typically introduce fewer new defects than what we fix. While this 

situation is not ideal, the trend is good. The software will tend to get 

more stable through time and eventually development will fix all the 

defects (asymptotically – in the limit). 

If we begin introducing features into point releases, this will no 

longer be the case. In implementing new features we will inevitably 

introduce new defects. This has a negative effect on quality. In fact, we 

can easily get to the stage where the number of defects in point releases 

is steady or even increasing. 

Moreover, there is a kind of leveraging that works against us. New 

features we introduce are typically useful to only a few customers. 

Instability in a release affects all our customers. In the worst case, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



154 Software Releases  

Copyright © 2012 by David A. Penny 

putting features into point releases creates the possibility of breaking 

functionality that has worked previously. This is not good. Customers 

begin counting on the functionality they use, and get irate when a 

"maintenance release" breaks features they were using in production. It 

may even be that we fixed a hundred defects and broke only one thing. 

Chances are that the customer was either unaware of those defects (we 

wish) or had learned to live with them (more likely). They had also 

learned to count on the feature we just broke. 

This is a danger even when just fixing defects, but we increase it 

significantly if we add new features into point releases. The bulk of our 

customers will rightly ask why we did this to them needlessly (at least 

from their point of view). 

Is it not possible that we can avoid this problem? Surely there are 

development practices such that we can introduce new features without 

breaking anything? Practices such as debugger walkthroughs, code 

reviews, extensive unit tests, or full suites of automated regression 

tests? Is it not the case that these best practices will eliminate any 

possibility of introducing new defects? 

While theoretically possible, even the best practices still leave a 

residue of defects that escape into the field. There have even been 

instances of defects in software that has had far more resources thrown 

at it to ensure correctness than is even remotely feasible for typical 

commercial software. Examples include software for space probes, 

nuclear reactors, jet planes, and high-powered radiology machines (the 

loss of the Mars Lander comes to mind due to a software error 

involving fuel calculations). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 155 

Copyright © 2012 by David A. Penny 

Development should always strive to minimize the number of 

defects that they introduce. Experience, however, has shown that the 

residual is usually sufficiently high that putting new features into point 

releases will remain a risky proposition. 

All software starts with defects. Point releases ought to take the release 

to a less defect-laden state. If the software company starts putting 

features into points, that delicate balance is upset. If they do too much 

of it, the software quality will diverge distressingly. 

7.7. Release Proliferation 

The intent of agile horizon planning is to provide a mechanism 

whereby, given the right plan, we can address the needs of the 

marketplace while not neglecting the needs of individual customers. 

The repercussions of putting features into point releases are the 

negation of these planning benefits. 

The most obvious repercussion of putting features into point 

releases is that the software company will get a bad reputation for 

quality that will hurt sales. 

A more subtle repercussion is that customers will be slow to 

upgrade to the next feature release. Knowing the software is defect-

ridden, they will hold off upgrading as long as they can. If we charge 

for new releases, this hurts revenues. Even if not, customers will stay 

on old releases for longer than we would like. As a result, there will be 

more releases to maintain in the field. We call this release proliferation, 

and it has a significant maintenance cost associated with it. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



156 Software Releases  

Copyright © 2012 by David A. Penny 

While one form of release proliferation occurs when customers 

refuse to upgrade to the next feature release, a more catastrophic form 

occurs when they refuse to upgrade to the latest point release. If we 

carelessly add features into point releases, this can easily happen. 

In the usual scenario, only feature releases contribute to release 

proliferation. It does not matter how many distinct point and patch 

releases there are. There may be sixty-eight of those. If they all came 

from the same feature release, then a newly discovered bug must be 

fixed in only one place: the latest point release. However, this holds 

only so long as customers are willing to upgrade to that point release. 

If a customer refuses to upgrade to the latest point release, we will 

need to issue a patch to the point they are using. This is especially 

likely if the customer integrated the software into a larger system. If we 

issue a patch to the point they are using, then instead of fixing the 

defect in one place, we have just had to do it in two places. If all our 

customers refuse to upgrade to our latest point we will have to patch all 

sixty-eight previously issued patches and points. This constitutes 

massive release proliferation. Even a little of this can drastically reduce 

the developers’ productivity. 

The surest way to get customers balking at moving to our latest 

point is by putting features into these point releases. 

The reason they would normally move to a new point is the promise 

that the software is more stable. If a persistent proclivity to put features 

into points destroys this, they will not upgrade. If we force them, they 

will be dissatisfied. The only alternative to forcing them is to fix the 

precise point or patch they are currently using. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 157 

Copyright © 2012 by David A. Penny 

7.8. Mitigating the Consequences 

Despite these dire consequences, it is sometimes the case that the only 

reasonable way to proceed is to put features into points. Given the 

inevitability, it is wise to take pains to ensure that the new feature has a 

minimal effect on the quality of the point releases to the majority of our 

users. 

To help ensure this we need a good regression testing environment 

that will catch incompatibilities. We need code reviews, extra focused 

compatibility testing, and we should use run-time switches and/or 

dynamic load modules to ensure that the feature is accessible only to 

the requesting customer. Development should use code reviews to 

ensure that when the feature is disabled, the bulk of the customers will 

execute no new or changed code. 

While it is not possible to completely disallow features in point 

releases, applying the above-mentioned measures will greatly reduce 

the number of times we have to do it and increase our margin of safety 

in those cases where we absolutely must. 

7.9. Impact of SaaS 

The situation alters considerably for SaaS software where we advise a 

more continuous release methodology. There are two pertinent 

differences between SaaS and traditional software releases: forced 

upgrade and low-cost deployment. 

Forced upgrade with SaaS means that as soon as new code is pushed 

out, every customer is instantly using it and they have no choice about 

going back. With packaged software, usage will spread more gradually 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



158 Software Releases  

Copyright © 2012 by David A. Penny 

and customers often have the option of continuing to use the older 

release until they are happy with the newer one. Sometimes SaaS gives 

the option of "go back to the old interface", but even in this case it is 

typically the new code that is being used. 

SaaS has very low-cost deployment as compared to packaged 

software. There is only one target environment (the one on which it is 

being run, for example a specific release of MySQL, Linux, Apache, 

and Java, for example). With packaged software, the new release may 

need to run on many environments with all sorts of previous installation 

history outside of the control of the software vendor. This therefore 

requires extensive system testing after any substantial change to the 

code. This is still the case with packaged software that automatically 

updates itself. Developers must take care to avoid system 

incompatibilities. Not so with SaaS, where the software must be 

confirmed to run in only one environment. 

These two differences, forced upgrade and low cost release, push us 

towards a more continuous approach to releasing software for the 

following reasons. 

A "big bang" release of SaaS is a very dangerous thing because of 

forced upgrade. Releasing a lot of code into production all at once 

concentrates the risk into a tiny window, analogous to sitting on a 

single nail. It hurts. Releasing code more continuously into the field is 

like lying down carefully on a bed of nails. Not entirely comfortable, 

but quite safe. Low cost release makes it possible to push out code 

more often and yet still be cost effective. 

Outside of the safety concerns, more frequent releases to the field 

allow us to gather feedback that matters (from real customers using the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 159 

Copyright © 2012 by David A. Penny 

software in production). This feedback can guide both the details of 

future planned development, but can also cause us to rethink our agile 

horizon plan and make changes to it to reflect the feedback we receive. 

Therefore we must reconceive the notion of "releases" in the SaaS 

world. We still require a mechanism to very quickly address a problem 

in the production code. So a maintenance stream is still required, but it 

is never very long-lived. Any urgent changes must be made into the 

maintenance stream, and that tested quickly using automated regression 

tests and pushed out into production. It should also be possible to 

quickly revert the production code back if the patch causes an issue. 

Some organizations have even automated this process to the extent that 

if production monitoring systems pick up a problem (e.g., many failed 

operations) the code can be reverted automatically. 

Defects that need to be corrected in production immediately need to 

be both pushed into production, but also integrated into the ongoing 

feature development stream as shown in the diagram below. 

 

production 

maintenance 

feature development 

defect corrections 
pushed to production 

defect corrections 
integrated to ongoing 
development stream 

defect corrections not 
immediately pushed to 

production 

new features and all 
fixed defects pushed 
to production 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



160 Software Releases  

Copyright © 2012 by David A. Penny 

Some defects fixed in the feature development stream may not be so 

urgent, and do not need to be pushed to production immediately, but 

can wait and go with the next feature release bundle. It is efficient to do 

this, as a release to production generally has associated overhead. 

Every several weeks, code from a feature development stream 

would get pushed into maintenance and from there to production. 

Comprehensive nightly automated regression tests and an even more 

extensive pre-release regression suite need to be used to safely maintain 

such a release pace. 

If a release of features to production requires a database schema 

upgrade, the release preparation time must be considerably increased to 

accommodate this. Moreover, the code and database should ideally be 

designed to work together in such a manner that the old code can work 

with the new database schema. This is because reverting code is 

relatively easy, but undoing a database schema change is difficult as 

soon as the first customer makes the first change that goes into the 

database. There are some clever design techniques that can be used to 

maintain backwards compatibility. 

The feature code that gets pushed to production may not be made 

available to customers. It is often wise to deploy the code with a 

configuration switch. In this way, new features can be production tested 

before being made generally available as part of a feature bundle. 

Details as to what the bundle will contain, and when the master switch 

will be flipped is a product management detail. When new features get 

pushed into production is a software development detail. Governing 

everything is the agile horizon plan, which rises above this level of 

detail and addresses the question of what features will be released 

within a longer planning horizon. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Releases 161 

Copyright © 2012 by David A. Penny 

7.10. Summary 

For packaged software, before a software company can start down the 

course towards a solid agile horizon planning process, it must first 

establish a discipline of well-spaced feature releases with associated 

maintenance releases that just fix defects. This is a cultural transition 

for the starting software company, but becomes necessary as the 

company grows if they are to balance responsiveness to individual 

customers with responsiveness to the market. 

In satisfying individual needs, we must be careful to avoid release 

proliferation, which results in increased maintenance work for our 

developers. If left to get out of hand, these can have a surprisingly bad 

effect on developer productivity. 

Many development managers watch their departments grow from 

five developers to a hundred, and wonder at how much more productive 

the department was in its early days. The manager may be unwittingly 

thinking of productivity in terms of putting new features into the 

software, and not as overall productivity including maintenance. 

This distressing loss of productivity is almost always due to the 

increased maintenance burden brought on by rapid growth in 

customers, possibly combined with lax controls on release proliferation. 

The wise manager will attempt at every turn to control the situation, 

and the wise software company will back her up. 

SaaS software is different, and a quicker release to production tends 

to be both safer and more beneficial for gathering fast feedback. 

Developers must however use a disciplined approach to maintenance 

and new feature releases involving extensive automated regression tests 

and careful attention to backwards compatibility issues. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

8. Software Versions 

In the previous chapter, we considered the costs associated with 

supporting multiple feature releases simultaneously in customers’ 

hands. In this chapter, we will examine the related issue of the costs and 

tradeoffs associated with supporting many simultaneous versions. One 

of the great inherent benefits of SaaS is that the software only exists in 

a single version, so the material in this chapter applies mainly to 

packaged and enterprise software. 

8.1. Concepts & Terminology 

We define a version of a software product to be a variant of a product, 

each version differing in some, typically small, way from one another. 

One of the most common reasons for having versions is to support 

multiple hardware and/or operating system platforms: Windows’2000, 

Windows’95, Windows CE, Linux, Apple Macintosh, Sun UNIX, SGI 

UNIX, IBM UNIX, HP UNIX, AS/400, mainframes, Palm Pilots, and 

so on. Combine this with different releases of the OS; such as Windows 

‘95, ‘98, Me, and XP; or Solaris 4.1 and Solaris 4.2; and the number of 

versions can escalate rapidly. 

Sometimes products must interface to other vendor’s software 

products. In this case, there will be one version for each feature release 

of the other vendor’s product that we support. For example, multiple 

database backends and multiple releases of those backends. A vendor 

may choose to have different versions of their software for different 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



164 Software Versions  

Copyright © 2012 by David A. Penny 

markets: 128-bit versus 56-bit encryption, or "Standard" and 

"Professional" versions of the software for different market segments. 

Another common reason for versions is translations of the software to 

other languages: English, French, Arabic, Chinese, and so on. 

Usually, development builds many different versions of the software 

from the same code base. Generally, the notion of a version carries the 

connotation that the vendor must support it in two ways. First, there 

will be a stream of maintenance releases associated with the version. In 

particular, each point release will ship all the various versions being 

supported. Second, each feature release will continue to support that 

variant. The diagram below illustrates these concepts. 

 

Each point release of each feature release ships every supported 

version of the software. Note that patch releases only need to patch the 

specific version the customer is using. 

Once a software vendor commits to supporting a new version of their 

software, it is a difficult decision to undo. 

 

R3.2.0 

R3.2.1a 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

R3.3.0 

R3.3.1 

R3.3.2 

R3.3.3 

R3.2 R3.3 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 165 

Copyright © 2012 by David A. Penny 

For example, suppose a customer requests a new version of the 

software to run under Linux. The agreement to deliver implicitly carries 

the commitment of also porting all new feature releases and their 

maintenance streams to that platform. It is rarely a one-off occurrence 

(even though the request is presented as such). If the vendor, after the 

fact, decides that the revenue stream does not justify the costs, they 

cannot stop supporting that version. The customers who rely on that 

version will have made costly decisions around the commitment that 

the vendor supports, in this example, the Linux platform. 

8.2. Costs of Versions 

One of the most crushing weights a company can put on their 

development staff is having them support an excessive number of 

versions of the software. 

The cost is never just the development costs involved in first 

creating a new version. The more significant costs are those involved 

with supporting the version going forward. 

When different versions have different code written for them, there is a 

cost involved in producing that code. In other cases, the code can be the 

same but developers must compile and link them differently. In yet 

other cases, the versions are binary-compatible: for instance an 

application that can run on both Windows’95 and Windows XP. In all 

cases, development must test the versions individually and track down 

defects peculiar to that version. 

Developers must always be aware that they are writing code, build 

environments, test scripts, install scripts, and documentation that 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



166 Software Versions  

Copyright © 2012 by David A. Penny 

applies to multiple versions. It is all too easy for the development group 

to get the code right on their development platform, but inadvertently 

neglect to get it right for a different platform. To solve this requires 

process discipline, a sophisticated build environment, extra computing 

equipment, a large test department, system administration expertise for 

all supported platforms, and supporting libraries and development tools 

for all platforms. Ideally, these resources should be conveniently 

available to client service representatives, developers and testers. 

Supporting such an infrastructure carries considerable costs, both 

monetarily and in developer-days (opportunity cost). 

8.3. Version Proliferation 

Many pressures come to bear on the software vendor pushing for 

increasingly more versions. 

A software vendor will support new versions in the hope that sales 

will increase. For example, the vendor may hope that supporting 

multiple versions of the software for various hardware platforms will 

increase the size of their target market and thereby increase revenue. 

They may also support new versions in order to forge better 

relationships with partner companies. For example, a consulting firm 

may have a relationship with a hardware manufacturer. In this case, it 

would be awkward for the consulting firm to advise their clients to use 

the vendor’s software if it does not run on their partner’s hardware 

platform. 

If left unchecked, the number of versions may increase dramatically: 

a situation we refer to as version proliferation. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 167 

Copyright © 2012 by David A. Penny 

It is a danger for software vendors to hastily commit to supporting too 

many versions. Sometimes software development themselves are the 

culprit. An inexperienced developer or manager may indicate that 

porting the software to, for example, another flavor of the UNIX 

operating system is technically straightforward. However, the ongoing 

maintenance is the larger part of the cost, and the inexperienced 

developer may not have fully considered this aspect. 

As for its cousin, release proliferation, the only sensible thing to do is to 

be aware of the costs and push back when pressures mount to support a 

new version of the software. The main mechanism for pushing back is 

to ask if the incremental revenues from this new version cover the 

costs, and especially the opportunity costs. 

For example, say a hardware vendor offers to cover all development 

and maintenance costs to support the product on their platform. Even 

under these conditions, it may still not be worthwhile to do so. The 

most significant cost is not the financial cost. Rather, it is the 

opportunity cost of the developers. As those within a software company 

are always more bullish on its prospects than those without, the two 

parties are liable to value the opportunity cost differently. 

If a software vendor does find itself in a situation where they must 

support many different versions, it is wise for them to invest heavily 

up-front in constructing an excellent build environment and technical 

infrastructure that can cope with it. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



168 Software Versions  

Copyright © 2012 by David A. Penny 

8.4. Static Versus Dynamic Versions 

There are several methods whereby new versions of software may be 

created, presented in order of increasing desirability: 

 Parallel code streams 

 Conditional compilation (#ifdef's in the code or macros) 

 Run-time switches 

Parallel code streams means maintaining parallel versions of source 

files (one, more than one, or even all source files). This can certainly 

accommodate any variations amongst the versions, but is costly to 

maintain, as defects must be corrected in many different places. 

Conditional compilation is essentially the same as parallel code 

streams. It at least has the benefit that when a coder is doing some 

work, she can physically see the alternate code paths in the same file. 

However, it is still the case that multiple builds of the software must be 

made and organized and tested and shipped individually. 

The best approach is dynamic modification via run-time switches. In 

this case, different versions may be tested easily by coders and testers 

simply by flipping some run-time switches. As well, install scripts may 

be consolidated and inventory (if shipping CD's for instance) is much 

simplified. As well, it opens the possibility for the versions to be 

switched based on dynamic license key information. This enables 

relatively easy up-selling of higher-cost versions. 

Note that while the dynamic approach is the best of the three, it does 

not solve the issues inherent in supporting multiple versions, and the 

bulk of the cost remains. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 169 

Copyright © 2012 by David A. Penny 

8.5. Customized Software 

One compelling reason to support a new version that we have not 

previously looked at is to provide customized software to important 

clients. For example, say a prospect will not buy the software unless the 

vendor modifies it in some manner to suit their peculiar needs. 

There are two broad classes of technical methods to achieve 

customizations: static and run-time. Static methods require that the 

vendor build a distinct executable. Dynamic methods enable the vendor 

to ship only one executable, but provide the customizations by means 

of alternate dynamic load modules or run-time switches. 

In the dynamic case, if the vendor makes the changes as part of the next 

feature release of the product, then the implications are the same as 

those involved with supporting any new feature in the software. The 

vendor should weigh the cost of developing and maintaining the new 

functionality against the revenue potential. If the customizations are not 

generally saleable, either because of their unique nature or because of 

prohibitions against shipping the customizations to others, then the 

vendor must negotiate with the customer to see if the revenue from 

them alone can justify the new feature. 

While a software vendor can often justify such decisions based on 

financial cost, it must also be the case that the revenues justify the 

opportunity costs. If the same developers put in a more generally useful 

feature instead, there is leverage to the revenues available because of 

the large potential market not available if the feature is only useful to 

one potential customer. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



170 Software Versions  

Copyright © 2012 by David A. Penny 

If the prospect requires the customizations outside of the regular release 

cycle, then the vendor must choose whether to do it at all, issue a new 

version of the software until the next feature release, or carefully insert 

the alternate functionality into a point release. 

Because it is such a risky proposition (and such a slippery slope), we 

would advise the vendor to stay well away from adding features into 

point releases. If the vendor chooses to take this approach anyways, 

then they must do it carefully so that there is no impact on code 

executed by the majority of their customers. The cost of taking these 

precautions versus the cost of issuing a new, static version of the 

software is roughly equivalent. Of course, the vendor can always hack 

the customizations sloppily into a point release. However, the longer 

term costs associated with this approach are considerable, as we have 

discussed previously. 

Whether based on the preceding considerations, or whether it is the 

only technological way to proceed with the customizations, the vendor 

now faces the prospect of issuing a new, static version of the software. 

The issue now is whether the development can merge the 

modifications into the next standard feature release executable, whether 

the customizations must be maintained as a parallel static version 

through all future feature releases, or whether the customizations are so 

great that the modified software is essentially a new product, with its 

own independent feature releases. The costs increase exponentially with 

each alternative, respectively. 

From these considerations, we see that is rarely wise for the software 

vendor to support alternate versions of its software for particular 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 171 

Copyright © 2012 by David A. Penny 

customers. The best approach is to build enough configurability into the 

software (accessible through the user interface or scripting support) so 

there are not so many requests for customizations in the first place. The 

second best approach is what we will consider in the next section. 

8.6. User-Extension APIs 

There is a way, in theory, of simultaneously satisfying the need for 

well-spaced releases, the desire to avoid too many customer-oriented 

versions of the software, and the desire to be responsive to new feature 

requests. This is by supporting a user-extension API in the product. 

The acronym API stands for Application Programming Interface. A 

user-extension API allows technically sophisticated end-users to extend 

or modify features in the product for themselves. 

To use the API, the customer writes program code with this API as 

one of the libraries to which they link. They then compile the extension, 

and indicate at run-time to the product that it should load the resulting 

dynamic load module. 

 

Vendor’s 
Product 

Vendor’s User 
Extension API 

Vendor’s User 
Extension Library 

User’s 
Extension 

Program Code 

Dynamic load module 

dynamically loaded into 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



172 Software Versions  

Copyright © 2012 by David A. Penny 

Other ways of supporting a customer extension API are by means of  

an embedded scripting language, inter-process messages (such as a 

Windows COM API accessible via Visual Basic), and even by allowing 

users direct access to database tables. In all these cases, the 

considerations are similar. 

These mechanism allows customers to implement their own features 

into the product, allows third-party consulting companies to do this 

work on the customers’ behalf, allows the software company’s own 

consulting group to do this work, and allows other software vendors to 

market value-added extensions to the product. 

Scripting solutions are an excellent way of providing extension APIs. 

The requirement is only that the API's remain consistent from release to 

release. This is usually technologically feasible, even in the face of 

changing implementations, by always re-implementing compatibility 

API's at the same time as providing newer API's to exploit the enhanced 

functionality. However, scripting interfaces can be very slow, and 

dynamic loading of compiled code may be the preferred alternative for 

this reason. 

Depending on the technology, the dynamically-loaded extension 

may or may not be binary-compatible or source-compatible with future 

point releases or feature releases. 

Binary compatibility means that customers can use the same 

dynamic load module to extend the next version of the software. This is 

the best from the customers’ point of view. 

If binary-compatibility is not technologically feasible, the vendor 

should strive for at least source-code compatibility. This means that 

when the customer moves to a new release, they need not change the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 173 

Copyright © 2012 by David A. Penny 

source code for the extension in any way, but that they must re-build 

the extension to support the later release. This is next best and is still 

reasonable. 

Worst is if the vendor breaks source code compatibility, meaning 

that the customer will have to modify the source code and re-build in 

order to use the extension with a new release. This implies the need for 

applications programmers to go back in, understand how the extension 

functions, understand the changes the vendor requires, and understand 

how to modify the extension to accommodate these changes. If a 

consultant built the original extension, this implies extra expense to the 

customer. 

The more successful is the API, the more negative leverage there is 

when the vendor breaks compatibility. If the extension is successful, 

and they have a large number of users, breaking binary or source-code 

compatibility in even the smallest way implies that thousands of users 

must put in extra work to use a new release. As well as adversely 

affecting customer satisfaction, this can also contribute to release 

proliferation, as they will be reluctant to move on to a new release, 

fearing the work involved and the uncertainty. 

There is a significant distinction between using dynamic loading 

technology internally and using it to provide an externally supported 

API. 

There is no question that it is good practice to use such dynamic-

loading APIs for internal, development use. They reduce build time, 

define solid boundaries between development groups, and encourage a 

better architected product. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



174 Software Versions  

Copyright © 2012 by David A. Penny 

However, it is a big step from supporting such an interface internally 

to supporting it for the world at large. 

A software vendor should not take the decision to support a user-

extension API lightly: it is a costly undertaking. 

Even if we assume the best case scenario, where there is already a 

suitable API that development uses internally to dynamically load 

extensions for themselves (and hence there is no new technology that 

needs to be created), the step-up to supporting this API for externals is 

a big one. 

First, development must clean up the API and keep the code for the 

interface files pristine. They must carefully distinguish those parts of 

the internal API that they support externally, and those parts that are 

private. Next, documentation must produce an enhanced level of API 

manuals, including user manuals, tutorials, and reference manuals. 

These are typically far in excess of anything the vendor may have been 

using for internal documentation. The vendor must provide training 

courses, hiring trainers who themselves are competent programmers. 

The vendor must provide their customers with support in using the 

API. This implies the need to staff the help desk with competent 

applications programmers. It also will imply the need to run a 

consulting practice to assist users in developing enhanced functionality. 

For a company unaccustomed to supplying consulting services, this can 

be a major cost and a management distraction. If the company does not 

provide such a consulting service, they will find themselves providing 

such services free of charge, lacking a mechanism by which they can 

charge for the help or even effectively manage it. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 175 

Copyright © 2012 by David A. Penny 

Finding good programmers to act in training or support roles is often 

difficult. Moreover, as a growing software company is often limited in 

what it can do to its product by a lack of developers, shunting 

programmers to support roles constitutes a significant opportunity cost 

(what else could the company have had those programmers work on?). 

On the sales and marketing side the vendor will need to develop 

marketing collateral to tell the company’s prospects about the API, 

including technical white papers and brochures. The vendor must 

instruct sales in how to sell the API, and provide them with pre-sales 

support (again, using developers for this). 

Debugging customer problems regarding the use of an API is costly. 

When supporting an API it is common for problems to be due to misuse 

of the API by customers. However, because there is always the chance 

that the vendor’s software is in error, customer services find themselves 

in the position of having to debug their customers’ code in order to 

determine the cause. 

Maintaining binary or source-code compatibility puts a burden on 

the developers. For all defect corrections and new features, they must 

make certain they do not affect the behavior of the API in any way. 

This is difficult to accomplish, and requires upgraded code reviews and 

regression testing. Regression testing an API requires more work, 

especially as the number of potential interactions is so great. 

Supporting an API constrains the types of architectural 

enhancements that development can make. If for internal reasons 

development considers it necessary to change some aspect of the API, 

they must develop new wrapper code to preserve the old form for the 

customers while offering the new form as an alternative. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



176 Software Versions  

Copyright © 2012 by David A. Penny 

If the vendor mistakenly breaks binary compatibility or source-code 

compatibility, the repercussions are great. Customers will be 

dissatisfied, and the vendor may have to bear a large part of the cost of 

upgrading customers to the new version of the API. 

Any software vendor, in considering whether to support a user 

extension API, should bear these points in mind. 

On the other hand, an extension API can be a selling point for the 

software, and may be a big competitive advantage. Even when 

customers do not use the API (or do not even buy it), they are happy to 

know it is there in case the need arises 

An API can support a third-party extension market around the 

product which can contribute to it becoming a market standard. In 

addition, it opens a market for systems integrators to provide additional 

value-added services around the product. This can encourage these 

systems integrators to favor a particular vendor’s product in 

competitive situations. 

If done well, an API can satisfy customers or prospects that want or 

need new functionality in the software to appear quickly despite the fact 

of a long feature release cycle. It helps especially when a customer 

requests a feature that the vendor would not normally include in the 

software fearing that the functionality is too specific and has no general 

marketability. 

When supporting an API and providing consulting services around it, 

the vendor must take particular care in distinguishing who supports an 

extension. If a customer or third-party supports the extension on an 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Software Versions 177 

Copyright © 2012 by David A. Penny 

ongoing basis, then this is just the sort of leverage the vendor wants 

from the API. 

If, on the other hand, the burden for ongoing support of an extension 

falls to the vendor, then this is similar to supporting a new version of 

the software. The company is forever-more committed to supporting 

this new version of the software: the version that has the extension 

installed. 

Given that the vendor must run a consulting group, one might think 

that ongoing support of an extension by the vendor (provided it is all 

chargeable) is a good thing. This is often not so. The vendor runs a 

consulting group because it must in order to leverage sales. The vendor 

would typically much rather deploy programming resource on 

leverageable product features than on un-leveraged consulting. The best 

situation is when either the customer or a third-party supports the 

extension. 

By supplying a customer extension API, it is possible to have long 

feature release cycles amenable to good agile horizon planning for 

packaged software, yet still be responsive to individual customer needs 

and late-breaking market events. The vendor must balance the benefits 

against the costs, which are surprisingly high even when a suitable API 

is already in use internally. 

The best advice is to consider the question carefully in advance, 

bearing in mind a realistic assessment of the costs. If the decision is to 

go forward with marketing a customer extension API, then it should be 

done properly, or else it can easily backfire causing customer 

dissatisfaction and a greater than expected distraction to the 

development team. The company should be especially careful 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



178 Software Versions  

Copyright © 2012 by David A. Penny 

concerning committing to ongoing maintenance of an extension, as the 

increased revenues it brings rarely justify the opportunity costs.  

8.7. Summary 

In this chapter, we looked at the costs and tradeoffs associated with 

supporting multiple simultaneous versions of a software vendor’s 

products. While desirable from a market and customer responsiveness 

point of view, the opportunity costs of deploying developers to 

maintain many versions can be large. This is especially damaging if the 

situation is uncontrolled by management, and version proliferation sets 

in. 

One cause of versions is creating customizations to the software 

demanded by individual users. We discussed how, for a software 

vendor company intent on marketing software to a broad audience, this 

practice will rarely be justified, owing to the opportunity costs 

involved. 

We then saw how by supporting a user extension API, a vendor 

could avoid the issue of software customizations, passing these instead 

on to customers or third-parties. However, there are significant costs 

associated with maintaining such an API that management will need to 

appreciate, and there is always the risk that a customer’s extension will 

wind up being supported by the vendor, which carries with it all the 

costs of any customized software. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

9. Source Control & Build 

The previous two chapters on releases and versions set the stage for a 

discussion of source code control, build management, and testing. In 

this chapter we will discuss the importance of such systems, explain 

how they are used, and give some practical suggestions for setting them 

up. 

9.1. Requirements for a Source Control System 

In this context "source" is used in its English sense, meaning that a 

source file is one that is not generated by the action of an automated 

tool, but rather is the source from which these tools generate other files. 

For example, object files and executables, which are generated by 

running a compiler and linker against source code are not considered 

"source". Rather, these are "intermediate" or "final" files. 

Source files also comprise documentation, unless it is automatically 

extracted from other files. 

A source code control system maintains a central repository of version-

controlled files (often nicknamed the "repo" or "depot"). The central 

repository usually consists of a collection of files containing the version 

data, a database that indexes the files and other related information 

(such as the relationships between files), and a service that can be 

accessed over the network for performing source code control 

operations from diverse remote client computers. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



180 Source Control & Build  

Copyright © 2012 by David A. Penny 

The depot should be kept on a server-class computer, with 

redundant power supplies and network connectivity, and using RAID 

disks for storage to protect against disk drive failures. As well, the 

source code control system's data should be backed up each night to 

tape, and regularly rotated to an offsite location in case of fire or similar 

catastrophe. 

 

The various clients connect to the server, and establish a local 

"mirror" of a subset of the depot at a certain revision level. By 

contacting the server, the clients can update their local copy to the latest 

revisions of the files, can indicate to the server that they intend to edit, 

add, or delete a file, and can then "check-in" changes back to the depot, 

making them available to others. 

More recently, distributed revision control systems have emerged 

(such as such as Git and Mercurial) that eschew the centralized server 

in favor of keeping multiple copies of the entire source code data, one 

Server 

RAID 
disk storage 

tape backup 

Client 
local copy 

of depot 

Client 
local copy 

of depot 

Client 
local copy 

of depot 

depot 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 181 

Copyright © 2012 by David A. Penny 

copy on each developer's workstation. Whatever the technology, 

functionality concerns are similar. 

Ideally, check-ins should be atomic, meaning that when other clients 

synchronize to the latest revision, they either get all of a check-in or 

none of it (not half the files at their newer revision, and the other half at 

an older revision). 

The system should store files and changes to files efficiently. This may 

mean storing only the differences from one revision to another, or 

compressing the files or the differences. The system should have a 

means of associating meta-data with each check-in: for example, a 

check-in comment, who performed the check-in, when, and for what 

reason. 

The system should have a means of "branching" sets of files. Branching 

means making a virtual copy of a set of files in one part of the depot to 

another part of the depot, and then understanding that the branch 

happened. This is necessary in order to support multiple maintenance 

streams (e.g., simultaneous work on release R3.0 while maintenance 

proceeds on revision R2). 

Branches will often encompass all of the source files of a large 

system (i.e., tens of thousands of files) and hence branch creation 

should be an inexpensive operation (not using much disk space and not 

taking very long) as branches are common occurrences. 

A good source code control system accommodates this by not 

actually copying files, but by making a notation in a database and 

making it appear to the clients that two copies exist. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



182 Source Control & Build  

Copyright © 2012 by David A. Penny 

For example, in the diagram below, after the branch operation a 

virtual copy of file at revision v1 was made into the branch named 

branch. The database recorded the fact that the branch occurred, but no 

physical copy of file was required at the time of the branch operation. 

 

As long as the branch does not check-in a modification to a file, this 

will work. As soon as the branch checks-in a modification, then the file 

differences will have to be physically stored separately from subsequent 

differences to the original file. The branch on which the change occurs 

will not need to copy the entire change history of the original file as the 

system will be able to the show clients a complete version history that 

includes history prior to the branch copy because of the information 

stored in the database. 

Once one or more branches for a file exist, the system should provide 

tools that aid the coder in applying the same changes to all branches. 

This is a common operation that occurs every time a defect is fixed in a 

maintenance stream. The changes must be "merged" back into the main 

stream and other parallel maintenance streams. 

This is straightforward if the modified file is still identical in the 

branches. However, if one or the other streams have modified a file 

uniquely (without the same modification going into all the other 

branches) then the merge may be challenging, and will require an 

check-in 

file, v1 file, v2 file, v3 

branch/file, v1 branch/file, v2 

branch 

operation 

virtual copy 

check-in check-in 

physical copy stored as 

differences with 'file, v1' 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 183 

Copyright © 2012 by David A. Penny 

analysis of the way in which the files differ. Knowing the branching 

structure and the modifications that have occurred should in theory 

allow a merge tool to do a better job. However, in all such cases it 

would be unwise to allow the tool to perform the merge without 

checking its suggested merge carefully. 

Finally, a source code control system should provide a powerful 

labeling facility that allows a set of files, each at their own revision, to 

be labeled (e.g., as "Release 3.2"). 

It should then be possible to synchronize a local copy of a depot to a 

label (to debug previously shipped releases), and it should be possible 

to retroactively cause a branch to occur at a label (in case a patch must 

be created to a specific previous release). The latter is important 

because it should be a hard and fast rule never to ship any software that 

was not built from source control. The practice of syncing to a label, 

making a quick change on the local machine (without checking the 

change back into source control), re-building on the spot, and then 

shipping a quick patch file (e.g., a newer version of a dll), should never 

be used. In order to make it practical to eradicate this practice, 

branching from a label is important. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



184 Source Control & Build  

Copyright © 2012 by David A. Penny 

9.2. Uses For Source Control 

A good source code control system helps a software development 

organization in numerous ways. 

9.2.1. Repository 

Most importantly, a source code control system acts as a repository 

for the source. Rather than being scattered across numerous hard drives 

on various developers' computers, the repository keeps the most up-to-

date revisions of all the source required to build, ship, and document 

the software system. This eliminates ambiguity in where to look for a 

file. It also ensures the safety of the source. The source code control 

system should be implemented on RAID disks and have full backups 

done. With frequent check-ins, the organization limits its vulnerability 

to a failed hard-drive on a coder's workstation. 

9.2.2. Structure 

The directory structure within the source code control system helps 

define the modular structure of the software. All non-trivial software 

systems store their source files in a complex directory structure that 

promotes logical grouping and eases the task of finding particular files. 

The source code control system becomes the definition of this directory 

structure. 

The directory structure is important as it is often used to define the 

module structure of a complex software system. For example, all files 

stored in the DeviceDrivers directory would be sources for device 

drivers. Sub-directories within that directory would be used to group 

the source files that implement each individual device driver. If a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 185 

Copyright © 2012 by David A. Penny 

developer were to store the code for a new device driver elsewhere, it 

would be hard to find and would clearly be a violation of the module 

structure of the software system as defined by the directory hierarchy. 

The module structure is important not only for grouping related 

code, but also to provide a basis for defining architectural rules. For 

example, it may be a violation of an architectural rule for code within a 

device driver to call code within a graphical user interface module. 

When source code files are appropriately grouped into modules, such 

rules can be stated in machine-readable format, and simple tools can be 

built to ensure compliance (e.g., a simple parser that parses only 

#include directives). 

9.2.3. History 

A source code control system maintains complete history of all 

changes that occur to sources. This is useful if a developer, for 

example, makes an accidental check-in with negative consequences and 

would like to revert to a previous revision. It therefore gives confidence 

to developers to know that none of their changes are irrevocable. 

The history is useful for tracking down defects. For example, if a 

defect is discovered on a Tuesday morning, and it was known to be 

absent Monday morning, a developer can review all changes to the 

sources between Monday and Tuesday morning and quickly hone in on 

the likely candidates for changes that caused the regression. 

History is useful for software archaeology: understanding how a 

system got to be the way it is. For example, if a coder is asked to 

modify a particular file but does not understand a segment of the code, 

he can go back in history and find where the code was first introduced 

and by whom. If the original coder is still accessible, she can be asked. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



186 Source Control & Build  

Copyright © 2012 by David A. Penny 

If not, it is possible that check-in comments identify the reason for the 

change, and this can provide additional clues. 

9.2.4. Control 

Unsurprisingly, one of the features of a source code control system 

is to provide control over what gets changed. 

With such a system, a manager can review all of the previous days 

check-ins to ensure that all developers' work is aligned with corporate 

priorities. In some more strict processes, changes to the sources must be 

approved before they are allowed in. 

Automatic controls are also available. For example, tools can be run 

to monitor changes for adherence to coding standards, to prevent 

changes that are, for example, too high on some source code 

complexity metric, and to enforce architectural compliance (e.g., no 

references from the DeviceDrivers module to the GUI module). 

In conjunction with a defect/feature tracking system, management 

can enforce the stricture that all changes are associated with either a 

defect or an in-plan feature. In this way, only approved changes will 

make their way into the code. Such control is especially needed if the 

culture is a "cowboy" culture where coders are used to doing as they 

please without guidance from corporate priorities as to where they 

should spend their time. 

9.2.5. Collaboration 

A source code control system allows many team members to 

collaborate on a project. Changes by one developer can be brought into 

another developer's workspace on demand. This enables two developers 

to share their work quickly and conveniently. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 187 

Copyright © 2012 by David A. Penny 

Contrariwise, If a developer (or a team of developers) needs to work 

in isolation on a feature until they are ready to integrate back into the 

main flow of the source code, that is possible as well. 

Multiple developers may work on the same file simultaneously. The 

first developer to return the file does so in the normal fashion, 

subsequent developers will be prompted to merge their changes with 

the other developer's changes, with the assistance of merge tools. 

9.2.6. Multiple Streams 

A source code control system allows multiple streams of 

development to occur simultaneously. For example, release R2 can be 

readied for shipment while aggressive new feature work is being 

performed on release R3. Likewise, post shipment, point releases and 

patch release of R2 can be worked on while developers continue to 

work on R3. 

To allow for this, the source code control system must make it 

convenient to make a defect correction in one of the source streams and 

then apply the same (or a similar) change to the other source streams. 

When the files are unmodified between the two streams this is not an 

issue. When the files differ, the same tools required to have multiple 

developers merge their changes into one file may be used to merge the 

changes from one stream into the other. 

9.2.7. Reproducible System State 

When a release of the software is shipped, the source code control 

system allows the precise set of source files that went into creating that 

release to be labeled. This is useful for two reasons. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



188 Source Control & Build  

Copyright © 2012 by David A. Penny 

Often, a defect reported in the field can be reproduced on the most 

current build of the system. If not, then there is a dilemma. Do we 

assume the defect is now fixed, or do we assume that the defect is still 

latent in the current code but, because of other changes, is no longer 

reproducible by the same means? Unless developers have good reason 

to believe the former is the case (i.e., the exact symptoms identified 

were explicitly fixed in a previous defect correction), it is wise to 

assume the latter. In this case, the best course of action is to debug the 

problem using the precise set of source files that went into creating the 

system in which the defect was identified. This is the first reason why 

labeling is useful 

The second reason is for patch releases. If a defect correction is 

sufficiently critical to customers, it is wise to get a correction out very 

quickly with high confidence that nothing unexpected will break. The 

fastest way of doing this is going back to the exact source code that was 

used to build the release, apply the minimal code changes to fix the 

problem, test intelligently around those code changes, and then ship a 

small binary patch to the system. With poor systems, one is never 100% 

sure that the sources being used were the precise ones used to build the 

original release (that underwent original extensive testing), and thus 

one is loathe to ship a quick patch in the manner described. With good 

systems, this is not a problem. 

9.2.8. Coder/Build Communication 

The source code control system exists as a handoff point between 

development and QA/Build. 

The organization must make a hard and fast rule that no software 

(including even small utilities or small patches) should ever be shipped 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 189 

Copyright © 2012 by David A. Penny 

unless it comes through a build and QA function. With such a rule in 

place, coding can concentrate on coding, and the QA/Build function 

can concentrate on testing, packaging, shipping, licensing, inventory, 

keeping track of which releases are extant, communicating with client 

services, and so on. 

Mitigating against this is the reality that there is considerable back 

and forth between the QA/Build team and the coding team prior to any 

release. Once the n
th
 iteration has been reached, and a coder has on his 

desktop the exact working executable that will solve a customer's 

problem, the temptation to "just ship it" is strong. This temptation must 

be avoided at all costs. 

A likely scenario, were this to occur, would be that the coder emails 

off the desired changed executable, the customer is now happy. Having 

worked eighteen hours straight, the coder then goes home. Hopefully, 

next day the coder will remember not to make any subsequent changes 

to the source files before checking them in. It's now a month later, and 

the customer complains of another problem. The help desk cannot 

reproduce the problem. They use the exact same release ("release 3.2.9 

- build 2357 - English" as reported by the "About..." dialog box), but 

they cannot reproduce the issue. The reason is of course, this changed 

executable. After several days, everybody in the team puts their heads 

together as the customer is now upset. Collectively, the team 

remembers the patched executable. They attempt to recreate the source 

code for the build the customer has, but are unable to. The issue was 

that the developer had some older versions of files synchronized to his 

depot as he was working on the patched executable. The exact 

configuration used is nowhere in source control - the customer cannot 

be patched this time. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



190 Source Control & Build  

Copyright © 2012 by David A. Penny 

To prevent this type of scenario, which can waste considerable time, 

lead to poor quality shipments, and may prevent certain operations, the 

source code system must be the means (and the only means) by which 

coders convey their changes to the QA/Build group. 

The QA/Build group should only ever build releases and patches 

from sources taken out of source control. As soon as they release the 

software, the exact configuration should be labeled. This will eliminate 

much potential confusion.
 

9.3. Codeline Policy 

Establishing codeline policy is central to the use of a powerful source 

code control system. A codeline policy specifies the conventions 

whereby a source code control system is used to maintain multiple 

simultaneous streams of development, and the rules for who may 

check-in what types of changes into the system. In this section we will 

look at a codeline policy suitable for a packaged software release. At 

the end of the section we will discuss modifications for a more 

continuous SaaS release cycle. 

9.3.1. The Main Codeline 

Generally, one starts with a main codeline. This is typically the only 

codeline into which new features are coded, and only at certain points 

in the release cycle (between fork and dcut). Defect corrections are 

coded into this codeline at any time, and all defect corrections (if 

applicable) must be checked into this codeline. The main codeline is 

consistently used for ongoing development, across all releases of the 

software. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 191 

Copyright © 2012 by David A. Penny 

After dcut new features are no longer allowed in the main codeline; 

only defect corrections. This persists as long as possible up to GA. 

However, often before GA the software stabilizes sufficiently, and 

coders need more features work to do. When this happens, a branch 

should be created off main, and named for the release (e.g., R3). As 

soon as the branch is created, coders may begin again checking-in new 

features into the main codeline. 

The timing of the main codeline branch is a delicate thing. Too 

soon, before the next release is stable, and developers must fix too 

many defects in two places rather than one. Too late, and coders wind 

up doing new feature work off to the side, in private branches, and have 

a difficult and error-prone merge later on to re-integrate their work with 

all the defect corrections that have since taken place. 

The best rule is to delay as long as possible, until the branch is 

definitely needed, but then not to hesitate to branch. For example, if a 

coder begins work on a new feature, but the new feature's code is very 

disconnected from the rest of the code, it may be reasonable to have 

that coder work within their own private branch, as the subsequent 

merge will not be overly painful. However, if a new feature cannot be 

delayed any longer and requires work to existing files, then the branch 

should be made. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



192 Source Control & Build  

Copyright © 2012 by David A. Penny 

9.3.2. Maintenance Codeline 

The codeline created from a branch from main under these situations 

is called a maintenance codeline. 

Developers typically have free access to the maintenance codelines. 

The rule is that only defect corrections go into a maintenance codeline, 

no new features. Furthermore, all applicable defect corrections must go 

into the active maintenance codelines. As opposed to active 

maintenance codeline, retired maintenance codelines are codelines for 

previous releases that are now off maintenance and are no longer being 

supported. Software companies should make every effort to retire 

maintenance codelines at the earliest opportunity. 

As point releases get closer and recede, the codeline policy for 

defects may vary. For example, as a point release nears, the rule may be 

that only high priority defects may be fixed and checked into the 

maintenance codelines. As the point release recedes, the codeline policy 

may become more open, and any defect may be fixed and checked in. 

Usually, software is not shipped directly from maintenance 

codelines. When nearing a release date, another branch is made from 

the maintenance codeline called the shipping codeline. 

As with the first branch off the main codeline, the timing for 

branching shipping codelines from maintenance codelines is delicate. 

Too soon, and there is a lot of defect merging to perform. Too late, and 

lower priority defects may not be worked on at all for a time. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 193 

Copyright © 2012 by David A. Penny 

9.3.3. Shipping Codeline 

The shipping codeline is used by the QA/Build group, and they must 

maintain tight control over it. If the system allows, the codeline should 

be locked down so that only build group members are allowed to make 

changes to this codeline, not coders. 

The rule for the shipping codeline is that only the most critical, last 

minute defect corrections should go into it. 

The reason it is required is to promote stability immediately before a 

shipment. Typically, testing has put a lot of work into validating the 

build that is about to go out the door. Each new defect that is reported is 

carefully triaged to determine if it is of sufficient importance to merit 

re-starting the testing cycle. Given a 2-day final testing cycle, if all 

newly discovered defects were to get added to the release, the release 

would, quite literally, never get out the door, as chances are almost 

100% that some defect will be discovered in any 2-day period. 

If a defect of sufficient importance is discovered, it will first be 

fixed in the maintenance codeline and merged into the main codeline. 

The QA/Build group will then very carefully merge the change from 

the maintenance codeline into the shipping codeline (generally with an 

anxious developer looking over her shoulder), and only limited re-

testing will be performed around areas of potential concern given the 

nature of the change. 

The shipping codeline is also a place to put in trivial last minute 

changes to less critical components, such as splash screens, samples 

files, release notes, and so on. 

Any required patch releases can be shipped from the shipping 

codelines. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



194 Source Control & Build  

Copyright © 2012 by David A. Penny 

9.3.4. Private Codeline 

Finally, private codelines, alluded to earlier, are used by individual 

developers, or small groups of them, for feature work that occurs 

outside of the main release cycles. For example, if a new feature would 

take longer than the standard release cycle, a private codeline would be 

branched off of main (or just a portion of main, if possible) for 

performing this work. At the start of the release cycle in which this 

feature is due to be shipped, the private codeline will be merged back 

into main. 

9.3.5. Example 

The diagram on the page following illustrates how codelines are 

used. A maintenance codeline R1 was branched off the main codeline. 

Two shipping codelines, R1.0 and R1.1 were branched off of it. 

Similar situations occurred for the currently active maintenance 

codelines, R2 and R3. In the case of the shipping codeline R2.2, two 

builds were shipped from it, the second a patch release 

designated R2.2.a 

Meanwhile, a big new feature was being worked on in parallel, due 

to be shipped with an upcoming R4. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 195 

Copyright © 2012 by David A. Penny 

  

main 

maintenance 
R1 

shipping 
R1.0 

shipping 
R1.1 

maintenance 
R2 

shipping 
R2.1 

retired 

maintenance 
R3 

shipping 
R3.0 

shipping 
R1.1 

shipping 
R2.2 

active ongoing active 

X 

private 
big new 
feature 

shipping 
R2.0 

R2.2.a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



196 Source Control & Build  

Copyright © 2012 by David A. Penny 

9.3.6. SaaS Codelines 

In the case of the more continuous release approach typical of SaaS, 

we would typically use three codelines: main, maintenance, and 

production. 

Production is a "trivial" codeline. It is always an exact reflection of 

what exists on the production servers. We build check in rules that will 

automatically check out anything we put into this codeline onto the 

production servers. So it is mainly just an interface to a deployment 

method. 

We put emergency defect corrections into the maintenance codeline. 

It acts as a place for multiple parties to collaborate on a fix, and a place 

to gather up a small number of disparate defect corrections prior to 

pushing to production. We set things up so that code put into 

maintenance can be easily subjected to automated regression tests. 

When we are ready to deploy to production, we will integrate all 

changes from maintenance into production. There should never be any 

conflicts when doing this as nothing gets directly checked into 

production without going through this route. 

Developers code new features into the main codeline. Defect 

corrections put into maintenance must also be backwards integrated 

into main so as not to lose them. If the company has multiple teams, it 

is advisable they all collaborate within the main codeline to ensure that 

no later integration problems arise. 

When it is time to push new features from main to production, either 

the entire main codeline, or parts of it, are pushed to maintenance, and 

from there to production where they will be mirrored onto the 

production servers. If there is a problem with the code, the maintenance 

codeline can be reverted and pushed back to production. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 197 

Copyright © 2012 by David A. Penny 

9.4. Builds and Installs 

A build of a software system involves running build tools against the 

sources to create executable files (and any other support files, such as 

static databases). The end-result of a successful build is a set of files, 

gathered together in a convenient location that may be installed onto a 

computer (or several computers) to enable end-users to run the 

applications and servers comprising the software system. 

Once the files are generated for a build, a subsequent step involves 

creating an install image for distribution. An organization will typically 

use an installer tool to create an install image. The install image will be 

burned onto optical media for distribution, or posted on a web site for 

download. When the end-user acquires the install image, he will run the 

installer script which will unpack the files, copy them to the appropriate 

locations in the file system, and add any system entries required (such 

as registry settings). The application should then be ready for use. 

Installers may be created either for complete releases, or for patches 

that bring software from one release up to a newer release. Tools used 

for patch creation can be different from tools used for a base install. 

Good patch tools will compute binary differences to files, and include 

only the minimum necessary information to bring software from one 

release to the next. This is desirable if the patches are delivered over the 

Internet (as they almost always are) in order to minimize download 

times. Ideally, the software will be built with a facility to query the 

company's servers for patches, download them, and install them 

automatically. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



198 Source Control & Build  

Copyright © 2012 by David A. Penny 

All of the files used to feed the build and the install tool must be kept 

under source control. As well, any custom tools required to perform 

these steps should also be kept under source control. Most 

organizations would exclude the basic tools, such as the Integrated 

Development Environment, from this rule for convenience's sake. 

Most importantly, the source code for the scripts that perform the 

builds, perform the creation of the install images, and burn the images 

to CD should be kept under source control. 

It is unacceptable to have any manual steps in the build and install 

creation for three reasons. 

First, it creates an exposure. Often knowledge of the steps will be 

held in the mind of a single individual. If that person is away or leaves 

the company, software cannot be shipped. This can be mitigated by 

documenting the steps. However, the correct steps for builds and install 

creation rapidly change, and documentation risks getting out of date. 

Better in these situations to "document" the steps in an executable form. 

One is then assured that the "documentation" and the reality are kept in-

line with one another. 

Second, builds and install creation are notoriously error-prone. If 

files are being copied manually, it is easy to accidentally pick up the 

wrong copy of a file and use it. If this occurs, because the file was not 

taken from the correct location in the depot, the company is shipping a 

release for which the sources will not be available in the depot. As we 

have seen previously, this can cause distress, and may introduce last-

minute errors that are not tested for. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 199 

Copyright © 2012 by David A. Penny 

Finally, using scripts that use only sources from the depot ensures 

consistency in the builds. Without this, it is possible for QA/Build to 

discover a problem with the software. The defect is then reported to the 

coders, but they cannot reproduce it. The cause is often inconsistent 

builds. The QA/Build team is using one approach to building the 

software, the coders are using a different approach. This can cause 

delays in shipments as the problem may be very important to the 

QA/Build team, but the coders may not take them seriously because 

they don't see the issue at all in their builds. 

There are two types of builds and installs. One type is development-

oriented, the other end-user oriented. In the next section, we examine 

the development-oriented build, and the one following the end-user 

oriented build. 

9.5. Development Builds 

Because end-users only ever see a fully installed application, the most 

accurate testing and debug environment would be a full install. 

However, these are so inconvenient and slow to work with that 

organizations take a tiered approach. The first tier is the development 

build (which includes a mini "development install"). 

It would be inconvenient for coders to track down defects based on 

installed software. Coders maintain a development environment 

whereby (ideally) they can run one command to create a build and run 

the executable. These builds contain copious debugging information 

and switches which enables the developers to single step through the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



200 Source Control & Build  

Copyright © 2012 by David A. Penny 

source code, examine variable values, do memory checking on all 

allocation and deallocations, dump tracing information, and so on. 

These types of "debug builds" are never shipped to end users, both 

because they run inefficiently and because they contain enough 

information to enable hackers to reverse engineer the code. 

If a problem manifests in a debug build, it is usually an easy and 

quick fix. The vast majority of problems fall into this category. If they 

do not, then chances are good they will manifest in a "release build". A 

developer can usually turn a switch in their development environment 

and create a release build. The release build is much closer to what end-

users will run on their systems, but are more difficult to debug. 

Typically, binary debugging must be used to examine memory 

locations, which is tedious work. Fortunately, only a very small (but 

finite) proportion of defects fall into this category. 

Occasionally there are problems that manifest in an installed 

application but not in a release build. These problems are almost always 

due to a faulty install script, which is usually under the purview of the 

QA/Build group, and not the coding group. 

For this reason, coders will want to work as much as possible with 

debug builds. QA/Build should be running tests against release builds 

(because occasionally problems show up in release builds but not in 

debug builds, and release builds are shipped to customers). Mostly this 

works fine, as the vast majority of problems found by QA/Build will be 

reproducible by the coders in their debug builds. 

The first tier of testing and stabilization therefore takes place on 

development builds and development installs. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 201 

Copyright © 2012 by David A. Penny 

Developers must create a build and development install system that 

with the execution of a single script performs all the necessary build 

steps, moves files into appropriate locations on their machines, and 

does the minimal necessary system settings to allow the application to 

run. 

QA/Build will then use this script to make their testing builds 

leading up to a release. Because testing and coding use the exact same 

build scripts (with the only difference being a switch to "debug" for 

coders and "release" for testers), there is a high degree of confidence 

that problems found by testing can be reproduced by the coders. 

As well, as we shall see later, automated regression tests should be 

run against the same development builds (in release and debug modes) 

so that problems found using these automated tests suites can easily be 

reproduced manually by both testing and coding. 

9.6. Production Builds 

A production build generally starts with a release-mode development 

build, but then carries it further to create an install image and possibly 

even an ISO image (for direct burning to a CD) or a downloadable 

image. This may be used either for a full install, or for a patch. 

Production builds are what are eventually shipped out the door. A 

final "release checklist" is carried out against a candidate production 

build to ensure that all major functionality (and especially functionality 

that if broken cannot be patched) works as intended. This is usually a 

manual process that takes one or two days. While automated regression 

testing is a necessary part of a testing program, there is no substitute for 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



202 Source Control & Build  

Copyright © 2012 by David A. Penny 

human common-sense as a final check lest we create 20,000 CD's of 

"coaster-ware" because the machine said it was ok! 

The shipping of production builds should follow a defined workflow 

process. We will discuss tools to assist in building and controlling 

workflow processes in Chapter 11, "Defect Tracking" and Chapter 12, 

"Feature Tracking". A similar workflow management tool can be used 

to track production builds through development build, testing, install 

image creation, final testing, and CD mastering. 

The system should keep a list of all the production builds (including 

both releases and patches) the company is intending to ship out the door 

in the foreseeable future. A regular "release priority" meeting involving 

senior management should occur that prioritizes this list, attaches dates 

to the items on it, re-prioritizes as required, and checks up on progress. 

The list should also include scheduled production build candidates. 

For example, for a new major feature release of a product, QA/Build 

might recommend that there be weekly trial production builds for the 

six weeks prior, with the last build being intended as the "Gold" build 

(the one that will make it out the door). For a point release, perhaps one 

or two trial releases should be scheduled. 

The list should be stored in the workflow management system, and 

automatically posted on a corporate intranet site so that all parties have 

visibility against progress. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 203 

Copyright © 2012 by David A. Penny 

9.7. Automated Builds 

With many developers making changes to the software code, and with 

these changes possibly affecting many different versions and codelines, 

there needs to be a mechanism of catching any build problems early on. 

This is especially important when there are many different versions of 

the software, as developers will typically only ever test on the version 

they are developing against. Introducing build errors into the depot is 

called "breaking the build". 

To minimize build problems, before checking in any changes coders 

should synchronize their sources to the latest files and attempt a re-

build. If the software builds and tests out, they should then check in 

their changes. The astute reader will notice that there exists a race 

condition here. Two coders may be doing the same thing at the same 

time, with the result that nobody will have tested the system with both 

sets of changes simultaneously. These race conditions introduce the 

possibility of breaking the builds. The other (and more common) reason 

for breaking the build is coder carelessness. 

To guard against broken builds, every night a scripted process 

should fire off, completely delete all of the sources, intermediate files, 

and final files from the previous night's runs, and return the system 

state to pre-install. Then all the sources should be automatically 

checked out, both debug and release development builds fired off, and 

then development installs performed for each. As the number of 

versions of the software increase, each version can be built and 

installed in this manner (possibly using a swarm of computers). 

The build process should report its progress, as it goes, into a 

relational database. Detailed output from the build tools will typically 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



204 Source Control & Build  

Copyright © 2012 by David A. Penny 

collect in text files. These files should be captured, automatically 

analyzed to count errors and warnings and extract the messages, and 

copied to a server. An Intranet web-app can then be built that can report 

on the progress of the build, and on the final results. Especially 

important is a summary page indicating what builds were made, and 

giving the numbers of errors and warnings on each. 

Each morning, developers should check the build results, correct 

any problems and re-initiate the automated builds if necessary. The 

automated build environment should provide a means via the results 

page on the intranet of drilling down to the exact error or warning 

messages, and then viewing the code that the error or warning refers to. 

Developers responsible for "breaking the build" by checking in 

erroneous changes should be punished in some creative fashion (e.g., 

they have to come in early every morning to check the build until the 

next developer breaks it!). These builds should occur against both the 

main codeline, and all active maintenance codelines. 

Using automated builds, with easily queryable results, and having 

strict social censures against breaking the build are necessary to 

maintain the integrity of the automated build system. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Source Control & Build 205 

Copyright © 2012 by David A. Penny 

9.8. Summary 

In this chapter we looked at some of the most important core 

infrastructural elements required to control software development in a 

commercial software organization. 

We started by describing the attributes of good source code control 

systems, the ways in which they benefit the organization, and the 

codeline policies used to control their use. We then discussed the need 

to automate builds and installs, and the difference between 

development builds and installs and production builds and installs. 

In the next chapter, we will discuss the next logical infrastructural 

elements: testing.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

10. Testing 

In this chapter we discuss the various types of testing that take place 

during a release cycle, and concentrate especially on automated 

regression testing that enhances the automated builds discussed in the 

last chapter. 

Humans make mistakes. It is generally fruitless to try to improve 

quality by trying to tackle the problem at its source; preventing 

mistakes in the first place. Rather, the most fruitful areas for improved 

testing are in instituting processes and practices that double and triple-

check the work of fallible humans. 

There are two general types of checks: testing and reviews. Testing 

means running tests against the software. Reviews means examining 

documentation and/or source code produced by developers. In this 

chapter, we will concentrate on testing as it comes first. If software 

development does not have an effective testing program, spending time 

and money on reviews will be less effective than spending it on testing 

for the same gains in quality. 

There are many different types of testing that take place during the 

coding phase. While the terms used to describe these testing phases 

vary, the ideas are common. We will organize this chapter around the 

various types of testing that can be done. We end with automated 

regression testing, and devote some considerable space to discussing 

this all-important type of testing. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



208 Testing  

Copyright © 2012 by David A. Penny 

10.1. Unit Test 

When a coder is first coding a feature, generally a tester will not get 

involved until the feature is relatively complete and relatively stable. 

While this is going on, the coder is doing their own testing of the 

feature. This testing is called unit testing. 

Unit testing may be testing that takes place within the context of the 

developer's private copy of the application, or it may involve the coder 

building test scaffolding to more thoroughly test elements of the code 

that they develop. A test scaffold is a small, stand-alone application 

intended to test an internal API the coder has developed as part of the 

overall solution. Ideally, these unit tests are also checked into the depot, 

and a facility is provided whereby they are re-built and re-run every 

night as part of an overall automated testing infrastructure. 

10.2. Component Test 

Once a feature is relatively complete and stable, an independent tester 

will test the feature with reference to the feature specification. This is 

called component testing. 

Initially, this testing will be manual, using the full application. The 

tester should never use a private build for this testing. Rather, he should 

always use the release version of the nightly development build, and 

test across the various different versions of the software. In this way, 

we guarantee that the tester is testing what will eventually appear in the 

application, and not code that only accidentally appears in a developer's 

private workspace. This practice also encourages maintenance of the 

automated build facility and the frequent checking-in of changes. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 209 

Copyright © 2012 by David A. Penny 

During function test, the tester will be constantly feeding back 

problems encountered and ideas for improvement to the coder. As the 

feature assumes its final form and begins stabilizing, the tester should 

be thinking in terms of how to develop an automated test script to test 

the functionality. In the absence of this, or in addition to it, the tester 

should be writing down the sequence of manual tests that should be 

performed to test the feature thoroughly. 

During function test, the coder should also be working on testing 

API's that integrate to a regression testing environment (more on this 

later), and the tester should be working on test scripts that use this API. 

10.3. Integration Test 

After dcut is reached, the new features and the old features should all 

be re-tested in light of the interactions between the various new features 

that could not be uncovered during component test. This test phase is 

called integration test. During integration test, any automated tests 

should be finalized and checked into the system. 

10.4. System Test 

When the system nears completion and the production install scripts are 

ready, the testing group will test the software using full installs, and test 

for how this new version interacts with previous versions and 

complementary software. This is called system test. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



210 Testing  

Copyright © 2012 by David A. Penny 

10.5. Final Release Test 

Finally, immediately before release, a final checklist must be gone 

through that verifies all the most important aspects of the system. This 

is called final release testing. 

10.6. Automated Regression Testing 

Running across all this testing, and providing an underpinning for it, is 

the most important type of testing: automated regression testing. 

"Regression testing" is so-named because it is intended to check for 

"regression" in capability: things that used to work before that now no 

longer work. 

In practice, regression testing cannot be performed manually. For 

most software there are so many things to check for that humans would 

take months to run all the necessary tests. 

Some organizations perform regression testing by examining all the 

previous defects reported against the software and verifying that those 

defects have not re-appeared. This is a fertile source of defects for the 

test team. Things that are broken once have a tendency to break in the 

same manner again. Historical defects are an important source of 

regression tests, but are only a part of the complete picture. 

A good regression test should be entirely automated. It should be a 

natural extension of the automated builds. However, whereas coders 

will check and correct the build results, it will the QA/Build group that 

checks the results of the regression tests. This is because many 

problems surfaced by automated regression tests are not defects. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 211 

Copyright © 2012 by David A. Penny 

Human judgment is required to determine if the deviances of results 

from a previous run are a defect, an improvement, or a test error. Any 

genuine defects can then be reported to the coders. 

As for automated builds, the regression tests should similarly report 

their progress and final results into a centralized relational database. 

Web applications can then be built to query the results and drill-down 

on deviances. 

Whenever new functionality is added to the application under test, 

new regression tests should be produced for testing that functionality. 

Thus it becomes the focus of the test team not to only test manually, but 

to test manually with the intent of understanding how to build a good 

suite of automated test cases. 

Whenever a defect is reported against the software, chances are that 

whatever triggered the defect was not captured by the automated 

regression tests. Thus there should be a rule that a part of resolving any 

defect is to ensure that going forwards there will be a regression test 

that can catch that defect. In this manner, defects will not re-appear 

(which often happens without this practice). 

10.7. Performance Regression Test 

The automated regression tests should not only check for correct 

operation of the software, but should also check for performance 

regression: i.e., check if the software is running slower today than 

yesterday. 

This is important because sometimes a coder will check in a change 

that fixes a problem, but badly deteriorates the performance of the 

application. Because the developer will typically only check with one 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



212 Testing  

Copyright © 2012 by David A. Penny 

example, or a small example, the performance regression may not be 

immediately visible. 

For example, if an operation that usually takes 0.01s takes 0.1s, the 

developer may not notice this at all during her testing. Similarly, if the 

automated nightly regression tests only perform 20 or so tests on this 

operation and we do not explicitly track execution time, we will also 

not notice the change. If we ship this software and a customer has a 

batch script that performs this operation 1,000,000 times, the difference 

in performance is from 3 hours to 30 hours. The 3 hours comfortably fit 

into an overnight window. The 30 hours assuredly do not! 

Performance regression requires that we measure the time taken to do 

specific performance tests. Measuring the time to perform individual 

regression tests (or the whole suite of tests) is not adequate as the time 

may be dominated by test system overhead. Therefore testers must 

design specific tests that are not dominated by testing system overhead. 

These tests must then be measured, and the performance numbers made 

available individually, by test category, and aggregated into some sort 

of an overall performance metric using weights to stress the importance 

of one aspect of performance over another. 

The performance data must then be kept historically and made 

comparable over time (using normalized measures in some way). Only 

in this manner will we spot trends. Developers will also be able to spot 

the exact day performance went awry, and will be able to use the source 

code control system to track down what changes were made to the code 

on that day to possibly account for the slowdown. These results can 

also be used as a metric if the company decides it needs to spur the 

coders to improve the performance of the application. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 213 

Copyright © 2012 by David A. Penny 

10.8. Memory Leak Test 

Once functional and performance regressions are in place, we must next 

look to memory leak regression. Every night, tests should be run to 

verify that the application is not leaking memory, or, if it is due to a 

component out of the company's control, that it is not getting any 

worse. This can be as simple as monitoring virtual memory used during 

tests, or special tools can be used that check for improper use of 

memory including memory leaks and point as directly as possible to the 

problem. 

10.9. Benefits of Regression Testing 

Regression testing is important because it helps lock in quality. Once 

component testing and integration testing is passed, we can have good 

confidence that the feature works as intended. However, the biggest 

problem with leaving things there is that as other development and 

defect corrections proceed, existing features, and especially newly 

created ones, are delicate and tend to break. 

Because coders and testers are focusing on the new features and the 

new defect corrections, nobody is paying attention to features that have 

previously been determined to work. It is very common, therefore, for 

these other features to regress. 

Automated regression testing means that the machine is always 

checking and re-checking this existing functionality, and will raise the 

alarm when and as soon as it breaks. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



214 Testing  

Copyright © 2012 by David A. Penny 

Raising the alarm early is another benefit of automated regression tests. 

Defects are less expensive to fix the sooner they are found after having 

been introduced. This is because developers have fresh in their minds 

what they just did to break the software. If something is shown to be 

broken the very night of a big check-in by a coder, chances are good 

that it was the big check-in that broke it. 

Automated regression testing is a development aid. When coders must 

make changes to inherently complex, hard-to-understand, central parts 

of the code (e.g., a main simulation loop, for example), it is beneficial 

to have an exhaustive suite of tests that can be run against the 

application to help assist the coder in making sure nothing unexpected 

was broken. 

Without such a facility, coders become loathe to change these 

central parts of the code, whereupon hacks are accumulated around it to 

deal with specific issues without upsetting things that are known to 

work. This leads to rapid architectural degradation and ultimately 

defect-laden code that "can’t be fixed". 

Regression testing is especially important as we near the final stages of 

a release. Say the release date is upon us and a number of distributors 

and/or customers are anxiously awaiting the new CD. At the eleventh 

hour a show-stopping defect is found. The correction looks dangerous, 

in that we are unsure what other functionality it may break. Without a 

complete set of automated regression tests, the testing cycle for this 

change might be days. The organization is then faced with a dilemma; 

should it leave the defect in (not acceptable), should it delay the release 

by another 2 or 3 days (not acceptable), or should it take a chance and 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 215 

Copyright © 2012 by David A. Penny 

just do some cursory testing around the change. Often, it is the last 

option that is selected, with potentially disastrous consequences. With a 

full suite of automated regression tests, within a few hours the 

organization can build confidence in the fix, and greatly reduce the 

dilemma. 

10.10. Regression Coverage 

Central to managing a regression testing progress is having some metric 

for coverage. Coverage is an estimate of the completeness of the 

regression tests. An unambiguous metric is the percentage of the lines 

of code that are executed during a regression test run. Profiling tools 

may be able to give this metric. Other metrics may be more human-

oriented. For example, one may list all the functions that need to be 

tested, and then put a check-mark beside each one that has one or more 

automated regression tests. Generally, automatically-produced metrics 

are best, as they cannot be argued with. 

It is not critical that the metrics actually represent absolute coverage. 

What is important is that an increase in the metric should correspond to 

increased coverage. This provides management with a simple metric to 

determine the rate at which progress is being made, and to detect any 

backsliding in the face of new feature additions. Progress against a 

metric also provides the basis for a business justification for increased 

resourcing if that is what is required to properly staff the test group. 

There are two types of regression test results: baseline and validated. 

Establishing a baseline means that the software has not changed its 

behavior from yesterday to today. It does not say if the behavior is 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



216 Testing  

Copyright © 2012 by David A. Penny 

correct or not. This has considerable value in itself in that it fulfills the 

basic function of regression testing: that once something is working it 

does not cease working without someone being made aware of it. 

A validated baseline goes a step further. Not only is the software 

consistent from day to day, but the results it produces have been 

validated to be correct by human examination. 

The reason for the distinction is that with many automated 

regression environments, increasing the number of test cases can be 

done by adding pre-existing test files. In most organizations, this first 

step can be done mechanically and will bring value in that the 

regression tests will catch any core dumps and any subsequent changes 

in behavior. 

The QA department can come along later and validate the results 

produced. 

Baseline results can be established quickly and automatically. All 

that needs to be provided is the input to the test case; the regression 

testing system will cause the software under test to generate the output. 

If the system finds no previous baseline to compare against, it can 

automatically save these first results as the baseline going forwards. 

Thus, if a certain operation on a certain input file fails, then once it 

is fixed, that input file (possibly originating with a customer) can be 

deposited into the test bin and baselined results obtained easily. 

Thus, two coverage metrics can be produced: baseline coverage and 

validated coverage. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 217 

Copyright © 2012 by David A. Penny 

10.11. GUI Versus Scripting 

In practice, regression testing requires an ability to run the software 

under test by remote control. There are two general approaches to this, 

which can be complementary. One approach is to drive the user 

interface by simulated mouse and keyboard input (GUI-level testing - 

GUI = graphical user interface). The other is to interface to a scripting 

layer in the software. 

The GUI-level testing approach can be problematic. GUI's are designed 

for human interaction. If, for example, something goes wrong the user 

interface may put up a dialog box requesting confirmation before 

proceeding. The GUI-level test scripts may not be aware of this, and 

may continue trying to press buttons that are not operative until after 

the dialog is dismissed. Or, a GUI may reconfigure itself under certain 

situations (e.g., adaptive menus). Unless the GUI script is completely 

aware of all the details of this, its mouse clicks may be "off". 

With GUI-level testing, output is sometimes only graphical. The 

tools can do a bit-by-bit comparison of the graphics, and signal errors if 

anything is different at all. This may be overkill. 

The problem with all these examples is that the chances for "false-

positives" are too high. There are many situations where the output may 

differ by a few bits (e.g., a subtle change of color), or the menus may be 

slightly re-arranged, or an extra confirmation dialog may appear, and 

these are not considered errors. A human tester would pass over these 

easily and continue testing. GUI testing tools will stop dead in their 

tracks and report an error. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



218 Testing  

Copyright © 2012 by David A. Penny 

As well, the output of these tools is usually difficult to get at and 

customize and report on in a fashion that suits the organization. The 

tools are typically very expensive. The large number of staff needed to 

maintain the scripts in the face of changes to the software is also very 

costly. 

The other approach is to architect into the software a scripting API that 

can be driven by various scripting languages such as Perl, Python, VB, 

and so on. On Windows-based systems, providing a COM API is an 

excellent way of doing this. 

The COM API should be designed from a testing perspective. It 

should cover all functionality that needs to be tested and produce output 

in a textual form that can be easily differenced against previous results. 

Errors can be returned by means of error codes from the API that allow 

the script to continue. 

Building a regression testing API at this layer bypasses the GUI. This 

has both a negative and a positive connotation. 

On the negative side, because the scripts are not doing exactly what 

the end-user would do, there is a chance of errors slipping by. As well, 

with an API every new feature must expose its functionality both as a 

GUI and as an API, which is extra work for the coders. Finally, writing 

test scripts against an API requires programming skills, whereas using 

GUI-testing tools do not. 

On the positive side, many false-positives are bypassed by not 

testing the GUI layer. The organization can be more free in changing 

the GUI without breaking all the regression tests. Providing a scripting 

API will improve the architecture, as it will promote a division between 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 219 

Copyright © 2012 by David A. Penny 

GUI-independent functionality and GUI.  Finally, and most 

importantly, the integrity of the scripting API can be maintained in the 

face of dramatic changes to the software. This implies that once a test 

script is written, it will work forever without modification so long as 

the API behavior remains consistent. This last consideration trumps all 

others, and is the chief reason for favoring an API-based regression 

testing approach. 

With SaaS, it is often critical to perform GUI-based tests, as 

considerable functionality of a web application is contained in the 

executable JavaScript code than runs in the browser. The open source 

framework Selenium is often used for in-browser testing, augmented by 

other tools that can manage and report on the test progress. There are a 

number of cloud-based services that run these tools against a URL 

target you supply, which is an ideal application of cloud computing 

owing to the bursty nature of the computing resources required. 

Even so, these tests are subject to the same caveats as any GUI-

based testing, and while necessary, if there is some testing that does not 

involve JavaScript or GUI elements, it is wisest to also have a 

regression testing framework that does not involve any GUI elements, 

as these tests will be far less work to maintain. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



220 Testing  

Copyright © 2012 by David A. Penny 

10.12. Regression Testing Architecture 

Regression tests should be runnable on a developer's computer, and on 

dedicated computers used for nightly tests. The developer needs access 

in case the defects discovered cannot be reproduced in a standalone 

fashion, and to enable them to run a suite of tests when they are 

working on dangerous code. When run on a developer's computer, the 

testing infrastructure should not report progress into the central testing 

results database, but rather report them locally (into a file, for instance). 

The regression testing infrastructure should be cross-platform, 

meaning that it can run on any conceivable platform that the application 

under test may ever run on. For software that has many versions 

running on many different OS platforms, using virtual machine 

technology for the testing is a cost-effective and convenient way to 

proceed. 

Scripts for individual tests should "plug into" a framework 

architecture that can run defined sets of tests and provide support 

functions (such as starting up the application, doing diffs, storing raw 

and processed results, and so on). 

The framework should provide for extreme fault tolerance. Because 

we are testing an application under development that we expect may 

core dump or hang, the infrastructure needs to be clever about 

constantly monitoring the state of the application and recovering from 

core dumps and timing out hung applications in order to complete the 

test suite. In other words it is not acceptable to stop the test suite after 

the first error. Having results for all tests help greatly in tracking down 

problems (even if it is the case that every test core dumped!). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 221 

Copyright © 2012 by David A. Penny 

If a test fails, it may be that the test always fails, or that it only fails 

because it is in sequence with other tests (that may have succeeded 

themselves, but caused some memory corruption that caused future 

tests to fail). It is very valuable to detect this latter type of error, as 

these are typically hard to track down errors that plague the customers. 

For this reason, the testing infrastructure should as much as possible 

use the same instance of the application to run a whole series of tests. If 

the application fails on a particular test, the infrastructure must be 

capable of restarting the tests starting with the test that failed. If the test 

fails again on a clean invocation of the application, chances are it is a 

defect exposed by that particular test, and the application should then 

be restarted starting with the next test. If the test runs clean the second 

time, then it was probably a previous test that caused the problem. 

Therefore, when a test fails, it is good to collect the history of 

actions that took place leading up to the failure in a readily accessible 

log file (i.e., linked to the failed test result on the web app). 

The following page shows a sample architecture for a regression testing 

infrastructure. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



222 Testing  

Copyright © 2012 by David A. Penny 

 

web 

browser 

web 

browser 

test 

marshal 

test 

driver 

test 
plugin 

test 
plugin 

test 
plugin 

Test Platform 

Relational 
Database 

for test data 

test 

service 

web 

server 

Test Server 

application 

under test 

COM 

test data and 
baselines 

(from source control) 

results 

log 

result 

files 

Regression Testing Infrastructure 

Source code 
control service 

service 

depot 

Source Code Server 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Testing 223 

Copyright © 2012 by David A. Penny 

The test server runs a relational database and a test service, to which 

the test marshal communicates. The test service is in charge of writing 

results to the database and storing results files locally for comparison to 

baseline files. The web server and an appropriate web application are 

used for reporting results. The test service may be eliminated in favor 

of file shares and direct communication to the RDBMS from the test 

marshal. 

The test marshal oversees the operation of the test driver. The test 

driver is an application that communicates using COM (if in a 

Windows environment) to the application under test. A number of test 

suites plug into the test driver, and get their test files and baseline data 

from the source code control system mapped onto the test platform. The 

test driver dumps results to its standard output. This architecture 

enables developers to run the test driver on their local machines and get 

a quick output without all the complexity of the server environment 

which is not required. 

The test plugins do intelligent diffs with the baseline files to 

determine of tests pass or fail. We require "intelligent diffs", because if, 

for example, an output includes a date and time, differences in this part 

of the output should not be flagged as errors. 

The test marshal sequences the tests, parses the log output from the 

test driver, and monitors the test driver and restarts it as necessary if the 

application core dumps (which, under a COM regime, will generally 

bring down or hang the test driver). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



224 Testing  

Copyright © 2012 by David A. Penny 

10.13. Summary 

In this chapter we considered the various types of testing, including unit 

test, component test, integration test, system test, and final release test. 

We ended with a discussion of the most essential type of testing: 

automated regression testing. 

We described how automated regression testing is helpful because it 

allows us to efficiently re-check all functionality after any small 

change. This benefits quality as a whole, enables developers to make 

dangerous changes in core parts of the software with confidence, and 

enables quick response in emergency patch situations. 

We continued by describing the various types of regression testing, 

methods of setting up systems to perform regression testing, and how to 

measure regression testing coverage, which is necessary when putting 

in place a management initiative to improve automated regression 

testing. 

In the next chapter we look at systems to keep track of the various 

defects found in testing and guide the process of fixing them. 

 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

11. Defect Tracking 

The previous two chapters have discussed infrastructure necessary for 

conducting professional software development in a commercial 

software vendor setting. The only significant piece missing is the defect 

tracking system, however this system is distinguished from the others 

as, when done right, it is the first step towards getting control of the 

software lifecycle process. 

11.1. Introduction to Defect Tracking 

Defect tracking is the act of keeping track of all the defects that have 

been reported against the software, and then keeping track of the steps 

to go through to correct them. 

Such a system is necessary for even the most rudimentary software 

product. Without it, all the hard work that goes into finding defects 

risks being lost, and all the pain that customers experience discovering 

these defects in the field risks being repeated by those customers and 

others yet to come. 

An effective defect tracking system helps ensure that coders do not 

start work on un-validated reports of defects rather than actual defects, 

and helps prioritize which defects to work on at any given time. 

At its core, a defect tracking system consists of a database containing 

defect records, and a workflow. A workflow is driven by a state field, 

containing states such as New, Valid, Fixed, Closed, and so on; and a 

current defect owner, who is the person who is currently responsible for 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



226 Defect Tracking  

Copyright © 2012 by David A. Penny 

the activities required to drive the defect from its current state to its 

next state. 

In the next section we look at the information contained in a defect 

record. 

11.2. Defect Information 

The following types of information would be typical of those kept for a 

defect. 

Where Found 

The software product, release, and version in which the defect was 

first identified; and information identifying the hardware and operating 

system platform that was being used when the defect manifested. As 

well, the general area of the software in which the defect was found 

(e.g., GUI, database, calculations, and so on). This is useful when 

choosing a developer to fix the defect. 

Who Found It 

The name of the customer and the person within the organization 

who reported the defect. Even if reported by a customer, there should 

be an employee within the organization who liaised with the customer 

and is able to reproduce the defect who will act as the customer's proxy. 

Description of the Defect 

A summary line, briefly describing the defect in a quick phrase; a 

more extended description of the defect fitting within a paragraph; a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 227 

Copyright © 2012 by David A. Penny 

detailed list of steps to go through to reproduce the defect; and any 

accompanying data files required to reproduce the defect. 

Triage 

Information that can be used to prioritize this defect relative to 

others. Usual data fields to capture include the severity of the defect 

and the probability of occurrence. 

The severity would be listed as high, medium, or low. A high 

severity defect might be one that crashes the software or causes 

incorrect results to be posted. A medium severity defect might be one 

that prevents the end-user from accomplishing a task. A low severity 

defect might be a cosmetic annoyance or a misspelt word. 

A probability of occurrence should be included as a separate field. 

Typical values might be always, often, sometimes, or unlikely. 

Severity plus probability of occurrence can be used to auto-generate 

a priority (e.g.,1 to 5) from a matrix. The priority should not be 

exclusively tied to these fields, however, as human judgment might 

intervene to say a defect is higher priority than the matrix would 

indicate. 

Audit Trail 

The defect record should include a discussion log with entries 

tagged by date and person for any discussions relating to this defect. All 

changes to any data fields in the defect should have an audit trail entry 

detailing when the field was changed, by whom, and the from and to 

values for the field. If there were any code check-ins into the depot 

made to correct this defect, these should be linked to the defect record. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



228 Defect Tracking  

Copyright © 2012 by David A. Penny 

State Information 

The current state of the defect. The current owner of the defect. A 

record of who the submitter of the defect was, who the coder who fixed 

the defect was, and who the tester who tested the fix was. 

11.3. Defect States 

Defining the states a defect goes through towards resolution is the most 

important aspect of defect tracking. A typical state transition diagram is 

shown below. Note however that this is an example only, and the most 

appropriate defect workflow will depend on the teams involved, where 

there are weaknesses in the organization, and in what order we wish to 

address these weaknesses by implementing additional state-driven 

process control. 

 

New 

Valid 
Fixed 

Closed 

WIP 

Disputed 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 229 

Copyright © 2012 by David A. Penny 

New 

When a defect is first introduced it enters the system with a New 

state. The defect should not be entered into the system if the submitter 

knows the defect has already been fixed in a more recent release, if it is 

a duplicate defect record, or if it cannot be reproduced. 

At this point, the defect is automatically assigned to an appropriate 

developer, based on the area of the software to which it applies. If the 

developer, upon seeing the defect, believes that a different developer 

would be better suited to investigating it, she will forward the defect. 

The developer to whom the defect is eventually assigned has the 

task of verifying for himself if the defect is in fact a defect, and if it can 

be reproduced. If so, he will move the defect to the Valid state. 

If the defect cannot be readily reproduced, the developer will leave 

it in the New state, and change ownership back to the submitter with a 

request for more information. If, after several back and forths, the 

defect still cannot be reproduced and the submitter refuses to close it, it 

should be moved to the Disputed state. 

If the developer can reproduce the behavior, but believes that the 

behavior is correct, she will also move the defect to the Disputed state if 

the submitter does not agree to close it. 

All defects, no matter the assigned priority, should be quickly 

(within a day or two) moved to either Valid or Disputed from New. 

Disputed 

If a defect is disputed in any way, it will wind up in the Disputed 

state. At the time of this transition, ownership of the defect will shift to 

a person in charge of following up on disputed defects (e.g., the QA 

manager or a development manager). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



230 Defect Tracking  

Copyright © 2012 by David A. Penny 

One common reason is a disagreement on whether or not the 

reported defect is in fact a defect, or correct operation of the software. 

Often in these cases, the developers will say that the software was 

intended to operate in this manner, and hence is not a defect. Often it 

will be left to a manager to decide whether to treat the issue as a defect, 

or as a feature request. 

If the decision is as a defect, the state will be moved to Valid and the 

defect re-assigned to the developer. If as a new feature, the defect 

record will be closed, and a new feature request will be submitted. 

Valid 

If the assigned developer concurs that it is a defect, she will move it 

to the Valid state where it will await work. At this time, the developer 

may question the assigned priority of the defect, and request a manager 

to change the priority up or down. 

Generally, depending upon the phase within the software cycle, 

developers will be given guidelines to, for instance, begin work on all 

defects above a certain priority; not to do any work on defects below a 

certain priority; and to optionally do work on defects in a certain 

priority band if they seem quick and easy or if the coder is working "in 

that neighborhood" of the code anyways. 

WIP 

Once a developer begins work on fixing a defect, he will move the 

defect to the WIP state, standing for Work-In-Progress. Having this state 

gives management visibility into which defects are actively being 

pursued, and how long they have been worked on to date. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 231 

Copyright © 2012 by David A. Penny 

Fixed 

Once a developer believes that a defect has been corrected, she will 

move it to the Fixed state. At this time, ownership of the defect will 

pass to a tester to verify that the defect has been fixed. If the tester 

cannot verify the fix, she will transition the defect back to WIP and re-

assign the defect back to the coder. If she can verify a fix, she will add 

the test to the set of regression tests, and transition the defect to the 

Closed state. 

Closed 

The terminal state is Closed. From this state, a defect cannot be 

resurrected. If a mistake was made and more work is required, a new 

defect record must be submitted. 

A "close reason" will always be associated with the Closed state. 

Possible reasons are "closed - duplicate", "closed - cannot reproduce", 

"closed - not a defect", and "closed - fixed". 

11.4. Management Controls 

The main purpose of a defect tracking system is to control the defect 

process to ensure that low priority defects are not worked on in favor of 

higher priority defects or feature work, and that high priority defects are 

addressed quickly and completely. 

To enable this, management must overview all active defect records 

on a regular (daily) basis using reports built for this purpose. Ideally, 

these reports should be available upon demand by navigating a Web 

browser to an Intranet URL. If important defects are seen to languish 

for too long in a given state, the reports should make this clear. This 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



232 Defect Tracking  

Copyright © 2012 by David A. Penny 

allows management to discuss the situation with the appropriate 

individuals and take action. 

Likewise, if management notices too much time being spent on low 

priority defects, they can also take appropriate action, such as changing 

the defect engagement rules or reminding developers of the existing 

ones.  

11.5. Metrics 

Another reason for having a defect tracking system is to enable metrics 

on the quality of the software, and on the productivity and quality of 

work of defect finders (testers) and defect fixers (coders). 

Clean defect data is critical to these sorts of metrics. For example, if 

there was no process or mechanism to record reported defects that did 

not turn out to be valid defects, management might focus all their 

attention on reducing the number of defects introduced in the code with 

barely any effect on the metrics. This would be because the high defect 

numbers might rather be attributable to errors made in the finding and 

reporting of defects. These errors, in turn, eat into developer 

productivity which slows down everything. Thus we would have the 

situation where the developers become less and less productive, while a 

sequence of ineffective measures are taken to reduce defects, further 

eating into developer productivity. Thus clean data is important to 

management to allow them to identify and address the right problems. 

Another example of clean data is having developers quickly assess 

any New defects and move them to the next sate, and having testers 

quickly jump on Fixed defects and move them on. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 233 

Copyright © 2012 by David A. Penny 

With clean data, the information in the defect tracking system can be 

pulled out and graphed and analyzed. The three most important metrics 

are total valid unfixed defects, and the contributing partial derivatives: 

defect arrival rate and defect departure rate. 

Defect arrival rate is the number of defect records per day 

transitioning into the Valid state. 

Defect departure rate is the number of defect records per day 

transitioning from Fixed to Closed states. 

Total valid unfixed defects are the count of the number of defects in 

any of the states Valid, WIP, or Fixed. 

 

The example chart above shows a typical scenario leading up to product 

shipment. 

Defects

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

days

d
e

fe
c

ts

total

arrivals

departures

net

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



234 Defect Tracking  

Copyright © 2012 by David A. Penny 

All of the metrics should be available by product and by priority. A 

typical priority scale would be from 1 to 5, with 1 being highest 

priority. The organization should have threshold ship values on defect 

metrics. For example, a release cannot ship with any known priority 1 

or 2 defects, and priority 3 defects must have an arrival rate lower than 

1 defect per day. As an organization improves their software's quality, 

these thresholds may be ratcheted downwards in a systematic fashion. 

After dcut, management will closely scrutinize the defect metrics to 

get a sense of whether the projected GA date is still viable. If it looks to 

be in danger, management may react by removing other work from 

developers, by focusing the most productive resources on defect fixing 

(e.g., recruit the chief architect back into the trenches), or by requesting 

a few weekends of bug blitz by testers and coders prior to the ship date. 

In a more extreme case, management might decide to postpone the 

GA date of the release. 

In the most extreme case, management may conclude that the high 

defect rate has underlying causes in the poor architecture of the product 

and devote a release cycle to architectural clean-up efforts. 

11.6. Relationship to Source Code Control Systems 

Fixing defects and coding new features are the only two reasons 

developers should be making changes to the code. By tying together the 

source code control system and the defect tracking system (which, as 

we shall see in the next chapter, will also be used for feature tracking), 

we can go most of the way towards ensuring that this is actually the 

case, and that no unauthorized code changes occur. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 235 

Copyright © 2012 by David A. Penny 

Whenever a change is checked-into the depot, the developers should 

be prompted for a defect (or feature) record on behalf of which the 

change was made. The list of defects (and features) should include only 

those for whom that developer is currently assigned. 

Once given, the system should make a record of the association 

between the defect (or feature) record and the code check-in, and store 

it persistently. This level of integration is easily accomplished with 

modern-day tools. 

Providing such a tie-in means we can extend management overview 

from only "what" was changed (made possible by a source code control 

system) to also "why" it was changed (made possible by the integration 

to defect/feature tracking). 

Skeptics might argue that management does not really have control. 

A developer may make an arbitrary change and associate it with any 

random defect assigned to them. Of course this is possible, but it is not 

significant for two reasons. First, professional developers are not 

dishonest. If management clearly asks them to do something, and 

makes it a part of their jobs, of course they will do it. Secondly, if they 

do not, there is a clear record of the violation, easily spotted by 

management and stored for posterity. In the unlikely event that a 

developer flouts the procedures, they can be dismissed with a clear 

conscience and an excellent "paper trail" of their repeated violations. 

Management does indeed have control. 

Of course, management cannot merely make up the rule and then 

never check up on it. Check-ins must be audited for compliance. Once 

developers learn that management actually cares that their check-ins are 

associated with appropriate defect and feature records, they will 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



236 Defect Tracking  

Copyright © 2012 by David A. Penny 

comply. If, on the other hand, by experience they learn that 

management does not care (i.e., they do not perform the requested 

actions and nobody ever notices), the developers will question why they 

bother going to the extra work, which detracts from their productivity 

and hence makes them look bad in those things management does care 

about, and they will turn the process into a joke and rightly so. 

Management should never request anything of developers that they do 

not, in fact, care about. Management demonstrates they care about a 

practice by noticing when it is not done. 

One of the most valuable reports that a tie in between the defect/feature 

tracking system and source code control is a "work done" report: 

 

Date Range: Last 24 hours 

 

 Matt Arthur Mark Derek 

D100203 23    

F100350  108 34  

D155401   56  

D100343    10 

D100453 1    

F100782   508  

Totals: 24 108 598 10 

A typical work done report is accessible via the corporate Intranet using 

a Web browser. It allows the manager to choose a date range, and then 

shows a matrix of lines of code added and modified by developer and 

by feature or defect. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 237 

Copyright © 2012 by David A. Penny 

The system ID's of the defects and features are listed down the left 

of the matrix. Each is a web link that can be followed for more detail on 

the defect or feature. 

The coders who made check-in into the depot over the time period 

indicated are listed across the top of the matrix (these reports can be 

hierarchical for larger organizations). 

In the center of the matrix are the number of lines of code added and 

modified (deletions are not a good measure of productivity, though very 

useful to track in a separate report as deletions usually have a beneficial 

effect on the architecture). These numbers are web links as well. When 

followed, they will give details of the check-ins, such as what files were 

affected. Following links on the affected files, one should be able to see 

the source code annotated with the changed lines (a number of diff 

tools are available that can compare two revisions of a file from source 

control and display the results graphically). 

With such a report, it becomes possible to audit all the changes 

going into the depot. This is useful for managers, charged with ensuring 

that the most important company priorities are worked on first; and 

chief architects, charged with ensuring that no changes going into the 

depot violate the architectural integrity of the system. 

11.7. Defect Attribution 

One of the most powerful refinements to a defect tracking system is the 

attribution of defects to root causes. From a system point of view, this 

is quite easy. From an organizational point of view, it is very difficult. 

The tie-in of check-ins to defect records enables one to track where 

the corrections for a defect are placed in the source code. Thus one can 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



238 Defect Tracking  

Copyright © 2012 by David A. Penny 

analyze which source files or modules are most defect-prone, which can 

guide architectural clean-up efforts. 

One can also attribute defects to the development phase in which it 

was first introduced. At the time the cause of the defect is identified, the 

developer is in a position to identify if the root cause was a 

specification issue, a design issue, or a coding issue. By gathering this 

information, management can determine if process enhancement efforts 

are better spent adding a review step to specifications, to design, or to 

coding. 

Finally, and most organizationally challenging, if the defect is due to 

a coding error the coder who fixes it can attribute the defect to the 

coder who first introduced it. This information is usually easily 

discoverable once the lines of code causing the defect are discovered. 

The source code control system keeps a complete history of changes, 

and thus the moment at which the breaking change was introduced can 

be discovered and attributed. While this information is very useful in 

helping coders to benchmark themselves against their colleagues, it can 

also be used to reward staff and/or fire poor performers, and hence the 

organizational challenges. In an organization with good management 

and mature, confident, and professional developers, this can work 

beneficially. 

11.8. Relationship to Customer Issue Tracking 

A customer issue tracking system is similar to a defect tracking system. 

Sometimes the same generic workflow management system can be used 

for both purposes, although not always, depending upon the 

requirements of the issue tracking system. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 239 

Copyright © 2012 by David A. Penny 

Issue tracking software is used by the customer support help desk 

function. Whenever a customer contacts the company with an issue, the 

issue is entered into the system and assigned a ticket number. These 

issues can be prioritized according to impact to the customer. 

Some of these issues are due to defects in the software, however 

some can be resolved by shipping to the customer a newer patched 

version of the software, and hence there is no need for a corresponding 

defect record. In other cases, the issue may be the customer's misuse of 

the software, the configuration of the customer's computer, or a host of 

other issues that are not related to current defects in the software. 

If the issue the customer is facing is a current defect in the software, 

it may have been previously reported, but no patch has yet been 

produced. In this case, the customer issue should be linked to the 

existing defect record. When a fix to the defect is available in a patch, 

the link allows customer service to follow up with the customers to 

resolve the issue from the customer's point of view. 

The quantity of such links to a defect record, and the importance to 

which the customer ascribes the issue, are factors that will affect the 

software company's internal prioritization of the defect. Thus good 

systems for tracking the links between issues and defects are important. 

If a customer reports an issue that does turn out to be a previously 

unknown defect, a new defect record can then be created. The fact that 

a defect escaped into the field should elevate the importance of the 

defect when attributing to root causes. 

If an organization has no customer issue tracking in place, a second 

instance or a customization of the defect tracking system will probably 

do well. If the defect tracking system is implemented on a more 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



240 Defect Tracking  

Copyright © 2012 by David A. Penny 

general-purpose workflow management platform, this approach can be 

carried quite far. 

However, if the customer issue tracking system needs to incorporate 

additional requirements then using the same underlying system as that 

used for defect tracking may not be wise. Such requirements may 

include a searchable issue knowledge base; customized reporting; web 

presence for customers (to look up solutions on their own, to submit 

issues, and to track them); the ability to identify callers who have 

purchased support contracts; telephony integration (as soon as a 

customer calls into the help desk, an automated system will create a 

new ticket and fill in the customer information); or integration with a 

more general-purpose CRM (customer relationship management) 

system to integrate the help desk better into the sales cycle (for treating 

prospects demo'ing the software differently, or for up selling customers 

on new solutions). 

11.9. Shipping Software With Known Defects 

Ideally, a software vendor would not wish to ship software with any 

defects at all. However, for most types of software applications one 

cannot build a sustainable business on shipping 0-defect software. The 

effort required to do this would cause the cost of the software to exceed 

the budgets of potential buyers. Under a 0-defect regime, the software 

industry as we know it today could not exist. Computers and software 

would exist for the use of only the most elite consumers. 

Given that professionals will ship software with defects, the next 

question to be raised is how many defects at the various priorities are 

acceptable. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 241 

Copyright © 2012 by David A. Penny 

A software company cannot know how many unknown, latent 

defects exist in the software it ships. Various schemes, such as defect 

seeding, have been proposed to get a handle on this. Defect seeding 

means artificially injecting defects into the software and then seeing 

how many are discovered through testing. The ratio of detected seeded 

defects to total seeded defects is then assumed to be the same ratio as 

the total number of known defects to the total known and as yet 

undiscovered defects. The practical difficulties of this approach comes 

in injecting "typical" defects into the software, as opposed to easy to 

find or very hard to find defects, which would skew the results. 

In practice, such schemes are not required. given a consistent testing 

effort, we generally can accept that the number of known defects is 

proportionate to the total number of defects. This allows us to use 

known defects as a proxy for total defects. 

If we ship software with 350 known defects, and the customer 

reaction is very negative, we know that it is too many. If, on the other 

hand, we ship software with 50 known defects (of commensurate 

priority) and the reaction from customers is "this is the best release ever 

- very problem free", then we know we are doing something right and 

might be encouraged to use 50 known defects as the shipping threshold 

for future releases. 

Thus arriving at the appropriate thresholds is a matter of measuring 

customer satisfaction in their perception of the stability of the software, 

and relating it to the number of known defects at various priority levels 

that we ship. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



242 Defect Tracking  

Copyright © 2012 by David A. Penny 

If we significantly enhance the testing effort, we can assume that the 

ratio of known to total defects increases, and we can therefore allow the 

shipping thresholds to rise while expecting the same level of customer 

satisfaction. 

For example, assume the ratio is ½. That is, for every defect we 

know about, there is another lurking in the software. If we ship with 50 

defects, we therefore assume there are a total of 100 defects actually 

shipped. If we improve testing, and raise the ratio to ¾, then if we 

continue to ship with 50 defects, we are actually shipping only a total of 

67 defects. Thus we can allow the threshold to rise to 75 known defects 

without impacting customer satisfaction. This is good to know, because 

if we increase a focus on testing without commensurately increasing the 

number of coders available to fix the defects, we will be hard pressed to 

meet the old thresholds under unchanged coding time to testing time 

ratios. 

On the other hand, if we increase the coding effort devoted to defect 

correction (or decrease the testing effort), we can expect the ratio to 

increase, and thus we must compensate by lowering the shipping 

thresholds to experience the same level of customer satisfaction. 

If we increase testing and coding effort in proportion to one another, 

we should keep the same historic shipping thresholds, but expect to 

reach them faster. 

11.10. Release Notes 

When shipping a new point or patch release it is useful to include 

release notes indicating what defects have been corrected in the 

shipping build, and what defects remain. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 243 

Copyright © 2012 by David A. Penny 

Well-integrated source code control and defect tracking systems can 

make this easier. Every check-in to the code will carry a defect (or 

feature) record. An automated tool can be built that examines all check-

ins between the last point release and the current one and automatically 

generates a list of all the defects corrected. 

Many of the defect records will not be "customer-readable". For 

example, the defect might be described as "program crashes when I 

open this file". That is a perfectly adequate description for a coder to 

correct the defect, however, it is not customer-readable. 

In order to make it customer-readable, the coder who fixes the 

defect must trace it to its root causes, and then anticipate the likely 

scenarios that would lead to exercising this defect. For example, the 

"crashes" defect might be re-described, after some analysis, as 

"program will crash when opening a file previously saved by release 

3.8 of the software if it contains custom fields whose name begin with a 

non-letter". 

It will then be left to product management or the QA/Build group to 

generate customer-readable release notes from the defect lists and these 

additional analyses. 

The effort in performing these analyses is a considerable additional 

burden on the coder. However, one may also argue that the additional 

insight into the defect demanded by this practice improves the quality 

of the defect fix. 

Once these release notes are in place they can be placed on the Web, 

and customers using the software can see if a particular point release 

addresses an issue they are currently experiencing. Customer service 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



244 Defect Tracking  

Copyright © 2012 by David A. Penny 

can use the information as well when customers call in. This practice is 

beneficial to end users of the software. 

A further practice that is beneficial is listing on the Web site the set of 

all defects that are known but whose fixes have not yet been released in 

a point or patch release. 

If a customer knows they are dealing with a known defect in the 

code, this can save them much time and aggravation, and they can work 

around the defect for the time being and await a fix. 

Providing this information in a manner that is customer-readable is 

even more difficult than providing the fixed defect information, as in 

many cases the root cause may not yet have been determined. 

11.11. Automated Patching Facilities 

Increasingly popular, automated patching facilities work to keep the 

customer up-to-date with the most stable current release of the software 

at all times. 

A facility is built into the software that either on demand or on 

startup (depending upon user configuration choices), the software will 

pass the current release number they are running to the company's Web 

server and query if there are any updates available. 

This will occur silently, behind the scenes, if a Web connection is 

available. If the software is up-to-date, or if no "critical updates" are 

available, the software will silently complete its initializations. If the 

facility discovers a critical patch, it will ask the user if she wishes to 

have the software automatically download and install the patch. Also, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 245 

Copyright © 2012 by David A. Penny 

there may be non-critical patches that the user can configure the 

software to search for as well. 

Generally, it is recommended that such a facility be run immediately 

after installation of the software as the last step of the install process. In 

this way, software companies are not saddled with giving the users the 

experience that they initially burned onto the CD, but rather, as time 

progresses, give them a better and better experience "out of the box". 

As long as the facility exists, the software company can extend its 

use to also display messages they deem important to the end user, or to 

perform targeted marketing of related products and services, for 

example, based on the customer's geographic location and products 

purchased. However, privacy issues must be seriously considered. 

When updating software in this fashion, it is desirable to keep the 

download sizes small, and hence the best approach is to download only 

the  binary differences in changed files. However, this requires a known 

initial release and final release. There may be very many point releases 

in the field when the next recommended point is released. The server-

side software should therefore compute the "least-cost" (in terms of 

download size) sequence of patches to get them from where they are at 

to where they need to go. 

This requires a server-side database of all patches available, their 

download sizes, and the various "from" releases that they may be 

applied against to get to the "to" release. 

The software company should designate certain defect corrections as 

"critical" and others as "optional". Critical defect corrections are those 

recommended for all users to install. Optional are those that are 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



246 Defect Tracking  

Copyright © 2012 by David A. Penny 

expected to only affect relatively few users and/or effect them in only 

minor ways. 

When automatically determining whether a customer should move 

from the release they are currently at to a newer one, the presence of a 

critical defect correction in the patch sequence should be an important 

factor. If present, the upgrade should be hi-lighted to the customer as 

"critical" or "important". If not present, the upgrade can be designated 

as "optional". The auto-update software may be configurable differently 

by the end-user to deal with these two situations. For example, the 

customer might set it to "inform me always of critical updates" and 

"show me only once every 2 weeks any optional updates". 

Implementing such an automated patch system requires great discipline 

in the build environment, and great confidence in the automated 

regression testing facility. 

When patching release R2.1.a to R2.3 using binary patches the 

software organization must be extremely sure of the exact versions of 

all files on the customer's computer at level R2.1.a. This requires an 

excellent source control and build environment. For greater certainty, a 

wrapper around the binary patch applicator should check and refuse to 

run if the "from" file is not at the right version number and/or if a 

checksum does not match. 

The regression testing environment must be top-notch as well. If the 

software is pro-actively recommending to the end-user that it update 

itself, it is very obnoxious if more defects are introduced than are fixed. 

At least if the user had to download and apply the patch manually they 

can at least partially blame themselves! 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Defect Tracking 247 

Copyright © 2012 by David A. Penny 

11.12. Summary 

In this chapter we made a close examination of the process of tracking 

defects. We looked at why this is important, what information should 

be kept with defect records, and a state-transition process model for 

dealing with defects. We then discussed management controls and 

metrics that may be used to control the defect correction process and 

track whether a release is good to go for its GA date after dcut. 

We saw how relating defect records to source code control check-ins 

helps to provide great control over software development, and 

incidentally, helps in generating useful release notes. 

We discussed the relationship between a development defect 

tracking system and a customer service issue tracking system. While all 

defects are potentially issues, not all issues are new defects. 

We discussed the issues involved in shipping software with known 

defects and discussed how appropriate shipping thresholds may be 

arrived at and how they are affected by resource changes. 

Finally, we analyzed the benefits of automated patching facilities, 

how they may be used to advantage, and potential pitfalls. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

12. Feature Tracking 

In the previous chapter we discussed defect tracking and the workflow 

management systems that supported finding and fixing defects. 

In this chapter, we turn the focus to feature tracking. That is, 

tracking new features from their inception, to their inclusion in an agile 

horizon plan, through their implementation, and finally into testing and 

out to the customer. 

The process underlying feature tracking is the agile horizon 

planning process that was first introduced in Chapter 3, "Agile Horizon 

Planning Overview" on page 47. This chapter discusses the systems and 

the practical considerations required to implement and control that 

process. 

12.1. Feature Tracking System 

The fundamental requirement to control the next release lifecycle is a 

system capable of tracking individual features through their lifecycles. 

The requirements for such a system are similar to those for the defect 

tracking system, and hence the two are often the same. The chief 

requirements of both are 

 storing data about features, 

 being state driven, 

 having feature owners vary through time, 

 linking to source code control check-ins, 

 having a full audit trail of all changes. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



250 Feature Tracking  

Copyright © 2012 by David A. Penny 

Ideally, the defect tracking system is a more general-purpose workflow 

management system in which a second, feature, workflow may be 

added beside the defect workflow. 

The main additional requirement for a feature tracking system is the 

ability to associate version controlled documents with feature records 

(for example, a feature specification document). Barring this facility 

built-in, documents can be stored in the depot and the path to them 

referenced in a one of the feature record's text fields. 

12.2. Feature Information 

The following information should be associated with each feature 

record. 

Description 

The feature details what product it is for, and what broad area of 

functionality it enhances. This can be used later in determining the 

amount of effort management wishes to expend on various categories 

of features. A short summary phrase is provided that acts as a mental 

cue for the feature in question. This allows people to refer to the feature 

in a consistent manner. This is augmented by a description, which 

consists of a paragraph or two of information describing the feature. 

The description should include what customers (if any) are requesting 

the feature, and why it is important. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 251 

Copyright © 2012 by David A. Penny 

Priority 

All features (or feature requests, the two terms are used 

interchangeably here) are prioritized using some scheme, for example 1 

to 5, with 1 being the highest priority, most desirable features. 

Generally marketing product management will assign priorities to 

features. 

If the feature is an architectural feature, without direct end-user 

impact, it is marked as such and its priorities are not comparable to the 

other features' priorities. 

Target Release 

A field is available to indicate the target release that this feature is 

in-plan for. If undecided, this field is left blank. There is also an entry 

meaning "definitely not in the next release, but should be considered for 

future releases". 

Effort 

All features include an estimate in effective coder days for the 

amount of effort remaining to finish the feature. 

Process Information 

Fields are included that relate to aspects of the process that are done 

or not yet done. For example, if a meeting is required to discuss each 

feature, a checkmark is included for this. If a feature requires a written 

specification, it is indicated here, and so on. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



252 Feature Tracking  

Copyright © 2012 by David A. Penny 

Personnel 

The feature lists the person who requested the feature, the coder who 

will work on this feature, and the tester who is assigned to function test 

the feature. 

12.3. Feature States 

A typical state transition diagram for features is given below. The 

labels on the arrows indicate who is permitted to effect the state 

transition. PM stands for product management, PMC for product 

management committee, QA for the quality assurance group, and DEV 

for the coding group. 

 

Note that this is an example only, and in fact this example illustrates 

some more advanced process steps (in particular, everything between 

New and Sized) that might need to be put in place under certain 

circumstances in certain organizations. 

New 

Valid 

Valid 

Ready 

Valid 

Verified 

In-Plan 

WIP Code 

Complete 

Closed 

Sized 

PM 

QA 

PM 
DEV 

PMC 

DEV 

DEV 

QA 

PM 

Anybody 

QA 

QA 

DEV 

(pre-dcut) 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 253 

Copyright © 2012 by David A. Penny 

In general, an organization should start with the simplest possible 

workflow, and only add additional complexity to remedy a problem that 

occurs persistently. For the sake of illustration only, I have included 

additional complexity which was required to solve a problem that I 

once encountered. I included it here in the hopes that this can give 

readers some guidance on how to do similar sorts of refinements to deal 

with problems that may afflict them. 

New 

Anybody at all in the organization is permitted to submit a new 

feature request. When initially submitted, they start in the New state. It 

is the responsibility of the product manager to move it along from here. 

Valid 

The product manager may choose to close a new feature if she feels 

the feature request is ill-informed in any way. She will not do so if she 

disagrees with feature, rather only if the feature is not a valid request as 

would be the case if the requested functionality is already present, if the 

requested functionality makes no sense whatsoever, and so on. If the 

PM chooses not to close the feature, than she will transition it to the 

Valid state. This means that the feature is a valid and reasonable feature 

request that can be considered for inclusion in a subsequent release of 

the software. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



254 Feature Tracking  

Copyright © 2012 by David A. Penny 

Valid Ready 

It is then the PM's responsibility to flesh out the feature with 

additional detail sufficient to allow the development team to properly 

size the feature. At this stage, the feature should be not open-ended in 

any way. The PM puts the feature into this state when she believes that 

she has done this. 

Valid Verified 

The quality assurance team should be involved very early on in the 

process. When a feature is in the Valid Ready state, it is the QA team's 

job to validate that the feature is in fact well-described and not open-

ended. If so, QA will transition the feature to this state. Otherwise, they 

will send the feature back to the Valid state. 

Sized 

Once a feature is in the Valid Verified state, development can 

consider the feature and attach a sizing in effective coder days to it. If 

they feel they have insufficient information to do so, they will move the 

feature back to the Valid state. This, however, will be rare, given the 

preceding QA review of the feature's validity for sizing. 

In-Plan 

Once a feature is sized, it becomes a candidate for inclusion into a 

future scheduled release of a product. The process captured by the first 

part of this state diagram is intended to culminate in an agile horizon 

plan. If a feature makes it in-plan for the next release, it is moved into 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 255 

Copyright © 2012 by David A. Penny 

this state. Otherwise, it languishes in the Sized state awaiting 

consideration for a future release. 

The product manager, as chair of the product management 

committee (the PMC) will physically transition the feature. However, 

the PMC, comprising experts in the domain and on the product, will 

collectively form the agile horizon plan. It is the job of the PM to move 

this process along. 

WIP 

At some point in the feature lifecyle a development manager will 

assign the feature to an appropriate coder. Generally this is done when 

it is initially being sized with a particular coder in mind. The 

assignment may change later on, in which case the sizing may need to 

be reconsidered in light of the capabilities of the new coder. 

When the assigned coder is ready to begin work on the feature, he 

will move it to the Work-In-Progress state. This is done so that 

management has visibility into who has started which features. Prior to 

a feature being WIP, management has the option to move the feature to 

another developer (while reconsider sizing) to better balance the load, 

or to drop the feature in order to balance the agile horizon plan. 

Code Complete 

When a developer believes that there is no code that she knows of 

that remains to be written for the feature to be finished, she will move 

the feature to Code Complete. Once all features in an agile horizon plan 

have achieved this state, the release has achieved dcut. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



256 Feature Tracking  

Copyright © 2012 by David A. Penny 

Even prior to moving a feature to this state, the QA manager will 

have assigned a component tester. The component tester will work with 

the coder to test various cuts of this feature prior to it being set Code 

Complete. 

If after the feature is moved to this state, the tester discovers more 

issues, and if the release is still before dcut, the tester will transition the 

feature back to WIP with informal instructions to the coder on what to 

fix. After dcut, the feature remains in Code Complete, and full-fledged 

defect records are opened against the feature to record any problems. 

This rule is made to not skew the defect tracking data when coders and 

testers have different styles for interacting pre-dcut. 

Closed 

A feature reaches the Closed state either by being abandoned from 

the New state, or by being fully integration tested post-dcut. 

12.4. Specifications & Designs 

As the features flow through the lifecycle discussed in the previous 

section, more detail is added. At a certain point, the group must decide 

if a feature is worthy of a written specification and/or a written design 

document. 

As a base minimum, each in-plan feature should be discussed. In the 

feature tracking system, a checkbox can be added to indicate whether a 

feature meeting has been held for a feature, and a text field added to 

record any notes taken from the meeting. 

These meetings may be scheduled by the QA group who will control 

the agenda and move the meeting along. Each meeting will discuss 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 257 

Copyright © 2012 by David A. Penny 

several features, and will consist of a group of people knowledgeable 

on all of the features under consideration. Typically the chief architect, 

the product manager, the QA manager, and the development manager 

will attend all such meetings. Others will be invited if they contribute 

something to the features under discussion. 

After discussing the feature for a time, the group may feel it is an 

easy to understand feature with a straightforward software design. If 

this is the case, they will switch yes/no fields on the feature record 

indicating that no written specification or written design is required. 

The few notes they add to the feature record will fill in any holes. 

On the other hand, after a few minutes of discussion the group may 

feel that either a written-out feature specification is required, or a 

written-out software design document is required. In this case, they will 

so indicate using the yes/no fields on the feature record. 

A feature specification document will detail all externally visible 

behavior of the new feature. It will give at least rough designs for all 

menu items and dialog boxes, explain how all the options work, and 

give any and all implications to other parts of the code, such as how the 

new feature will interact with reports, old data files, databases, and so 

on. 

A good specification will often start with a conceptual Object-

Oriented Analysis given in UML that names the important concepts in 

the feature (and/or reverse engineers existing concepts from the current 

release of the software). This UML then forms the basis for the 

terminology used throughout the document, and helps inform the GUI 

design and, later, the software design. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



258 Feature Tracking  

Copyright © 2012 by David A. Penny 

Generally a specific individual will be charged with writing the 

specification document. This person must be familiar with the domain, 

familiar with the existing software, write well, and have an 

understanding of development concerns. 

Throughout the process of creating the document, the specification 

writer will have periodic discussions with product managers, 

development managers, coders, and the chief architect to attempt to 

achieve consensus on the general approach to the feature. Occasionally, 

meetings may be called to resolve logjam issues. 

A feature specification is finished when the approach reflects the 

group's consensus on how the feature should be surfaced in the 

software; when the specification is complete in that there is no aspect of 

the software operation that is undefined; and when it is consistent, 

meaning that it is not self-contradictory or contradicts the requirements 

of other features. 

Completeness and consistency must be judged not against the 

existing software, but against the agglomeration of all the new features 

to appear in the next release. This latter point can often trip up a group 

in that two seemingly unrelated features may be specified in a way that 

is complete and consistent with respect to the existing software, but that 

contradict one another. The more subtle of these faults will only be 

uncovered during integration testing once both features are code 

complete. 

A software design is a document that explains how a feature will be 

implemented in the code. This document will typically be created by 

the chief architect, or by a developer under close supervision by him. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 259 

Copyright © 2012 by David A. Penny 

Often the reason a software design is required is because it is not 

immediately apparent how to implement the feature in order to achieve 

adequate performance. Therefore, the designer will typically do some 

experimentation on a private codeline before deciding on the ultimate 

approach and documenting it for whomever is going to implement it. 

Another reason would be that the feature is quite complex, and/or 

will require more than one coder to work on it. In this case, a class 

design in UML and a database design in an ER (Entity-Relationships) 

notation may be required before the coder(s) can effectively begin on 

their pieces. This may also be the case if the chief architect is 

delegating the design to a less experienced developer, and would like to 

review the planned design prior to it being coded. 

Whenever a specification or a design is deemed to be required, the fact 

should be recorded in the feature record. Once the appropriate 

document is completed, it should be attached to the feature record and 

other fields switched to indicate that the documents have been 

completed. 

Note that it is almost always overkill to require this level of 

documentation for every new feature in a release. So long as a 

responsible group of knowledgeable individuals explicitly decides that 

these documents are not required, that is fine as well. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



260 Feature Tracking  

Copyright © 2012 by David A. Penny 

12.5. Reviews 

Once the basics are in place, in the further quest for improved quality 

and productivity, reviews are a fertile source of process maturity. True 

QA starts at testing, and continues by pushing earlier and earlier into 

the development cycle.  

The earlier a defect is found, the less expensive it is to correct. If a 

half-baked feature can be killed early on in the proposal stage, that is 

best. If a poor specification would lead to a poor-quality and 

inconsistent feature that users will dislike, then it is good finding that 

out sooner rather than later. If a poor design would result in a feature 

whose performance is unacceptable, again, better to know earlier. If 

code is badly written and would result in many defects, then better to 

review the code directly to find that out. If a defect in code can be 

detected the day after it is introduced, then that is much less expensive 

than if it is only found much later. If a defect is discovered by a 

customer in production, that is worst of all. 

In this section, we discuss various reviews that may take place at 

earlier stages in the feature lifecycle. 

12.5.1. Feature Review 

In the previous section that presented a sample feature state 

diagram, we touched on a very early QA step designed to ensure that 

feature proposal would not get past an early stage unless it was well-

defined. Inserting this QA step helps ensure that nobody's time is 

wasted in sizing, agile horizon planning, or subsequent implementation 

on a poorly thought out feature request. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 261 

Copyright © 2012 by David A. Penny 

Such a step is especially important when an agile horizon planning 

methodology is first being introduced into an organization. Product 

managers not familiar with the approach tend to submit features for 

consideration that do not correspond to implementable concepts. An 

example might be "add more wizards". Users may well be requesting 

"more wizards", but for the feature to be actionable, the company 

requires more specific features, such as "add a csv file import wizard". 

This review step may be implemented by adding a state to the 

feature workflow, being clear on what it takes to pass this review step, 

and assigning an individual or group to be in charge of carrying out 

these reviews. 

12.5.2. Specification Review 

The process described previously calls for a meeting regarding each 

feature to determine if a written specification is required. If one is 

required, then the process could be enhanced further by adding a 

specification review. 

A specification review would consist of a group of people who 

would take the time to read the specification and find incompleteness 

and inconsistency in it. A specification review should not have as a goal 

second-guessing how the feature is to be surfaced in the software. Well 

prior to the stage of a reviewable specification, consensus should have 

been arrived at on this point. Dissenters must now hold their tongues 

and accept the group's decision. 

QA should schedule a specification review meeting and chair it. 

During the meeting, the chair should ask the reviewers to prioritize 

their comments, and then proceed round-robin around the room. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



262 Feature Tracking  

Copyright © 2012 by David A. Penny 

Comments should confine themselves to incompleteness and 

inconsistency, not to suggestions on how to improve the feature. If such 

suggestions arise, the chair should ask the person to connect one-on-one 

with the specification writer and lobby for their change to be included. 

When a potential problem is uncovered, the group should discuss 

whether it is a valid problem or not. If the consensus is that it is, the 

problem should be noted and the review should move on. By no means 

should suggestions on how to resolve the problem be considered at this 

point. Keeping the review focused on uncovering problems is essential 

if the meeting is not to deteriorate into a three-hour exercise with little 

to show for it. 

The chair will then record all the review meeting comments and 

attach it to the feature record. 

The original specification writer should then be trusted to review all 

the issues and correct the document. It is usually counter-productive to 

hold yet another review meeting after this, or to "check-up" on the fact 

that the specification writer did indeed solve the problems. We would 

want to encourage the specification writer to want to get the feedback 

from the meetings in order to produce a better document. Additional 

review steps tend to diminish this desire. 

12.5.3. Design Review 

If a software design is deemed to be required, and if it is not the 

chief architect who writes the document, then the chief architect should 

review the document and sign-off on its completion. 

It is also possible to have a broader review meeting, along the lines 

of the specification review meeting described above. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 263 

Copyright © 2012 by David A. Penny 

The fact that a design document is completed, and the fact that it is 

signed off, should both be stored in true/false data fields associated 

with the feature record. 

12.5.4. Code Review 

After source code is written, a code review would involve a number 

of individuals stepping through the code in a meeting trying to find 

problems with it. Again the fact that a code review meeting was held, 

and any problems so uncovered could be attached to the feature record. 

An alternative to a full code review would be a "buddy system" 

whereby a second coder would step through the code (at their desk, 

possibly with the original coder beside them, ideally with the help of a 

debugger) and search for potential problems. Again, the feature 

tracking system would be used to record the fact that this activity took 

place. 

Organizations wishing to institute code reviews should start with the 

simpler version, which is easier to manage and easier for everybody to 

get used to, and later see if the more elaborate code review improves 

the defect finding rate. 

12.5.5. Feature Demo 

A very effective review step is a feature demo meeting. These 

meetings will be scheduled by QA after a number of features are 

approaching or have passed Code Complete. 

In this meeting, a number of interested parties including the coders, 

managers, product managers, testers, and documentation are brought 

together and the coder will demonstrate the new feature on a 

development build of the software. It is important that this be a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



264 Feature Tracking  

Copyright © 2012 by David A. Penny 

development build and not a private build, as management will want 

assurance that the feature may be built and tested as part of the regular 

development build process. 

The main purpose of the meeting is to provide a concrete point at 

which the readiness of a feature may be assessed. Scheduling this 

meeting also tends to bring focus to the coders in polishing off a feature 

for the scheduled date. A secondary purpose is to get suggestions to the 

coder to fine-tune the feature. 

A scribe should be appointed for the meeting who will write down 

people's suggestions for improvements. Afterwards, the coder and their 

manager will sit down to decide which of the improvements to 

incorporate. The scribe will attach their notes to the feature record and 

mark a true/false field indicating that the milestone was passed. If the 

feature is a disaster, crashing all over the place, that feature should be 

reviewed again at a later meeting. 

12.6. Effort Tracking 

An important aspect of the process is to track the actual effort in 

dedicated hours spent on the coding activities. 

Of most importance is tracking the number of dedicated hours spent 

by each coder on each feature. This is possible to do using a numeric 

field in the feature record. Each time some additional hours are spent on 

a feature, the assigned coder will increment the field. 

It is also necessary to collect total time spent fixing defects by each 

coder. Unless some very sophisticated defect attribution analysis is 

planned, it is sufficient to collect this information across all defects, and 

not ask coders to separate out time spent on each individual defect. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 265 

Copyright © 2012 by David A. Penny 

In addition to this, we must have some means of recording days off 

by a developer (including company-wide holidays). 

Rather than shoe-horning this into the feature/defect tracking system, a 

better solution is to build a custom-purpose fine-grained time tracking 

utility that keeps its records in a centralized relational database. 

It is important not to get carried away and attempt to account for 

every single hour of the day of each coder. The coders will feel overly-

controlled and "watched". Therefore the system should not force coders 

to clock-in and clock-out, not force them to record break time, and not 

force them to account for every hour during the workday. This is 

onerous on the coders, conveys a feeling of mistrust from management, 

and will negatively impact job satisfaction (and thus productivity as 

well). 

Rather the system should insist on collecting the following 

information that is important for managing the agile horizon planning 

process: 

 Dedicated hours spent working on each assigned feature each 

day. 

 Dedicated total hours spent working on all assigned defects each 

day. 

 Days or parts of days taken as vacation. 

As well, not related to collecting effort, but coders must have a means 

of updating the estimate of the number of effective coder days required 

to finish each feature they are working on. This can be a numeric field 

in the feature tracking system, however as it is desirable to analyze the 

changes in this quantity side-by-side with the effort data, it is 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



266 Feature Tracking  

Copyright © 2012 by David A. Penny 

reasonable to have them both collected by the same system and stored 

in the same place. 

Each coder should log into the system at the start of each day. They 

should be able to choose from a menu of activities for that day to log 

time against. Timers should be available whose values can later be 

edited before submitting them (in case a coder starts a timer, then 

wanders off for an hour forgetting to pause the timer). 

Activities should include all features assigned to that coder in the 

WIP state. It should also have a generic defects entry. 

Whenever time is recorded against a WIP feature, the system should 

prompt the coder to re-estimate the time remaining to finish the feature. 

As a default, the system might provide the coder with their last estimate 

with the new time spent subtracted from it, although this is dangerous 

as it encourages the coder to accept that suggested value rather than re-

thinking for themselves an estimated time remaining based on new 

information they may have gleaned while working on the feature. 

At the end of each day, the coder will log out of the system. At this 

time it should present the coder with the time recorded that day, 

allowing them to edit it before submitting it. 

The system should also provide a facility that enables coders to 

estimate at what points in the future they plan on taking vacation, and 

to update the system with their vacation actually taken. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 267 

Copyright © 2012 by David A. Penny 

12.7. Management Control 

With feature tracking and effort tracking in place, as described in the 

preceding sections, management is in an excellent position to bring 

hard quantitative data to bear on the release cycle. 

12.7.1. Coder Work Factors and Vacation Estimates 

Key predictive quantities in the agile horizon plan relating to total 

coder capacity available to the end of the coding phase are the work 

factor for each coder and their estimated vacation prior to dcut. 

The effort tracking system described previously gathers this data. 

Work factor to-date by coder can be computed by summing the total 

feature effort from fork to the current date, and dividing by the number 

of workdays less vacation taken. This gives a historical measure of 

what proportion of each day each coder has been taking to code new 

features into the next release. This information can then be used in 

putting estimated work factors into the agile horizon plan going 

forwards. 

Sometimes, measuring this information will show certain coders with 

extremely low work factors. the first thing to look into is whether the 

coder has been accurately recording time spent against each feature. If 

not, then the coder should be re-encouraged to do so. The fact that 

management has noticed the lapse will usually be sufficient 

encouragement. 

If this is not it, then typically the coder has been spending all their 

time on other sanctioned activities. If the agile horizon plan is in 

jeopardy in any way, freeing up the coder from these other duties will 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



268 Feature Tracking  

Copyright © 2012 by David A. Penny 

be a fertile source of extra capacity. Usually, this will require a dialog 

with more senior management to defer whatever other project has been 

consuming their time. If this is not possible, then senior management 

must address the issue by allowing a smaller estimated work factor in 

the agile horizon plan for that coder, and adjust the plan features or 

dates accordingly to re-establish the plan's capacity constraint. 

Occasionally, there will be no explanation whatsoever for the low 

work factor. This may or may not be cause for alarm. Some coders 

work in spurts, and may have very low work factors while the pressure 

is off, and then sprint to extremely high work factors as deadlines 

approach. 

One of the most common causes for low work factors is the time spent 

working on defects. It is generally advisable to have a rule of some sort 

stating that defects above a certain priority have precedence over new 

feature work. If there is a flood of such defects, this can eat into the 

work factors considerably. 

Measuring the total time spent on defects is what allows 

management to see if this is the case. If high defect rates from previous 

releases are causing the problem, management can react by lowering 

estimated work factors and re-balancing the plan, or by raising the 

priority level of must-fix defects, or by explicitly constraining the 

amount of time each day coders spend on defects. 

Graphing the group's cumulative work factor since the start of coding 

can yield fascinating insight into the group's behavior as it relates to 

next release development. Management should keep a close watch on 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 269 

Copyright © 2012 by David A. Penny 

this metric, as it is arguably the most important one relating to the 

future health of a commercial software vendor. 

12.7.2. Actual Versus Estimated Feature Time 

Another important purpose for the collected effort data is to 

compare estimates versus actuals for feature effort. 

After a number of features have been completed, a statistical view of 

estimation accuracy can be taken. Usually, certain classes of features 

(e.g., small simple ones) might have better estimation accuracy than 

other classes. Based on this data, management may revisit not yet 

completed features belonging to the inaccurate classes and adjust the 

estimates to compensate for the systemic errors. 

This should be done in concert with all those involved in arriving at 

the original estimates, so that they can learn from the experience.  

The data will also reveal those coders whose features always come in to 

estimate versus those whose features are always under-estimated. 

Coders who come in right at their estimates are usually finishing 

earlier and then polishing either the feature's functionality or its 

underlying code. In this case, management must look at the nature of 

the polishing activity and decide if it is appropriate or overkill. 

Coders who consistently under-estimate their features are usually 

doing a poor job at anticipating all the detailed work that needs to be 

done to complete a feature. 

Sometimes the reason for this is they feel in their hearts that if they 

actually did this exercise, the feature estimate would come in much 

higher than that in the agile horizon plan. This in turn would cause 

themselves, their colleagues, and their managers grief. Management can 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



270 Feature Tracking  

Copyright © 2012 by David A. Penny 

help allay this feeling by not acting out when estimates are increased 

mid-plan, but by dealing maturely and calmly with the situation. At the 

same time, coders who consistently under-estimate should be asked to 

provide written estimates of the work remaining, broken out by work 

item, and then have this estimate reviewed by others. 

12.7.3. Progress to Process 

With the steps in the process marked off on a feature-by-feature 

basis in the feature tracking system, management reports giving 

progress to process are possible. 

An initial report would show the number of features in the various 

pipeline stages as a bar chart. Clicking on the bars would link to a list 

of all the features.  The first bar would display the quantity of New 

features, the second the Valid ones, and so on. 

 

This report would be used to manage the activity leading up to an 

initial agile horizon planning session. For example, the report above 

shows that product management is doing a good job moving features 

along to the Valid Ready state. However, there appears to be a 

bottleneck in the QA department moving features to the Valid Verified 

0

5

10

15

20

25

30

35

40

New Valid Valid Ready Valid Verified Sized

state

fe
a
tu

re
s

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Feature Tracking 271 

Copyright © 2012 by David A. Penny 

state, and in the coding department sizing features. This information 

allows management to take appropriate action leading up to an initial 

agile horizon planning meeting. 

A next report might detail activity relating to in-plan features: 

 

This report indicates a total of 46 features in-plan. Of those, 4 have 

passed a successful code complete demo milestone, 14 are not yet 

completed to this stage but either have a specification and design 

written and reviewed, or don’t need one. 28 features have neither of 

those things and are still in some other stage of the process. 

A report like this can help management determine if the 

organization's process initiatives, such as writing specifications, is 

effective or not. 

0

5

10

15

20

25

30

In-Plan Spec Done Demo Done

fe
a
tu

re
s

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



272 Feature Tracking  

Copyright © 2012 by David A. Penny 

12.8. Summary 

In this chapter we looked at processes and systems to assist in tracking 

and applying metrics to the agile horizon planning methodology. 

We started by considering the requirements of a workflow 

management system used to keep track of feature request records. We 

itemized the type of data that needs to be kept by such a system, and the 

detailed workflow as expressed by a state transition diagram. 

We then considered specification and design documents. We 

detailed what these were, who creates them, and how to decide when 

they are needed. 

Next we examined reviews. We looked at the various kinds of 

reviews that have shown to be useful and how to conduct them 

We then looked at the thorny issue of tracking effort. We considered 

both systems to use to track time at a fine-grained level, and dealt with 

some of the organizational issues involved. 

We ended with a discussion of various types of management 

controls that are enabled through good data tracking of clean data and 

good reporting based on that data. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

13. Process Control 

By the time an organization has its infrastructure functioning 

effectively, has good defect control, and is tracking the software 

development process well as described in the previous chapters, the 

organization is overdue to begin documenting its software development 

process. 

13.1. The Process Document 

A good process document describes concisely the steps in the 

process of developing and releasing software. The document should 

capture what is going on now, not just what management wishes would 

go on sometime in the future. 

Even that can be problematic. Usually, there are steps that 

management believes are taking place that are only occasionally taking 

place. These steps should be documented, and appropriate reporting put 

around them. That way, if management is serious about these initiatives 

(e.g., producing a specification for each feature that needs it), then it 

can monitor and take action when non-compliance is detected, or rather 

when the extent of non-compliance is beyond where it should be. 

Capturing the process in a process document is important to this 

type of clean-up effort. The process document makes clear to 

everybody what is expected and how it will be monitored. When new 

employees enter the organization, they can be given the process 

document to read to understand how they fit in and get them started on 

the right foot. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



274 Process Control  

Copyright © 2012 by David A. Penny 

Only when the current process is documented, solidly in use, 

monitored, and measured, should management consider adding a 

process enhancement, such as another review step. 

When the organization is ready to enhance the process, the process 

document will be edited first, making clear to everybody what the new 

step will be, the criteria for entering and leaving the step, and how the 

fact that the step was carried out will be recorded. 

The remainder of this chapter will explain how to write a process 

document, giving an example of a typical process document that fits 

with the ideas in this book. 

13.2. Documenting Process 

A process is documented as a series of process steps. To document a 

process step it is necessary to cover the following information. 

13.2.1. Scope 

The process step's scope will detail the unit upon which the step will 

take place (e.g., feature by feature, or an entire build), the duration of 

the step in the release lifecycle, and how often the step will be repeated 

and under what conditions. 

13.2.2. Actors 

The actors are the staff involved in carrying out this step. If one or 

more actors are more central, they will be indicated in boldface. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 275 

Copyright © 2012 by David A. Penny 

13.2.3. Inputs 

The inputs identify what information is required in order to validly 

begin the current process step, and any requirements on those inputs. 

13.2.4. Outputs 

The outputs state how the results of executing the step are captured, 

any requirements on the outputs, and how the fact that the step was 

completed is indicated. 

13.3. Sample Process Document 

The major steps in a sample process are shown below. Each major step 

groups a number of activities. These activities are described below. 

 

Feature Candidate 
Identification 

Initial Agile 
horizon 
planning 

Specification 

Coding 

clean, sized features 

Testing 

Gold 
Build 

in-plan features 

features specifications 

candidate builds 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



276 Process Control  

Copyright © 2012 by David A. Penny 

Feature Candidate Identification 

Initially, candidate features for the next release are identified, their 

suitability for use in the following steps are validated, and the features 

are given an initial sizing. 

1) Feature Request  

 Scope:  

o feature-by-feature  

o duration: continuous  

 Actors:  

o Marketing Product Manager  

o Staff with ideas  

o Partners  

o Customers  

o Champion 

 Inputs:  

o Ideas for product features  

o Competitive research  

 Outputs:  

o A feature in the feature tracking system in state New 

o There is a short meaningful title for the feature (1-5 

words) 

o There is a < one paragraph description of the feature 

o The feature has the product set appropriately 

 Description 

o In this process step, we capture ideas for new features 

that may go into our products. These features may be 

originated by anybody, but should have a champion 

within the organization. The informational 

requirements are light at this stage: just a short general 

idea of the feature and a meaningful title. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 277 

Copyright © 2012 by David A. Penny 

2) Feature Triage  

 Scope:  

o feature-by-feature  

o within 5 days of a New feature being submitted 

 Actors:  

o Product Manager  
 Inputs:  

o Features in state New  

 Outputs:  

o Feature moved to state Closed if already doable, a 

duplicate, or makes no sense  

o Feature moved to state Valid if a reasonable request for 

that product 

 Description 

o The product manager will triage the features submitted 

in step 1, searching for those with merit. This step is 

intended to be performed very quickly after a feature 

has been submitted, and is intended to keep the data 

clean. The product manager will quickly determine if a 

requested feature can already be done in the software, 

if it is a duplicate feature request, or if it just makes no 

sense. If so, he will close it. Else, he will move it to the 

Valid state. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



278 Process Control  

Copyright © 2012 by David A. Penny 

3) Feature Identification  

 Scope:  

o feature-by-feature 

o only for those likely to be in-plan on the next release 

o repeat until the feature passes Feature Validation  

 Actors:  

o Product Manager  
 Inputs:  

o Features in state Valid for the product in question 

 Outputs:  

o A feature that is a candidate for the next release 

o Any marketing requirements are listed 

o The feature is cohesive (only grouping highly-related 

functionality)  

o The feature cannot be reasonably be divided into 

meaningful, stand-alone sub-features 

o The feature is constrained in scope, not open-ended 

o The feature has the target release set appropriately 

o The feature is placed into a priority class relative to 

other features 

o The feature is in state Valid-Ready indicating it is 

ready for feature validation (see next step) 

 Description 

o At this stage in the process we are contemplating the 

next release. This is the work done beforehand by the 

product manager to clean up the features that are likely 

candidates for inclusion in an agile horizon plan. This 

step entails considerable work, and so is only 

undertaken once a feature looks like it has a reasonable 

chance of getting in-plan. The information is necessary 

in order to have a clear sense of the feature both for 

sizing and for agile horizon planning discussions. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 279 

Copyright © 2012 by David A. Penny 

4) Feature Validation  

 Scope:  

o feature-by-feature  

o repeat until pass  

 Actors:  

o QA  
 Inputs:  

o A candidate feature marked for the appropriate target 

release in the Valid-Ready state 

 Outputs:  

o If passed this will be indicated by moving the state to 

Valid-Verified 
o If failed this will be indicated by moving the feature 

back to state Valid with the Log field indicating the 

no-pass reason 

 Description 

o This is an early-stage QA validation step to ensure that 

features being considered for the next release are well-

defined. This step ensures that the output criteria from 

the previous step are met. Without this step, agile 

horizon planning meetings tend to degenerate into 

extended discussions on what a feature is, rather than 

discussions about whether to include it in plan. 

However, that meeting will contain the wrong people 

to engage in that type of discussion, and will waste the 

time of the decision makers who were brought together 

to decide matters of feature priority. As well, ensuring 

the features are well-described will lead to more 

accurate sizings, which will improve agile horizon 

planning accuracy. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



280 Process Control  

Copyright © 2012 by David A. Penny 

5) Sizing  

 Scope:  

o feature-by-feature  

o repeat whenever new information arises for a feature  

 Actors:  

o Coding Manager  
o Developers  

 Inputs:  

o A feature in the Valid-Verified, state marked for the 

appropriate target release 

o A feature in the In-Plan or WIP state if resizing is 

called for  

 Outputs:  

o A (new) sizing in ECD (effective coder days) attached 

to the feature 

o (optional) one (or more) assigned coders for whom the 

sizing was made 

 Description 

o All features entering this step have already been 

validated as being useful, well-described features that 

have a fighting chance of getting into the next agile 

horizon plan. At this step, developers will come up 

with a rough initial design for the feature, then divide 

the implementation into appropriate tasks, size each 

one and sum them to come up with a feature sizing in 

effective coder days (ECDs). At this stage, the team 

will have a rough idea of which coder will be assigned 

this feature, and may make a note of that in the feature 

record. If more than one, the sizing will be cumulative 

across all the developers. At a later stage, the feature 

may be sub-divided by coder if required to track it 

better. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 281 

Copyright © 2012 by David A. Penny 

Initial Agile horizon planning 

An agile horizon plan is put together which lists the chosen in-plan 

features, gives a final release date, and respects development 

constraints (balancing capacity with requirement).  

6) Agile horizon plan Prep  

 Scope:  

o all sized, valid-verified features  

 Actors:  

o Product Manager  
o Coding Manager  

 Inputs:  

o sized, prioritized, valid-verified candidate feature list 

for this release 

o an initial, suggested end-date for the release  

o an understanding of the initial assignment of coding 

resource to the release  

 Outputs:  

o A preliminary, prioritized suggestion for a feasible 

agile horizon plan (delta=0) 

o A prioritized list of alternate features  

 Description 

o This step is preparation for the agile horizon planning 

meetings to come in the next step. At this step, the 

product manager will create an initial suggestion for an 

agile horizon plan based on her own ideas and those 

gathered informally from other decision makers. As 

well, she will also give a list of features that she knows 

certain decision makers may want in the release. With 

this preparation work done, the agile horizon planning 

meetings have a starting point and tend to be much 

more effective as a result. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



282 Process Control  

Copyright © 2012 by David A. Penny 

7) Agile horizon plan Meetings  

 Scope:  

o all sized, valid-verified features  

o repeat when current plan predicts a gold build slip > 1 

month  

 Actors:  

o Product Manager  
o Coding Manager  

o Agile horizon planning Committee  

 Inputs:  

o A preliminary suggestion for a feasible agile horizon 

plan (delta=0) 

o A prioritized list of alternate features  

 Outputs:  

o A feasible agile horizon plan (delta=0) 

o In-plan features moved to the In Plan state 

 Description 

o These are the key meetings held by the decision makers 

in the organization to decide on the next release date 

and feature content. Each product has a "Agile horizon 

planning Committee" that is empowered to collectively 

make these decisions. Coming into these meetings, the 

product manager has already prepared a suggested 

agile horizon plan and a set of alternate features. In 

these meetings, the product manager will start by 

explaining her rationale, and describing the importance 

of each feature. The meeting participant will then 

suggest changes to this plan and debate them. These 

meetings are organized and driven by the product 

manager. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 283 

Copyright © 2012 by David A. Penny 

Specification 

All features are discussed in meetings, and some are designated as 

requiring a more extensive written specification. For these features, a 

written specification is produced and formally reviewed. 

8) Specification Meeting  

 Scope:  

o feature-by-feature for in-plan features 

o may deal with multiple features at once  

o repeat as required by the spec writer  

 Actors:  

o Coding Manager  

o Spec Writer  

o Product Manager  

o staff with ideas  

 Inputs:  

o An in-plan feature 

 Outputs:  

o A decision recorded with the feature on if a written 

specification is required 

o Notes taken by spec writer attached to the Spec Notes 

field of the feature 

 Description 

o Once a feature is designated as in-plan, each feature 

will need to be reviewed in one or another specification 

meeting. This group should involve people 

knowledgeable about the feature request, and the 

implementers. The purpose is to cement a solid 

understanding of what is being implemented. Some 

features may be dealt with quickly. Others will be 

deemed to require a full written specification. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



284 Process Control  

Copyright © 2012 by David A. Penny 

9) Specification Creation  

 Scope:  

o feature-by-feature  

o only those features marked as requiring a written spec  

o refine as spec defects are identified prior to code start  

 Actors:  

o Spec Writer  

o Staff with ideas  

 Inputs:  

o An in-plan feature requiring a spec 

o Spec notes from the specification meeting 

 Outputs:  

o A specification document attached to the Spec Notes 

field of the feature 

o The specification must describe all user-visible aspects 

concerning how the feature will work 

 Description 

o If a feature is not clearly understood coming out of the 

specification meeting in the previous step, a full-blown 

written specification is marked as required. A 

specification writer will be assigned and he will gather 

input and create a specification for the feature detailing 

all end-user visible aspects of the feature (but not at all 

delving into implementation concerns). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 285 

Copyright © 2012 by David A. Penny 

10) Specification Review  

 Scope:  

o feature-by-feature  

o only those features marked as requiring a written spec  

o repeated only if a feature spec fails miserably  

 Actors:  

o QA  

o Spec writer  

o Reviewers drawn from qualified staff  

 Inputs:  

o An in-plan feature that has a spec 

o The specification document 

 Outputs:  

o A list of defects with the specification:  

 spec fails to specify what happens under 

certain conditions  

 spec does not satisfy all the user requirements  

 spec does more than satisfy the user 

requirements  

 spec is internally inconsistent or inconsistent 

with how things already existing or specified 

function 

 The list is saved into the Spec Notes section of 

the feature 

 Description 

o After a written specification has been created, it is 

mandatorially reviewed in this step. The review 

meeting is designed to find concrete flaws in the 

specification, and not to discuss how the feature is 

surfaced. Flaws include any inconsistencies and any 

missing parts of the specification (usually coders are 

excellent at finding these). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



286 Process Control  

Copyright © 2012 by David A. Penny 

Coding 

Features are coded, unit-tested by the developers, and component tested 

by testers. As features become code complete, the functionality is 

demonstrated in a feature demo meeting. During component testing, 

testers develop automated regression tests and/or manual test scripts for 

testing each new feature. 

11) Coding and Unit Testing  

 Scope:  

o feature-by-feature  

o repeat as defects are identified  

 Actors:  

o Developer  

o Architect  

o Spec Writer 

 Inputs:  

o An in-plan feature with a reviewed specification 

document (or marked as not requiring a spec) 

 Outputs:  

o Code that fully implements the spec and in 

conformance with architect's technical vision 

o COM API code that can be called by a test script and 

that executes the specified functions 

o Tested by the developer 

 Description 

o At this step, the feature is coded by the assigned 

developer. As coding proceeds, the developer will 

update time spent to-date and estimated time remaining 

on the feature. The coder will test the feature to the 

best of her ability before releasing it to be tested. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 287 

Copyright © 2012 by David A. Penny 

12) Feature Demo Meeting  

 Scope:  

o feature-by-feature  

o may deal with multiple features at once  

o repeated only if a feature fails miserably or requires 

very extensive changes  

 Actors:  

o QA  

o Developer  

o Spec Writer  

o Product Manager  

o Interested staff  

o Scribe 

 Inputs:  

o A new feature nearing the code complete state 

o A nightly build clean on all regression tests containing 

the new feature  

 Outputs:  

o a list of defects/corrections to be made to the feature 

saved into the Log field of the feature 

o A determination on if this step is passed 

 Description 

o This process step involves a meeting in which a nearly 

ready feature is demonstrated to the group. Feedback 

from the audience is given and the developer may 

choose to change some aspects of the feature as a 

result. A scribe is assigned to take notes, as the 

developer is usually busy demonstrating. An additional 

purpose of this meeting is to determine the fitness of a 

feature for inclusion in the release at a relatively early 

stage in the overall process. This step therefore 

provides a milestone using which the coding group's 

progress can be assessed. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



288 Process Control  

Copyright © 2012 by David A. Penny 

13) Component Test  

 Scope:  

o feature-by-feature  

o repeated as desired by tester after further code changes  

 Actors:  

o QA  

 Inputs:  

o a nearly code complete feature 

o nightly build containing reviewed code, clean on all 

regression tests  

 Outputs:  

o A list of defects with the feature 

o The list is saved into the Log field of the feature 

o Automated regression tests are added to the regression 

testing system to fully or partially test the feature 

 Description 

o As a feature nears completion, a tester will be assigned 

to the feature to begin testing this one feature in 

isolation and providing informal feedback to the 

developer. During this time, the tester will come up 

with a plan to test this feature, ideally using the 

automated regression testing facility to the maximum 

extent possible. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 289 

Copyright © 2012 by David A. Penny 

Testing 

During the testing phase, builds containing the entire feature set are 

used to test the features one-by-one according to the plans previously 

produced during component test. Eventually, gold master candidates 

are produced which go through a more extensive testing regime which 

considers all aspects of the user's experience. 

14) Integration Test  

 Scope:  

o requires all in-plan features to be finished  

o feature-by-feature  

o repeated on each new build if judged necessary  

 Actors:  

o QA  

 Inputs:  

o A post-DCUT build, clean on all regression tests.  

 Outputs:  

o Defects recorded in the defect tracking system. 

 Description 

o Before this step starts, the release will have achieved 

DCUT (development cutoff) meaning that no 

developer knows of any additional code that needs to 

be written for all their assigned features to be complete. 

During integration test, the test plans developed during 

the component testing step will be executed. As well, 

the testers will look for possible adverse interactions 

between the various new features in the release. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



290 Process Control  

Copyright © 2012 by David A. Penny 

15) System Test 

 Scope:  

o requires all in-plan features to be finished  

o feature-by-feature  

o repeated for each new build  

 Actors:  

o QA  

 Inputs:  

o A candidate gold master CD, clean on all regression 

tests 

o Complete with installation scripts 

o Other products that need to work with this one 

 Outputs:  

o go/no-go decision on ship  

o Defects in the defect tracking system  

 Description 

o Final tests designed to assess the suitability of a 

particular build for release. 

16) Regression Test  

 Scope:  

o continuous throughout release cycle  

o repeated each night  

 Actors:  

o QA  

o Development  

 Inputs:  

o A nightly build that compiles  

 Outputs:  

o a report on tests passed and failed  

o Defects reported to developers or new baselines 

 Description 

o Continuous regression testing each time a new build is 

produced. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 291 

Copyright © 2012 by David A. Penny 

13.4. Process Enhancement 

The sample process detailed in the previous section is a basic agile 

horizon planning methodology implemented on a sound infrastructure 

supplemented by: 

 A QA step to validate suggested features, 

 a specification meeting for each feature with notes taken, 

 written specifications when called for, 

 a specification review step, 

 a feature demo meeting. 

This was intended as an example only. No canned process fits all 

organizations, or even all projects within an organization. What is 

crucial is for the process document not to overstep (by too much) the 

process maturity level at which the team is currently working. 

Further enhancements to this process might include: 

 A design meeting lead by the chief architect for each feature 

with notes taken, 

 written design documents when required, 

 design document reviews, 

 A GUI prototype completed first, with a demo meeting for that 

 A debugger walkthrough by a "code buddy" 

 A formal code review 

 An explicit process step to construct and then review the 

automated regression test for each feature, 

 and so on... 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



292 Process Control  

Copyright © 2012 by David A. Penny 

Coming up with a list of all the best practices that "ought to be" 

followed by a team is an exercise involving a few hours with some 

software engineering textbooks and a Web search engine. Making the 

process that management believes is happening actually happen is a 

huge challenge. Improving on the process, by even a small amount, is 

an even bigger challenge. 

Anytime a process is first documented, chances will be that it is not 

being followed as completely as management would like. The fact that 

there was no prior written process documentation practically guarantees 

this. Documenting what is supposedly already happening, and then 

putting in place all the associated process monitoring and measurement 

is a good first step. Having management actually monitor and measure 

the process, and then putting the results to a constructive use, will 

already be a stretch for the team. 

In such an environment, inserting additional process steps would be 

counter-productive. 

Any team has only a limited capacity to change and adopt new 

habits. If management attempts too much change all at once, nothing at 

all will be the result. Having a documented process and monitoring it is 

already a huge change. No sense changing even more at first. 

Once the written process is established and monitored, and non-

conformance to it is the exception that is promptly dealt with, then it is 

time to sit back, consider the existing process, and decide where to 

improve upon it. 

A process improvement should be one extra initiative. The steps 

involved should be very carefully defined. There should be a definite, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Process Control 293 

Copyright © 2012 by David A. Penny 

machine-readable way of determining if the step was taken and what 

the results of the step were. 

If the step involves producing something, there should a quality 

assurance step associated with it to determine if the thing was produced 

in a satisfactory fashion. Initially, the QA step should be quick and 

informal. As a later initiative, a more formal QA step may be 

introduced. For example, if management decides that designated 

features should have written design documents, it would be a mistake to 

insist on the documents and a full-blown design review meeting as part 

of the same process enhancement initiative. On the other hand, it would 

also be a mistake to add a step that produces a design document and not 

have any second pair of eyes give it a quick once over, making a record 

of acceptance or rejection. 

Once management decides to endorse an enhancement to the process, 

they must focus their energies on ensuring that it gets accomplished. A 

common management mistake is to launch an initiative; put in place 

training, tools, and procedures to support it; announce it as a significant 

step forward to the rest of the company; and then go on to the next 

thing. 

All process enhancements require additional work from the staff on 

a regular basis. They will quickly determine if it is the case that nobody 

seems to care if the step is done or not, and will devote their energies to 

things people do seem to care about in a more direct fashion, such as 

coding many features and fixing many defects, for instance. 

Management must be dogged in its determination to put in place a 

new process step. They must set up all necessary monitoring and then 

perform the monitoring on a regular basis. If staff fail to comply or do a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



294 Process Control  

Copyright © 2012 by David A. Penny 

poor job at the process step, management must raise it as an important 

issue. This must occur for every single violation. 

This amount of management focus on implementing a new process 

initiative is a significant bottleneck to process improvement. If 

management is constantly fighting fires, or spending all their time 

struggling to enforce existing process steps, or spending all their time 

playing politics within the organization to keep a project alive, then it is 

unlikely that the necessary management bandwidth will be available to 

effect a process change. 

13.5. Summary 

In this chapter we examined the idea of documenting a process. We 

described the benefits of doing this, and how to do it. We gave as an 

example a fully-elaborated process for a basic agile horizon planning 

methodology. We ended with thoughts on process enhancement, and 

the limited ability of any organization to change too much all at once. 

 

 

 

. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

14. Architectural Clarity 

Up to now, we have discussed the correct management of software 

ventures and how to setup the right infrastructure and tools. However, a 

software venture has as its goal the production of source code. All the 

effort, all the process, all the management, needs to result in a 

collection of text files containing source code at the end of the day. 

In order to control costs, that source code needs to be as clearly 

written as possible. 

14.1. The Efficiency of Clarity 

A disorganized muddle of source code is unlikely to build into a well-

functioning software system. If, by some chance, it does, then the cost 

of finding and fixing defects and of adding new features will be 

prohibitive. Thus, one of the most important attributes of a system is 

the clarity of its source code. 

There is clarity "in-the-small" and "in-the-large". Clarity "in-the-

small" means that whenever a programmer examines lines of source 

code, the meaning of it is clear to her and it is easy for her to see that 

the code is correct, meaning that it does what it is clearly intended to 

do. 

Clarity "in-the-large" means that the overall operating principles of 

the system are clear, and the organization of the source code (into 

directories, files, classes, methods, and so on) clearly reflects the 

operating principles, making it easy to find the source code that 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



296 Architectural Clarity  

Copyright © 2012 by David A. Penny 

performs each of the various functions. This is often referred to as 

clarity in the "architecture" of the software. 

It is vital to the ongoing health of a software venture to retain and 

enhance the architectural clarity and the code clarity of a system. 

As we discussed previously, the cost of maintaining successful 

software (adding features and correcting defects) dwarfs the initial cost 

of creating it. Therefore, any improvement in maintenance efficiency 

will yield leveraged dividends. The largest improvement in 

maintenance efficiency comes from having a clear architecture and 

clearly written source code. 

With clear architecture and code, defect frequency is reduced. 

Defects arise when coders cannot convince themselves by examining 

the code they have just written that it is or is not correct. If they can 

clearly see it is not correct, they will fix it. If they can see that it is 

clearly correct, the probability that it is correct is greatly increased. If 

they cannot see one way or the other (which happens often) then it 

probably has defects which will go un-corrected until testing uncovers 

them. 

When defects are discovered, clarity in the architecture and source 

will make it easier for a programmer to locate suspect areas of code, to 

convince himself whether or not the suspect area is indeed the cause of 

the defect, and to see how to correct it if it is. This decreases the time 

required to correct defects, thus decreasing costs given the same level 

of quality. 

New features become faster to design and code as well. Clear 

architecture will make it straightforward to understand and then 

document the design of a desired enhancement. Clear code will make it 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 297 

Copyright © 2012 by David A. Penny 

easier for the programmer to add the required code into the system 

while containing unexpected side-effects. 

Having clearly understandable architecture and source code is the 

single most effective means of improving next release efficiency. 

14.2. Code Clarity 

If the desire is to create clear code, the natural first question is how to 

go about achieving it? 

It starts by having appropriately trained and experienced staff 

creating code; and, where sufficient experience is not yet achieved, 

having more experienced staff review it. 

Creating code is an exercise in mathematical logic. There is no more 

unrelentingly logical environment as a software program. Any fuzzy, 

illogical lapse on the part of a programmer is mercilessly punished by 

the system with hour upon hour of additional debugging. 

This is why experience has shown that typically University 

graduates with strength in maths and sciences are required for the job. 

Writing a program requires the same attention to detail, quickness of 

mind, and extreme logical thinking required to do well in school exams. 

University graduates are selected for these traits. 

Training in the computer sciences at the University level is required. 

There is a vast body of knowledge (too much to fit into an 

undergraduate University program, in fact) that a professional 

programmer needs to know. A good deal of the more basic knowledge 

is mathematics, logic and logical programming. As well, writing 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



298 Architectural Clarity  

Copyright © 2012 by David A. Penny 

program after program and having their correctness and clarity 

critiqued (via a grade) is essential to the development of a strong 

programmer. 

Programmers without a good education will tend to make two mistakes. 

The first mistake is to fail to understand what is happening at every 

level of the system. The second mistake is to think operationally rather 

than logically about a program. 

An appropriate education should cover off how hardware and software 

systems function from the level of the NAND gate upwards. Students 

should get at least a rough understanding of how computers are 

constructed from gates and the hardware architecture of computers. 

They should understand machine-language programming, assembler 

code, calling conventions, virtual memory and protected mode 

operation, operating systems, compilers, linkers, loaders, interpreters, 

object-oriented languages, system calls, user-level libraries, XML, web 

servers, databases, networking, remote procedure calls,  object request 

brokers, LDAP, and on and on. 

With an understanding of how these various technologies function 

and fit together, writing code becomes an exercise in adding the "final 

touches" to a system. When something fails to work as expected, 

understanding all levels of the system helps the programmer to find the 

problem and correct it. More importantly, it gives the programmer 

confidence that the problem is not some random, unexplainable 

occurrence but rather a logical consequence of something going wrong 

somewhere in the system stack. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 299 

Copyright © 2012 by David A. Penny 

Programmers who fail to have this understanding tend to try random 

"corrections" to a program until they find something that seems to 

work. Without understanding why it did not work before, nor why it 

works now, the code is very fragile. Future programmers working on 

that code may easily break it. Programmers who have a solid 

understanding will track down the issue and resolve it. 

Well-trained programmers will think of their programs in logical terms, 

not in operational terms. Thinking operationally means understanding a 

program in terms of its flow of control. First this happens, then this, 

then this, and so on. Thinking logically about a program means 

understanding the program as a predicate transformer independent of 

flow of control. 

A predicate is a logical expression characterizing the state of a 

system. The logical way of looking at a program is as an entity that 

transforms these characterizations. 

Given a predicate that describes the state of the system before 

program execution, the program will transform that predicate into 

another which gives the state of the system after the program executes. 

Each statement in a program, in turn, can be viewed as a predicate 

transformer as well. In a correct program, each sequential statement 

transforms the starting predicate (the pre-condition) closer and closer to 

the ending predicate (the post-condition). 

Subroutines especially can be viewed as predicate transformers that 

given a pre-condition describing the system before execution, will 

guarantee a post-condition describing the state of the system after 

execution. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



300 Architectural Clarity  

Copyright © 2012 by David A. Penny 

For example, consider the following simple example to illustrate the 

point. It's a fragment of Perl code for printing out to a Web page the 

first 5 elements of an array: 

 
pre-condition: array has >= 5 elements 

my $elementsLeftToPrint = 5; 

foreach my $element (@array) { 

   invariant: # of elements printed + $elementsLeftToPrint == 5   

 print "$element<br>\n"; 

 $elementsLeftToPrint--; 

 last if $elementsLeftToPrint == 0; 

} 

post-condition: # of elements printed == 5 

The operational way to think about the program is to mentally step 

through the code, line-by-line, and count on our fingers each time an 

element is printed. 

The logical way to think about the program is in terms of its pre and 

post condition predicates. 

The desired post-condition is for 5 elements of the array to be 

printed. Given this code, the weakest necessary pre-condition for this to 

be achieved is that the array has 5 elements. If it does not, the loop will 

exit early with $elementsLeftToPrint non-zero, and the post-condition 

cannot be assured. 

The way to reason about this program is to think about the loop 

invariant. The loop invariant is a predicate that is always true at the top 

and bottom of the loop (in the middle of the loop body it can be 

violated for a time). 

If the loop invariant # of elements printed + $elementsLeftToPrint == 5 can be 

proven to hold, then when this is combined with the exit condition  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 301 

Copyright © 2012 by David A. Penny 

$elementsLeftToPrint == 0 it implies (mathematically) # of elements printed == 5 

which is the post-condition  we are trying to establish. 

To convince oneself of the loop invariant is an exercise in 

mathematical induction. Assuming the loop invariant # of elements printed + 

$elementsLeftToPrint == 5 is true at the top of the loop, then in the loop we 

print one item and decrement $elementsLeftToPrint re-establishing the 

truth of the loop invariant. Thus if the invariant is true at the start of any 

loop iteration, it is therefore true at the bottom of that same loop 

iteration as well. 

On entry to the loop nothing has been printed and 

$elementsLeftToPrint was initialized to 5, hence the loop invariant is 

true on entry. Given it's true on entry, it is therefore true at the bottom 

of the first iteration and hence at the start of the second. Given it is true 

at the start of the second iteration it is therefore true at the bottom of the 

second iteration and hence the top of the third as well, and so on. By 

mathematical induction, we have proven that the loop invariant holds 

always in this program. 

This was the final step in proving that the program does what it 

claims to. 

A programmer trained in computer science at the University level will 

have an appreciation for this type of reasoning. While they will not 

prove all their programs correct in this manner, the good ones will think 

in this manner as they program, which will benefit correctness and 

clarity. 

Understanding that a subroutine is like an extension to the 

programming language's statement set, this type of thinking will benefit 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



302 Architectural Clarity  

Copyright © 2012 by David A. Penny 

the design and documentation of the interface. A sub-routine will be 

thought of and commented in terms of: 

 what must be true of the parameter values for the function to 

behave correctly (the pre-condition); 

 given the pre-condition, what will be true after the subroutine is 

called (the post-condition). 

The programmer will tend to avoid the use of global variables and will 

carefully document the meaning of every parameter and the return 

values. 

14.3. Coding Standards and Metrics 

Most organizations have some form of coding standards to help to 

preserve the clarity of the code. Coding standards should cover: 

 The hard tabstop setting and the size of indentation 

 Bracketing conventions 

 Commenting conventions 

 Variable naming conventions 

 Maximum sizes for subroutines, files, classes 

 Avoidance of cloned code. 

The coding standards should be written and published and adhered to. 

Ideally, the development environment should auto-format the code 

according to the local coding conventions. Reviews and/or buddy 

walkthroughs can be used to check for non-compliance. Checkmarks on 

the feature records can be used to indicate that a coding standards 

review has taken place. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 303 

Copyright © 2012 by David A. Penny 

Every class and method should have comments. The comments for a 

method should refer to every parameter by name. These comments 

should be written using technology that can extract them into html 

documentation (e.g., javadoc, doxygen, pod, and so on). 

Variables, constants, classes and methods should be named according 

to their function. Variables should not be re-used for more than one 

purpose. Constants should always be used in preference to literal values 

in code and named well. Longer names should not be discouraged if 

necessary. Some conventions require naming variables according to 

their type (e.g., so-called "Hungarian notation"). This is not very 

helpful and leads to obscure names. 

Comments should be used sparingly within subroutines, however not 

neglected either. Generally, it is good to comment a block of code 

designed to accomplish some distinct purpose. Also, a particularly 

tricky line of code that cannot be re-written more simply should be 

commented. 

If subroutines get too long it is usually for lack of an appropriate level 

of design thinking. Therefore, the sizes of programming entities such as 

subroutines, files, and classes should be constrained. 

Cloned code is identical code copied from one place to another. Cloned 

code is notoriously error-prone, as several months later nobody will 

remember about the cloning, and a change in one copy will not get 

changed in the other, leading to a problem. Cloned code should not be 

tolerated, and particular attention should be placed on avoiding it 

anywhere. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



304 Architectural Clarity  

Copyright © 2012 by David A. Penny 

Even two branches of an if statement should contain no cloned code. 

For example, 

 if( $count == 0 ) { 

  print "<table border='1'><tr><td>none\n"; 

 } else { 

  print "<table border='1'><tr><td>$count\n"; 

 } 

should be replaced by the non-cloned version: 

 print "<table border='1'><tr><td>"; 

 print ($count==0) ? "none" : $count; 

 print "\n"; 

14.4. Architectural Clarity 

The biggest first-step in having a clear architecture is to organize the 

source code appropriately into files and directories in such a way that 

the directories correspond to logical modules. 

Each module should then be documented with its purpose and how 

it fits into the overall architecture: what other modules it is allowed to 

access, what other modules access it. 

This organization then provides the underlying structure for a 

reasonable architecture document that describes this module 

architecture at a high level. 

Additionally, architectural documentation should describe the 

strategies for storing persistent data, and the run-time organization of 

the system: what processes and threads are running and how they 

communicate. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 305 

Copyright © 2012 by David A. Penny 

Going through this exercise will reveal which parts of the system are 

architecturally murky. 

14.5. Architectural Degradation 

Over time, systems tend to deteriorate in architectural integrity. This is 

because programmers come on who either don’t understand the current 

architecture, disagree with it, or simply don't care; and they start 

making changes to the system. Over time, the architecture becomes 

murky. 

It is a full-time job for one of the programmers, generally designated 

"Chief Architect," to stay on top of the architecture, to consult with 

other programmers on how they intend to effect changes, and to review 

all code going into the system for adherence to the architectural 

direction. Sometimes, such a person might observe some code being 

checked in and will overnight re-write it to conform better to an 

architecture. Entire systems worth hundreds of millions of dollars in 

revenue have been written in this fashion. 

Another reason for architectural murk is an architectural idea that 

didn’t work out, or a changed direction for a system. In this case, the 

system is saddled with an inappropriate architecture. As programmers 

begin fixing the defects and adding new features, the bad architecture 

becomes entrenched. 

Generally, systems with a good clear architecture are controlled by a 

single individual involved for a long time with the system. 

Even under the best of care, however, the architecture of a system will 

tend to degrade over time. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



306 Architectural Clarity  

Copyright © 2012 by David A. Penny 

One mechanism to overcome this issue is the so-called "architecture 

tax" in the agile horizon planning methodology. The idea is that if the 

total capacity in a plan is, say, 500 ECD's, then a percentage of that is 

taken off the top and reserved for architectural maintenance and 

cleanup. For instance 10% or 50 ECD's. Marketing product 

management is then given 450 ECD's for new features. 50 ECD's, are 

reserved for architectural "features". These features can have no direct 

impact on the end-user experience. They must only be used to change 

the code in order to improve the architecture of the system. Decisions 

on how to spend those ECD's are made by the chief architect. 

Using "The Tax" offsets the inevitable architectural degradation that 

takes place as many coders work on a system over time. 

Another way to maintain the architecture is a commitment to not accept 

"hacks" to implement features quickly. In many cases there is a way to 

code a feature that is quick but dirty (i.e., doing it would lead to 

architectural regression). There is always a right way to do something 

like this, but it would cost more in terms of ECD's. 

To maintain the architecture it is important that the development 

department, in giving estimates, always gives the "correct" estimate for 

the feature done the right way. Giving the company a quick hack might 

seem to be beneficial, but it always costs in the long run. It is also un-

professional. 

Professional developers must balance this by realizing that "the 

absolute best way" does not exist. They need the judgment to 

distinguish "gold plating" from "done right" from "quick hack". 

Professionals will eschew equally the gold plated version and the quick 

hack. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Architectural Clarity 307 

Copyright © 2012 by David A. Penny 

However, when a developer's professional judgment is that a feature 

will take 10 ECD's to do right, they should stick by their guns and not 

even consider the 2 ECD quick hack. Mostly, business people don't 

want all the details, they just want to know how long a feature will take. 

For this example, 10 ECD's is the right answer. There is no need to say 

"well, we could do it in 2 ECD's but it’s a hack". Just say 10 ECDs. 

There will be occasions when a quick hack is necessary to save the 

company's bacon. Developers also need the business judgment to see 

when this is the case, and only then suggest the quick hack. The quick 

hack should then be done and released quickly, but not mainlined. The 

mainline code should be written to implement the feature the correct 

way so that the hack does not live on. 

14.6. Summary 

In this chapter we considered the matter of architectural and code 

clarity, why they are vitally important, and schemes for building and 

maintaining clarity. 

 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

15. The Software Vendor 

Business Environment 

Up to now we have been discussing technical aspects of software 

development and management. In this chapter we begin a study of how 

a software development department integrates into a business. 

15.1. Managing 

Managing a software development organization consists of four distinct 

activities: 

 Managing downwards: 

dealing with the software organization itself. 

 Managing outwards: 

dealing with other groups within the company. 

 Managing upwards: 

dealing with organizational superiors. 

 Managing externally: 

dealing with customers, partners, and investors. 

When most people think of managing a software organization, they 

think primarily of the first item on this list: managing the software 

organization itself. While important, it is not possible to be successful 

at it unless we also are successful with the other three. 

To see why this is so, and to begin to understand how to be 

successful at this multi-faceted approach to managing the software 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



310 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

organization, we must understand the operation of the company in 

which the software development organization exists.  

In this chapter, we will explain how a prototypical company 

involved in software development operates. As the focus of this book is 

primarily on managing within the context of a software vendor 

organization, we will discuss only this business context. Those readers 

concerned with other business contexts will see the parallels for 

themselves. 

15.2. The Software Vendor’s Business 

A software vendor is a business that makes its money by providing 

packaged software (as opposed to custom software) and related services 

such as help desks, training, product-related consulting, user groups, 

and so on. 

The key ingredient is the software itself. The software must satisfy 

some need or some want of one or more target markets. Moreover, the 

combination of market size and willingness to pay must be sufficient to 

pay the software vendor’s costs, plus extra on which to re-invest in 

growth and (ultimately) provide profit for the investors. 

Customers will license the software from the vendor, which gives 

them the rights to use the software within certain constraints. The 

software vendor company will not often sell its software outright, as the 

implication of this is that the buyer would gain all rights to the software 

(and, in particular, the right to license its use to others). 

Individuals and smaller customers will purchase a license to use one 

copy of the software. Larger organizations will buy multi-user site 

licenses, which is essentially a bulk discount provided by the software 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 311 

Copyright © 2012 by David A. Penny 

vendor. Usually single-user and smaller multi-user licenses have a non-

negotiable licensing fee associated with them. The vendor will establish 

the cost of larger site licenses through a negotiation process with the 

customer that will deal with not only license cost, but also with other 

questions such as the cost of upgrades, the level of service the customer 

can expect, consulting help, and so on. 

While initial license fees from new customers fuel the growth of the 

software company, follow-on revenues from existing customers is the 

ultimate goal. 

These follow-on revenues consist of the purchase of additional 

licenses, the purchase of licenses for related software products, the 

purchase of upgrades to the software, and recurring maintenance 

revenue. Maintenance, charged annually at perhaps 20% of the license 

fee, entitles the customer to ask questions of the help desk, to get 

priority problem resolution, to receive periodic bug-fix releases of the 

software, and entitles them to periodic minor upgrades to the software. 

Major upgrades may not be included under some maintenance 

agreements. 

These follow-on revenues associated with successful products 

provide a stable, long-lived, and predictable core of revenue for the 

software company, and can fund the development of new products. We 

sometimes refer to products that have achieved this status as "cash 

cows" (in that after the cow is bought and fully grown, it provides the 

farmer with a continuing supply of profitable milk for little ongoing 

cost). 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



312 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

The reason why good software provides ongoing revenues is that when 

a customer buys into a software product, their investment usually goes 

far beyond the cost of acquisition. They commit to learning how to use 

the software, and they commit to integration work to make the software 

work in their environment. Thus, once the customer chooses to acquire 

software, and once they have fully accepted it into use, they will be 

reluctant to switch to a competing product, and will want to capitalize 

on their all-in investment to-date by buying incremental products and 

services that add value atop their initial investment. They will therefore 

expect the vendor to keep supplying the service, incremental upgrades, 

and related software solutions that will keep them satisfied with their 

initial purchase decision. 

The implication of this is that the software company must not only 

sell its software, but also ensure that the customer gets it into 

production (lest it become "shelfware": purchased software that is never 

used). 

As we see from these considerations, the generic mission of the 

software vendor is as follows. 

 To produce software that meets the needs and/or wants of their 

target market sufficiently well that enough customers will buy 

the product at a given price. 

 To provide related services to assist their customers in putting 

the software into production and effectively using the software 

on an ongoing basis. 

 To make available incremental upgrades and new, related 

products that enable customers to capitalize on their initial 

investment. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 313 

Copyright © 2012 by David A. Penny 

If the company fails at any of these goals, their products will not 

become ongoing sources of revenue, which is the ultimate goal. The 

customers may even cease using the vendor’s software, which given the 

size of the customer’s all-in investment is usually a serious indictment 

of the vendor’s product. 

15.3. Software Vendor Structure 

In order to fulfill its mission, a mid-sized software vendor company 

will typically organize itself around a small number of functional units. 

While no two companies are the same, an industry-wide average for the 

structure of a software vendor would be somewhat as follows. 

The shareholders are the ultimate owners of a company. In a publicly 

traded company, anybody can buy shares. In a privately-held company, 

people can only buy shares with the approval of the existing 

shareholders. The typical situation in a privately-held company is that 

Chief Executive

Board of Directors

Shareholders

Marketing Sales Client Services Software Development Finance/Administration

Executive Team

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



314 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

the founders of a company start with all the shares, and they then give 

some of these shares up in exchange for financing (to a venture 

capitalist, for example), or as an incentive to their hired staff. 

The shareholders elect a Board of Directors to represent their interests. 

In a closely-held private company (for instance, where only a lone 

founder has shares), the board will often act in an advisory capacity. In 

a public company or a private company with several large investors, the 

board plays a more significant role, and votes on important decisions 

according to the company’s written constitution. In particular, the board 

appoints the chief executive (who is often then brought in as a board 

member as well) and the rest of the executive team. 

Board members are also responsible for the correct conduct of the 

company according to any applicable laws of the land, and can be held 

personally liable in case of certain gross violations. 

The board will typically meet on a quarterly basis (once every three 

months or so) to review the status of the company, offer suggestions 

and advice to the chief executives, and set expectations for future 

performance. As well, there are certain decisions, such as the issuing of 

new stock for example, that only the board and shareholders can make. 

Board members are generally a company’s most important founders, 

plus representatives of significant stakeholders, plus prominent and 

experienced businessmen able to offer advice and provide business 

connections. The company (on behalf of its shareholders) will typically 

pay board members a stipend and issue them some stock in exchange 

for their services. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 315 

Copyright © 2012 by David A. Penny 

The chief executive is in charge of running the company on a day-to-

day basis. He or she will assemble an executive team (subject to 

approval by the board) and lead them. Sometimes the chief executive 

(or CEO, for Chief Executive Officer) will split their job in two, with 

themselves concentrating more on external relations and hiring another 

to oversee internal company operations. In such cases, the chief 

executive will retain the title of CEO, and designate the other as either 

President or COO (Chief Operating Officer). 

The chief executive is responsible to, and reports to, the board of 

directors. If the board is dissatisfied with the CEO’s performance, they 

can elect to replace him or her. In particular, the CEO must commit to 

certain financial targets on gross revenue and profits, and then deliver 

on them. 

The executive team is composed of the senior executives within the 

company. The executive team will cover all areas of responsibility with 

no gaps and no overlaps, thus providing clear accountability. Each 

member of the executive team (other than the chief executive) has a 

defined area of responsibility and a designated staff and budget to carry 

out those responsibilities. In addition to these individual functional 

responsibilities, they also have a responsibility to contribute to the 

management of the company as a whole by means of their participation 

on the executive team. 

The members of the executive team will often have the title of "Vice 

President". In companies suffering from title inflation, the executive 

team members may carry the title "Executive Vice President", leaving 

the title of "Vice President" available to attract more junior managers 

who will not participate on the executive team. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



316 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

The executive team will meet weekly, reviewing status, coordinating 

activities, and making important decisions. The strength of the 

executive team is critical to the operation of the software company. A 

weak executive team can ruin a company. A strong team can make it 

successful. 

In the remainder of the chapter, we will look in detail at the individual 

business functional areas shown on the preceding diagram.  

15.4. Marketing 

The marketing group divides itself into the three distinct areas of 

responsibility shown below. 

The product management group within marketing is responsible for 

identifying market segments and determining what software products 

(or enhancements to existing products) and related services the 

company should be providing. They will do this both at a strategic, 

Marketing

Product Management

Marketing Communications

Business Development

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 317 

Copyright © 2012 by David A. Penny 

long-term level, and at a more detailed, tactical, feature-by-feature 

analysis level. Product management should decide on the timing of new 

releases, how much to charge for them, and what features should be 

included in them. 

There will be a Director of Product Management in charge of the 

group, and a number of product managers reporting into him. Each 

product manager will manage an assigned portfolio of the company’s 

products. The company holds product management accountable for the 

profitability of the products they manage. 

As part of their jobs, product managers will spend a lot of time 

talking with customers, understanding their needs. Making them the go-

to point for all requests for new functionality in the products they 

manage facilitates this. The product manager will maintain a list of all 

these requests, and coordinate (and, ideally, lead) the activity of 

deciding what set of features will be included in the next release, 

driving the company to a participative consensus. The company expects 

product managers to bring sound, business thinking to this problem, 

and not only unbridled creativity (of which there is usually plenty 

elsewhere in the organization). 

Product managers must do their research, understanding how the 

competition compares, and making an educated guess as to where the 

market is heading.  

To successfully release a product, it is necessary for all the various 

groups in a company to coordinate their activities. Often, product 

managers will be responsible for overseeing all the activities, across all 

the groups, involved in the release of a product. They will act as a 

coordinator and large-scale project manager, raising the red flag to 

management if certain groups appear to be slipping behind schedule. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



318 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

Finally, product managers must develop the written content for 

promotional materials, such as advertisements, brochures, and white 

papers, that explain the benefits of their company’s products to their 

various target markets. 

Product management is one of the key jobs in the software vendor 

company. Good product managers are hard to come by, but very 

valuable when found. 

The marketing communications group (called marcom for short), are 

in charge of communicating with the external world. They do this by 

means of advertising, web presence, press relations, trade shows, and 

promotional literature. Marcom is in charge of the company’s overall 

image. 

Marcom will work with advertising firms, design firms, and press 

relations firms to achieve their mandate, which is to generate "buzz": a 

lot of people talking about the company in a lot of places. 

Marcom will generally not be experts on the company’s products 

and markets. They will rely upon product management to fill in these 

gaps. Rather, they will be expert in knowing how to reach people with a 

message. 

The company measures Marcom in terms of the number of sales 

leads they generate, and the number of column-inches of publicity 

appears because of their efforts. 

The business development group (spelled busdev and pronounced 

"bizdev" for short) is in charge of developing new business 

opportunities for the company. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 319 

Copyright © 2012 by David A. Penny 

This is usually a small group, and by no means always reports into 

marketing. Often busdev is its own functional area, independent of 

marketing, with its own Vice President reporting into the CEO. 

The main function of busdev is to work with other organizations, 

striking strategic alliances, helping to negotiate acquisitions, and 

running partner programs. 

Especially important is for this group to develop alternate channels 

to market. For example, if there is a market for the company’s product 

in Taiwan, and yet the company is leery of opening a sales office to 

service the region, busdev might negotiate a deal with a company that 

already has a presence in Taiwan to resell the products and offer first-

line support. 

As another example, suppose there is a software product from 

another vendor that customers often use in conjunction with this 

company’s software. In such a case, busdev might negotiate a deal, 

whereby the complementary company can resell their software as part 

of a "productivity bundle". 

Busdev must be excellent negotiators, be good networkers, and have 

sound, business minds. Increasingly, busdev is becoming a critical part 

of a software company’s overall strategy in attacking their markets. 

15.5. Sales 

The sales group, typically organized by sales region, is responsible for 

the company’s revenue targets. There are three main approaches to 

selling: 

 High-Level Direct Sales 

Sales people identify individual prospects, visit with them, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



320 The Software Vendor Business Environment  

Copyright © 2012 by David A. Penny 

organize demonstrations, negotiate terms with them, and 

consummate sales. 

 Dialing-For-Dollars 

Sales people get leads from marketing initiatives and call out to 

prospects. They make many calls a day and hope to close a few 

sales quickly. 

 Channel Sales 

Sales occur indirectly via alternate channels to market, such as 

through distributors local to a geography. 

Sales people are motivated by means of a commission. A commission 

is a bonus paid to the sales person worth a certain percentage of the 

revenue when the business is closed. 

Often commissions are 100% revenue based. The sales person will 

receive the same commission regardless of whether the deal is 

profitable for the company. There are therefore controls in place 

through sales management to ensure that prices are not discounted too 

heavily and to ensure that only an appropriate amount of time and 

money go into each sale. 

One danger for the software development department is to have their 

people pulled into sales opportunities on a regular basis to assist in the 

sales process. To a certain extent, this is normal. However, unless it is 

carefully controlled, the sales person, motivated by revenues and not 

costs, will demand more time than it is reasonable to spend on any 

given sales engagement. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 The Software Vendor Business Environment 321 

Copyright © 2012 by David A. Penny 

15.6. Client Services 

The client services group is responsible for helping customers get up 

and running with the company’s software. As such, they provide pre-

sales support, training, help desk services, and consulting services. 

They are ultimately responsible for customer satisfaction. 

Often, because of the problem of sales pulling too much resource from 

software development, a pre-sales support team will be formed within 

the client services organization. This group will be composed of 

technically-oriented non-developers who understand the company's 

software very well, and understand the typical process by which a 

customer will implement the software into their environment and make 

the best use of it. 

15.7. Finance and Administration 

The finance and administration group ensures that the company has 

adequate funding, provides oversight over spending by establishing 

budgets, and takes care of the day-to-day operations. Human resources 

usually report here as well. 

15.8. Summary 

In this chapter we set the business context in which the software 

development organization functions. 

In the following chapter, we will see how software development 

integrates into the rest of the organization from a fiscal perspective. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

16. Business Planning 

 

Software development is a cost center. Other departments will take the 

software and sell it and claim the revenues. These are the profit centers. 

A profit center can say "I'll spend this extra money to generate more 

sales and will come out ahead in the end". A cost center cannot ever say 

this. The best they can say is "I'll spend this extra money and produce 

more and better software". The former is easier to judge than the latter. 

What is the meaning of "better"? What is the meaning of "more"? How 

is this measured? How much money should it cost to make "more and 

better" software? What is reasonable? 

The truth is that "more and better" cannot be effectively measured or 

quantified. Nor can a dollar amount be attached to them in any 

meaningful manner even if they could be measured. 

As a consequence, software development organizations must 

construct their arguments for their cost budgets in other ways. 

In this chapter, we will discuss how this is done. 

16.1. Proposals 

Once there was a small software business that lacked effective source 

code control and defect/feature tracking. The development managers 

told their new VP that they had repeatedly asked the CEO for money 

for such systems but that they had always been refused. Within a 

month, the new VP had acquired the necessary budget to put such 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



324 Business Planning  

Copyright © 2012 by David A. Penny 

systems in place. The development managers were stunned! They asked 

what mysterious Svengali-like power the VP possessed to get the 

money they had been repeatedly asking for. He had written a proposal. 

Technical people tend to think that if they clearly need something, they 

should get it. If they don’t get it, the powers that be aren’t really 

interested in seeing the venture succeed and/or are too technically 

illiterate to realize the right thing to do. Whenever something goes 

wrong as a lack of these things they need, they will say "see, I told you 

we needed that". This is unproductive. 

Technical people must convince themselves that unless they put a 

written proposal together, they are not really asking for anything. They 

are just griping. 

Even with a well thought-out and well-researched written proposal, 

nobody can guarantee that the budget for the initiative will come or will 

not be cut back from what the proposal suggests. However, it is safe to 

say that without such a proposal there is no good chance of getting the 

budget. 

Management will not allocate money to a venture that it does not 

believe has been thought through. Doing the necessary research and 

thinking, and then proving it by writing a proposal will provide 

management with the confidence they need to approve expenditures. 

The managers from whom the budget is being requested are 

responsible for that money. If they approve a budget on the basis of 

"trust me" alone, they should probably be removed from that position 

of responsibility. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 325 

Copyright © 2012 by David A. Penny 

A proposal should set out the goal of the project, the expected benefits, 

the monetary costs, the amount of people's time it will take to 

implement and run, and a detailed timeline divided into phases. The 

proposal should list several different means of achieving the goal, 

compare them, and come up with a recommendation. If external 

systems are part of the proposal, the proposal should state which 

systems were considered, compare the strengths and weaknesses of 

each, and give the prices quoted. All costs should be included, both 

setup and ongoing, both in money and in time. 

Following on from a well-written proposal, good managers will want to 

discuss ways of trimming costs from it and achieving the same, or only 

somewhat reduced, results. There are often ways of cutting costs out of 

a proposal without compromising the essence of it. If money is tight, 

the proposal writer should work cooperatively with the manager to see 

what can be done. 

For example, a production-grade server might cost $10,000. 

However, a $5,000 computer might be adequate to run the systems, 

with the only risk being a failed power supply or NIC where the 

production server might have had redundancy. The risk is therefore 

being down for a day. It may be that management is willing to take that 

risk in exchange for the savings. 

While a proposal is an essential part of acquiring budget for an 

initiative, it may be that the timing is unfortunate. The timing is 

unfortunate if for some reason the business feels it cannot afford an 

expenditure at that time. To deal with this requires a rudimentary 

knowledge of what motivates corporate budgets. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



326 Business Planning  

Copyright © 2012 by David A. Penny 

16.2. Corporate Budgets 

Most corporations have more than enough money to fund any given 

initiative at any given time. However, for some reason they always 

seem to say that they don't. To understand this requires understanding 

what motivates corporate budgets. 

Businesses operate to a budget. The budget says, for the fiscal year, 

what are the expected costs on a month-by-month basis, and what are 

the expected revenues. The surplus of revenues (money taken in) over 

costs (money flowing out) are the profits. The percentage fraction of 

revenues that the profit represents is called the profit margin. 

The business goals behind the budget are fueled by the desire to add 

value to the business. The value of a business is how much it can be 

sold for. For a publicly traded business, the public is constantly giving 

their opinion of this as they agree on prices at which to buy and sell the 

company's stock. However, people's opinion on how much the business 

is worth depends upon the business's financial performance (and other, 

less tangible, qualities). 

For privately-held companies, the goal is similarly to build value in 

the business. Financiers will typically use multiples of yearly revenue 

combined in some manner with profit margin to ascribe a value to the 

business. The multiples used will be determined by looking at 

comparable companies and how much they were sold for (or are trading 

at). 

For example, if a private company's revenues are $5M per year, and 

if a company in a similar space with $10M revenue was sold last year 

for $50M, then the multiple of revenues is 5x. This would imply that 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 327 

Copyright © 2012 by David A. Penny 

the business is worth $5M x 5 = $25M, all else being equal. This 

represents the amount of money the owners can sell the business for. 

The best-case scenario for any business is to have shown steady 

revenue growth with healthy profit margins. In the software business, 

healthy profit margins should be in excess of 15% and healthy revenue 

growth should be in excess of 50% per year. 

However, it is not only the final results at the end of the fiscal year 

that count. If revenues or profit are down in a given quarter (the fiscal 

year is divided into four 3-months quarters) that may be taken as a bad 

sign and reduce the value of the business. 

Prudent managers will also be tracking their revenues and profits on a 

month-by-month basis. If a month falls short of projections, that may 

cause a change in behavior in a business. Good managers know that bad 

years are made up from bad months, and will not let a bad month slide 

without taking some action, which may involve cutting spending. 

On the other hand, a particularly good month will not be seen as a 

spending spree. That month will be put in the bank to offset any 

potentially bad months later on in the quarter or the year. If all the rest 

of the year is to-target or exceeding target, the good months will 

accumulate to being a good year. The owners, via executive 

management, may show their gratitude to the employees via bonuses, 

and/or to stock holders via a dividend. 

Thus even though there may be plenty of cash available to pay for an 

initiative, the numbers may be such that it cannot be spent in that 

month, that quarter, or that year. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



328 Business Planning  

Copyright © 2012 by David A. Penny 

16.3. Funding Initiatives 

A good way around the numbers is if cost offsets can be found. For 

example, if a new hire was in a budget, then delaying the hire by 2 

months might save the company $20,000 that can be re-directed to a 

new initiative. 

A development manager may even suggest reducing her staff by one 

in order to pay for an initiative. In a staff of ten, for example, the 

benefits accruing from an initiative might offset the productivity lost by 

letting go the poorest developer (in fact, sometimes this can gain 

productivity!). 

Note however, that money saved in one month is not necessarily 

available for spending in a different month. This must be discussed 

with the business manager. 

Once budget is allocated to a department, if mid-year that department 

can make a case that spending the money differently than was 

originally foreseen is more efficient, then this is a good business 

argument and one that is easy for management to agree to. Efficiency 

here is measured against corporate goals. If the corporate goals that 

were originally agreed upon can be reached to a greater extent with less 

money by spending it differently, then that is more efficient. On the 

other hand, if the argument for the money involves changing one 

corporate goal for another, then this is a more difficult argument to 

make, and may not be successful. 

For example, if the corporate goal was to produce more features 

faster, then trading off a new hire in development for a better regression 

testing system is a more difficult argument to make. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 329 

Copyright © 2012 by David A. Penny 

It may be the case that budget for an initiative is agreed to, but when it 

comes time to commit to spending it the situation may have changed. It 

might be that a different department has overspent for that month
*
, or 

revenues are lower than expected that month, and hence the software 

development department may be asked to delay an initiative or reduce 

its cost further. 

These things happen and the mature manager will take it in stride, 

re-group, and come up with an alternate plan. 

The best way to fund an initiative, however, or to have money in budget 

to trade-off at all, is to get pride of place in an annual corporate budget. 

That involves participating effectively in the budget-making process, 

which involves creating a good software development department 

business plan. 

16.4. The Annual Budget Cycle 

In most companies there is an annual exercise near the end of the fiscal 

year whereby a new budget is arrived at for the following year. This 

initiative is usually driven by the CEO and the VP Finance, and 

involves significant contributions from the rest of the executive team 

(the executives are the top functional managers who report into the 

CEO: VP R&D, VP Sales, VP Marketing, VP Client Services, and so 

forth). 

The purpose of the exercise is to come up with month-by-month 

revenue projections and month-by-month cost projections. The budget 

                                                      
*
 probably the Marketing department 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



330 Business Planning  

Copyright © 2012 by David A. Penny 

is then tracked against actuals as the year proceeds, and the CEO will 

make adjustments as necessary. 

Input for the revenue side comes from the sales and marketing 

functions, together with targets set by the CEO. This is backed by a 

sales and marketing plan with a certain amount of cost in order to drive 

the desired revenue. 

Other departments must also come up with annual business plans 

that clarify the status quo, say how much money is required to maintain 

the status quo, and proposes new projects to improve upon the status 

quo. 

The CEO must weigh the initiatives proposed by all the functional areas 

to come up with a final budget that gets translated into detailed 

financials by the VP Finance. 

In the next section, we shall look at the ingredients that make for a 

business plan for the software development department so that they can 

compete effectively in the CEO's mind for budget. 

16.5. The Software Development Business Plan 

The purpose of the annual business plan (which may be revisited more 

frequently than annually, but will have a horizon of one year) is to help 

the CEO make tradeoff decisions about how much budget to allocate to 

one department or another during the next fiscal year. 

The document should therefore be written in such a fashion so as to 

facilitate this task. The following information should be included. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 331 

Copyright © 2012 by David A. Penny 

16.5.1. Introduction 

The introductory section of the document should restate the mission 

of the department, and then drill down into the details of all the various 

products that are under active maintenance, describe all the various 

platforms that are being supported, describe all the new product 

initiatives that are under way, and any process oriented initiatives that 

were started but have not yet been completed. 

This is done in order that the readers of the document are fully 

apprised of all the significant ongoing commitments required of the 

department. 

The introduction should summarize accomplishments in the department 

during the previous year. This is done so as to give a sense that money 

for new initiatives is well-spent. 

It should self-assess the department in terms of process maturity, 

and indicate where the department needs to improve with regards to 

process maturity and tools. 

Finally, it should give a directional statement indicating where are 

the areas for improvement, and what departmental goals will form the 

basis for the requested budget. 

For example, if the development department has understood from the 

rest of the management team that software quality is an issue, this 

should be identified as a key area for improvement with specific 

initiatives being proposed for improving quality. If on the other hand, 

the VP Software Development understands that the pace of 

development should be increased, they will propose projects that will 

enhance that. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



332 Business Planning  

Copyright © 2012 by David A. Penny 

In order to understand which way the business wants the software 

development department to move, the VP must be in constant 

communications with the rest of the executive team and the CEO to 

formulate ideas for where the department needs to improve in order to 

better support the business. 

Even more importantly, the VP Software Development should have 

considerable customer contact to understand first-hand areas for 

improvement important to customers. This input is valuable for 

suggesting corporate goals that will align with customers and hence 

improve customer satisfaction, product attractiveness, and thus sales. 

It is wise to come to a clear meeting of minds ahead of time with the  

CEO and the rest of the executive team as to where the software 

development department should head. Without this, the business plan 

may make a great case for something the business has no interest in 

doing. 

The annual business plan is a valuable opportunity for the VP and the 

department to re-align themselves with the goals of the company, and 

to make it all explicit and carefully thought through by means of the act 

of writing it down. 

As well, it is a valuable opportunity to reflect on progress over the 

past year, and to decide on departmental goals for progress during the 

next year. 

16.5.2. Baseline Budget 

The baseline budget is the current status quo for the department. If 

nothing is changed (no new initiatives engaged in, no hiring, no firing, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 333 

Copyright © 2012 by David A. Penny 

no new consultants, and so on) then the baseline budget is what would 

be spent throughout the fiscal year. 

The section spelling out the baseline budget should give a 

breakdown of the salaries of staff and how they are allocated both by 

functional area (coding, testing, build, documentation, management, 

and so on), and by product. This requires a spreadsheet that allocates 

people's time to functional areas, and to products. Only the final 

percentage breakdowns should be shown. 

The breakdowns will then require a few paragraphs of explanation, 

describing how the numbers were arrived at. This breakdown is 

especially useful for the CEO to compare budget allocated to product, 

versus revenues expected from products. 

Various staffing ratios (in time, not dollars) should also be produced. 

The ratio of testers to coders (by product) and the ratio of 

documentation to coders (again by product). 

These ratios can provide justifications for projects to increase the 

number of testers, for example. 

The most important part of this section is the baseline budget in dollars 

required to keep the department operating at the same level throughout 

the next year as it was operating at the end of the last month of the 

previous year. 

Staff costs are the most important component of this. The costs 

include both the salary paid to the employee, and the overhead costs 

necessary to pay for their benefit plans and to provide them with the 

tools and environment they need to be productive. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



334 Business Planning  

Copyright © 2012 by David A. Penny 

VP Finance should be able to supply to the department a quick 

estimate of overhead costs. For example, if overhead is 50%, then a 

$60K salary actually costs the company $90K after one takes into 

consideration phone bills, computer leases, rent, utilities, and so on. 

This is called the "fully-loaded" cost. To be better comparable with 

the costs of other initiatives, salaries should use the fully loaded cost. 

However, when high-level budgets are eventually translated into 

detailed budget spreadsheets, the overhead may not be allocated to the 

software development budget (e.g., the phone bill may be paid from the 

General and Administration, or G&A, budget line). 

In a growing company, the baseline budget will typically be higher than 

last year's entire budget. When staff is added, they are added 

throughout the year and hence their salaries are only paid for a part of 

the year. For the next year, however, those staff will be paid for the 

entire year. 

The importance of the baseline is to show the CEO that the baseline is 

the bare minimum budget that can be considered unless a contraction is 

desired. It indicates to the CEO that fiscal support for the department's 

growth and improvement must be incremental to the baseline (which is 

already higher than last year's budget). If the CEO allocates $0 above 

the baseline, he is indicating no fiscal support for improvements in the 

department. He may still expect improvements via increased efficiency, 

but will be providing no fiscal support. 

It also helps to make clear to the CEO and the rest of the executive 

team how money is currently being allocated. Often, when the team 

sees how software development resources are divided out into the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 335 

Copyright © 2012 by David A. Penny 

various company commitments, it becomes clear how little resource is 

allocated to key new business initiatives. Desiring no cuts in the other 

commitments, this is a powerful argument for more budget for the new 

initiatives. 

16.5.3. Organizational Structure 

The business plan should have a section describing the current 

organizational structure of the department. 

It should identify roles and titles, and explain them in terms of their 

scope of responsibility. 

If the department is sufficiently small (less than about 50), the 

organizational structure can include all staff. If larger, then only down 

to the management level. This helps other executives to see what the 

job responsibilities are for the various people they may encounter at 

company picnics. 

If changes in the organizational structure are contemplated, then 

these should be shown (including where proposed new management 

hires would exist in the responsibility structure). 

Executive management is a lot about "responsibility design". The VP 

should divide the department into sub-groups, each with a manager 

(usually titled "Director") as its leader. Each of the sub-groups must be 

assigned a scope of responsibility. The Directors of the sub-groups 

must be given appropriate leeway to succeed in their responsibilities. 

The VP will generally assist the Directors and be closely involved with 

their decisions to further sub-divide their areas into smaller sub-groups, 

each managed by its own manager reporting to the Director. This 

repeats until the groups have five or six people. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



336 Business Planning  

Copyright © 2012 by David A. Penny 

The VP must think in terms of handing general responsibility for an 

area to a Director. Consequently, Directors must be hired who are 

capable of taking on that responsibility without hand-holding by the 

VP. As the organization grows, new areas of responsibility will come 

into existence, and these must be parceled out, resulting in re-

organizations. As well, certain responsibilities will inevitably slip 

through the cracks, and nobody will take them on. As soon as the VP 

notices a situation like this, she must take action to re-assign or expand 

areas of responsibilities so that this lapse does not recur. 

The annual business plan is a valuable time for the VP to reflect upon 

the organizational design of the department, and to consider changes to 

it. 

16.5.4. New Project Summary 

The goal of the annual business plan is to clearly enunciate the 

baseline budget for the new year, and then to propose a series of 

projects on top of that for the next year. 

These projects could involve hiring staff, hiring managers, buying 

hardware, engaging consultants, buying software, and so on. However, 

they should not be stated in this manner. The new projects should be 

stated in terms of their benefit to the company. 

For example, "improve co-ordination of documentation" project 

might involve hiring a documentation manager and buying some new 

software tools. Naming projects in these terms helps clarify their 

alignment with corporate goals. If inconsistency in product 

documentation is the problem, a project named in this manner will be 

more resonate than one called "hire more documenters". It makes it 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 337 

Copyright © 2012 by David A. Penny 

clear that the goal is not in the hiring. Rather, that the goal is to solve 

the problem, which as a component might involve hiring. 

As another example, a project called "increase the pace of product X 

development by 20%" might call for four new coders to be hired into 

the group along with two new testers and one new documenter (to keep 

the ratios status-quo). 

A project called "improve quality" might involve hiring six new 

testers to bring the ratios to 2:1 coders to testers across the board. 

Each of these projects should be named in this fashion and listed, with 

their associated costs given. The costs should be given in three parts: 

 expenses this year 

 capital spending this year 

 implied baseline for next year 

Expenses this year are the salaries, overhead, and consulting fees to be 

paid out during the budgetary year. For example if a project calls for a 

new manager to be hired midway through the year at a salary of 

$100,000 (implying a fully loaded cost of $150,000, for example), then 

the expense in the first year is only half that, or ($75,000). 

Capital spending is money spent purchasing hardware and software. 

This kind of money is different than expense because finance can 

spread out the expense impact over several years (usually three for 

hardware and software). For example, if $30,000 worth of new 

hardware is to be purchased mid-year this corresponds to an expense of 

$5,000 in the first fiscal year. The hardware can be "paid for" over three 

years. The first six months of having it will therefore cost one sixth of 

that, or $5,000. Capital should be identified separately, however, 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



338 Business Planning  

Copyright © 2012 by David A. Penny 

because there may be good business reasons to conserve capital 

different than the reasons for keeping expense down. 

The final part is the amount of cost this project adds to the baseline. 

If the project involves hiring a consultant for a few months during the 

year, the impact on next year's baseline budget is $0. If however, the 

project involves hiring a new coder at $120,000 fully loaded cost in the 

last month of the year, the impact on the current year's budget is only 

$10,000. The amount it adds to next year's baseline is, however, the full 

$120,000. 

The projects should therefore be given in a list, with business-relevant 

titles, and with the spending broken out as identified. 

There should be a grouping of projects into related categories and an 

analysis. For example, projects can be grouped as "pace increasing 

projects", "quality increasing projects", and "management projects" and 

the costs shown by way of these categories. 

This way the business plan starts to show how the proposed projects 

mesh with the corporate objectives stated in the introduction, and in 

what proportion budget is requested for each. 

16.5.5. Project Details 

Following the summary, the business plan should then go into detail 

on each of the proposed projects. 

It should explain the project in more detail, explain how the money 

will be spent, and justify how spending that money will achieve the 

goals of the project. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 339 

Copyright © 2012 by David A. Penny 

16.6. Establishing The Budget Request 

The VP should have a good idea before writing the annual business 

plan the approximate size the software development budget is expected 

to be for the next fiscal year. 

There will generally be a series of meetings leading up to the 

initiation of the budget process. In these meetings, the executive team 

will come to an agreement on how large expected revenues need to be 

next year, and what is possible to achieve. 

Once the expected revenues are decided, a target for profit should 

also be decided. Subtracting the profit from the revenue yields the 

expenses. Depending upon the business climate and the kind of 

company the organization wishes to be, the executive team will decide 

upon a percentage of the cost budget to allocate to software 

development (called R&D for consistency with other types of technical 

organizations – financial people usually do not distinguish between the 

types.). 

For example, suppose the revenue target is $100M for the year and 

the target profit margin is 15%. This leaves a cost budget of $85M. If 

R&D expenditures are 18%, the target budget for the R&D group will 

be $15M. If baseline is at $13M, that will leave $2M for new initiatives 

to improve upon the baseline. 

In these early meetings, the largest influencer of the R&D budget will 

be the percentage of costs allocated to R&D. The well-prepared VP will 

come into such discussions armed with information about what 

percentage comparable companies, and especially competitors, are 

spending on R&D. As well, the executive team will debate what is the 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



340 Business Planning  

Copyright © 2012 by David A. Penny 

appropriate amount of spending for R&D for the company. In many 

cases, sales and marketing executives will be some of the most vocal 

supporters for more R&D spending, as new products drive new 

revenues. 

But be careful what you wish for. If the VP R&D gets the extra 

budget, there will need to be something extra to show for it at the end 

of the year. Otherwise, those formerly supportive sales and marketing 

VP's will be lobbying for a change in R&D management! 

The calculation above provides a target for the R&D budget. Generally, 

the business plan should include sufficient projects to exceed that target 

budget by 10% or so. If the CEO suddenly feels the need to increase 

R&D spending, there should be projects there. 

On the other hand, the plan should also clearly indicate priorities. 

Projects making up target plus 10% should be proposed, but the plan 

should show which projects to keep (or how to scale them down) if at 

target, and if at 5% or 10% below target. There is no need to be 

concerned with making it too "easy" for the CEO to cut the R&D 

budget. The CEO will cut if she needs to. Better to be a team player and 

make it easy to see what is given up if 5% or 10% is cut. 

16.7. Finalizing the Budget 

Once the annual business plan from the software development 

department is available, the CEO will take that and other departments' 

business plans and create a high-level budget from them. When the 

numbers begin coming together into a larger picture, the CEO will 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Business Planning 341 

Copyright © 2012 by David A. Penny 

typically start feeling conservative, and will ask all the executives to 

take a second pass and cut out, say 5% of the budget. 

After this, one department may make a more compelling case for not 

being cut than the others. Or, the CEO may have her own initiative in 

mind for, say, the marketing department, or for new business 

development, for example. In this case, the R&D department may be 

asked to cut further. 

During this time, the VP R&D must be making the case for why the 

money is required in order to fend off initiatives from other 

departments and protect forward momentum in software development. 

Good relations and frequent communications with the CEO is necessary 

for this. 

Towards the end of the process, the VP Finance will create detailed 

budget spreadsheets from the high-level plan formulated by the CEO. 

The executives will each be asked to check to ensure that the budget 

they have negotiated with the CEO is accurately reflected in the 

detailed spreadsheets. It never is precisely, and the VP R&D must work 

with the VP Finance and the CEO to smooth things out and bring 

everything in-line. 

16.8. Summary 

In this chapter we looked at how a software development organization 

integrates into a business from a financial perspective. We looked at the 

act of writing proposals, and how department budgets are made. 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

17. Concluding Remarks 

This book has covered a lot of ground. In it is a lot of what can make a 

software development team and its managers successful. 

We covered the requirements to practice a disciplined, process-oriented 

approach to software development that integrates well into the business 

environment. These requirements included the essential practices, 

which were, 

 Source Code Control 

 Defect and Feature Tracking 

 Reproducible Builds 

 Automated Regression Testing 

 Agile horizon planning 

 Feature Specifications 

 Architectural Control 

 Effort Tracking 

 Process Control 

 Business Planning 

We concentrated especially on the agile horizon planning framework, 

wherein the common-sense balance between effort required and effort 

available is maintained throughout the release cycle. 

It is our fondest desire that readers make use of the knowledge and 

experience in this book to elevate their chosen profession of software 

development. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

Appendix A Sample 

Deterministic Agile Horizon 

Plan 

The first sample agile hoirizon plan is a non-stochastic presentation that 

assumes all estimates are at an 80% worst-case level. Appendix B will 

present a stochastic version. Following the two plans, Appendix C 

provides a glossary of the underlined terminology used in the plans. 

These plans can act as models for an organization building systems 

to implement the agile horizon planning methodology. 

The plan is for a fictitious software company that makes and sells 

software that simulates the movement of stars and planets in the night 

sky 

Appendix C should be referred to regularly as these plans are read for 

an indication of the meaning of the various terms. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



346 Sample Deterministic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

Planetaria 2.4 Agile Horizon Plan  
 

 

 

 
Planned Release Dates 

 

Release: 2.4 

Design Start:  Mon Sep 5 

Code Start:  Mon Oct 30 (38 workdays)  

Development Cut:  Fri Feb 16 (74 workdays)  

Beta Availability:  Fri Mar 23 (25 workdays)  

General Availability:  Fri Jun 1 (49 workdays)  

 

 

 

 
Mission 
This release will be a significant upgrade from 2.3. The ability to view 

the sky from various locations in the universe, the ability to cope with 

orbiting entities, and the ability to simulate the passage of time are three 

of the major upgrades in this release. Many other features will be 

included as well. This release will satisfy many of users' most frequent 

requests, and satisfy a key NASA request for realistically rendered 

planets. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.design
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.code
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.alphatest
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.betatest
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.betatestend
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23m


 Sample Deterministic Agile Horizon Plan 347 

Copyright © 2012 by David A. Penny 

 

 
Current Status Summary 

 

Estimates:  are made at an 80% worst case level.  

As at: 
EOD Fri, Nov 10 2000 

(Coding phase: 10 of 74 working days elapsed).  

 

Remaining coding capacity: 394 effective coder days 

Average coders: 6.8 effective coders per day 

A+B Features 

Remaining coding 

requirement: 
400 effective coder days 

Delta: -6 effective coder days 

A Features Only 

Remaining coding 

requirement: 
334 effective coder days 

Delta: 60 effective coder days 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23esd
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.rc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.A+BFeatures
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.AFeaturesOnly
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d


348 Sample Deterministic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

 

 
Capacity 

 

Estimates:  are made at an 80% worst case level.  

As at: 
EOD Fri, Nov 10 2000 

(Coding phase: 10 of 74 working days elapsed).  

 

Coder Class Days Vacation 
Work 

Factor 

Effective 

Days 

To 

Date 

w 

(act.) 
A A+B 

Philip  Mgr. 64 5 0.1 5.9 1 0.1 -0.1 -0.1 

Tracy Arch. 64 4 0.2 12 2 0.2 +10 +3 

Sam Lead 64 5 0.4 23.6 5 0.5 +4.6 -1.4 

Al Lead 64 5 0.4 23.6 4 0.4 -1.4 -1.4 

Gil Lead 64 5 0.3 17.7 3 0.3 +0.7 +0.7 

Chris Coder 64 4 0.6 36 6 0.6 +5 -3 

Shakur Coder 64 0 1.2 76.8 12 1.2 +10.8 -1.2 

Helen Coder 64 5 .6 35.4 7 0.7 +7.4 -2.6 

Ted Coder 50 4 1 46 9 0.9 +19 +11 

Cal Coder 64 5 0.6 35.4 5 0.5 +4.5 -1.6 

Britney Coder 60 3 0.7 39.9 7 0.7 +3.9 +3.9 

Bob Coder 64 4 0.7 42 7 0.7 +6 -2 

totals:  49 6.8 394 68 6.8 +71.3 +6.7 

 Unassigned: -11 -11 

 Final Totals: +60.3 -5.7 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23esd
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.cl
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.v
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c.A
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c.A+B
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.tot
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.u
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.f


 Sample Deterministic Agile Horizon Plan 349 

Copyright © 2012 by David A. Penny 

 

 
Requirement 

 

Estimates:  are made at an 80% worst case level.  

As at: 
EOD Fri, Nov 10 2000 

(Coding phase: 10 of 74 working days elapsed).  

 

fid description prereq prio assigned status 
to 

date 
remain spec design 

345 show angular separation  A al DONE 4  y y 

304 Field-of-View indicators  A helen CC 7  y y 

234 NGC/IC objects  A brit WIP 7 18 y y 

389 time simulation  A sam, cal WIP 10 27 y y 

230 change location  A helen NYS  5   

704 set location to city 230 A bob WIP 7 3 y y 

298 set elevation 230 A 
helen, 

cal 
NYS  21 y p 

239 set location to planet 230 A sam, brit NYS  19 p y 

456 set location from map 230 A bob NYS  11 y y 

301 orbit framework  A bob, al NYS  32 y y 

303 orbit display 301 A chris WIP 6 9 p y 

906 orbit editor 301 A shak WIP 12 8 y p 

959 proper motion  A phil, brit WIP 1 14 y y 

508 selective constellations  A tracy WIP 2 2 y y 

102 images for objects  A shak NYS  10   

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23esd
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.f
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.pr
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.sp
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.de
file:///C:/Documents%20and%20Settings/penny/Desktop/spec.html
file:///C:/Documents%20and%20Settings/penny/Desktop/design.html


350 Sample Deterministic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

fid description prereq prio assigned status 
to 

date 
remain spec design 

294 show planets 102 A ted WIP 9 27 y y 

459 rendered planets 294 A good WIP 3 17 y p 

873 planet atmosphere 459 A shak NYS  8  y 

939 custom images 102 A shak NYS  5 y p 

986 constellation boundaries  A  NYS  8 y y 

934 classical constellation  A al NYS  15 y  

904 clip movies  A chris NYS  22 y  

848 H-R diagram  A helen NYS  15 x  

509 night vision  A shak NYS  17 y y 

937 absolute motion  A  NYS  3 y p 

394 light pollution  A shak NYS  3 y y 

367 limit stars by distance  A shak NYS  15 y y 

A Totals: 1/27 68 334 78% 63% 

735 comet database 303 B chris, cal NYS  15 y y 

640 milky way display  B helen NYS  10   

491 guides framework  B shak NYS  12 y p 

493 Galactic guides 491 B ted NYS  4 p p 

412 Equatorial guides 491 B ted NYS  4 p p 

458 Ecliptic guides 491 B sam NYS  6   

345 bookmarks to Web  B 
tracy, 

bob 
NYS  15 y y 

B Totals: 1/34 68 400 71% 56% 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.f
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.pr
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.sp
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.de


 Sample Deterministic Agile Horizon Plan 351 

Copyright © 2012 by David A. Penny 

 

 
Document Version Control Information 

 

version: 2.345  

last plan change: Mon Nov 6 11:47 2000 DAP 

last approval: Wed Nov 8 13:21 2000 DAP 

last update: Fri Nov 10 18:34 2000 DAP 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.v
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.lpc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.la
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.lu


Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

Appendix B  Sample 

Stochastic Agile Horizon Plan 

This second sample is a stochastic agile horizon plan that explicitly 

states the means and standard deviations for Normally distributed 

estimates. 

As for the deterministic plan, Appendix C should be referred to 

regularly as these plans are read for an indication of the meaning of the 

various terms. 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



354 Sample Stochastic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

Planetaria 2.4 Agile Horizon Plan 
 

 

 
Planned Release Dates 
 

Release: 2.4 

Design Start:  Mon Sep 5 

Code Start:  Mon Oct 30 (38 workdays)  

Development Cut:  Fri Feb 16 (74 workdays)  

Beta Availability:  Fri Mar 23 (25 workdays)  

General Availability:  Fri Jun 1 (49 workdays)  

 

 

 
Mission 
This release will be a significant upgrade from 2.3. The ability to view 

the sky from various locations in the universe, the ability to cope with 

orbiting entities, and the ability to simulate the passage of time are three 

of the major upgrades in this release. Many other features will be 

included as well. This release will satisfy many of users' most frequent 

requests, and satisfy a key NASA request for realistically rendered 

planets.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.design
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.code
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.alphatest
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.betatest
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.betatestend
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23m


 Sample Stochastic Agile Horizon Plan 355 

Copyright © 2012 by David A. Penny 

 

Current Status Summary 
 

Estimates:  are Normal with the given mean and standard deviation.  

As at: EOD Fri, Nov 10 2000 (Coding: 10 of 74 days elapsed).  

 

 mean sdev 

Remaining coding capacity: 394 effective coder days ± 28 

Average coders: 6.8 
effective coders per 

day 
± 0.5 

A+B Features 
Requirement: 400 effective coder days ± 16 

Delta: -6 effective coder days ± 32 

A Features Only 
Requirement: 334 effective coder days ± 14 

Delta: 60 effective coder days ± 31 

 

A+B Features 

Confidence: 43% 50% 80% 95% 99% 

DCUT Slip (workdays): on-time  -1 -5 -9 -12 

Projected GA: Jun 1 Jun 5 Jun 15 Jun 27 Jul 5 

A Features Only 

Confidence: 97% 50% 80% 95% 99% 

DCUT Slip (workdays): on-time  +9 +5 +1 -2 

Projected GA: Jun 1 May 8 May 18 May 30 Jun 7 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23ess
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.rc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.A+BFeatures
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.AFeaturesOnly
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.aab
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.cs
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.aab
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.cs
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.p


356 Sample Stochastic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

 

Capacity 
 

Estimates:  are Normal with the given mean and standard deviation.  

As at: 
EOD Fri, Nov 10 2000 

(Coding phase: 10 of 74 working days elapsed).  

 

Coder Class Days Vacation 
Work 

Factor 
 Effective Days  

To 

Date 
w(act.)  A A+B 

Philip  Mgr. 64 5 ± 1 0.1 ± 0.1  5.9 ± 3  1 0.1  -0.1 -0.1 

Tracy Arch. 64 4   0.2 ± 0.1  12 ± 3.6  2 0.2  +10 +3 

Sam Lead 64 5 ± 1 0.4 ± 0.1  23.6 ± 5.9  5 0.5  +4.6 -1.4 

Al Lead 64 5   0.4 ± 0.1  23.6 ± 5.9  4 0.4  -1.4 -1.4 

Gil Lead 64 5   0.3 ± 0.1  17.7 ± 4.7  3 0.3  +0.7 +0.7 

Chris Coder 64 4   0.6 ± 0.1  36 ± 5.4  6 0.6  +5 -3 

Shakur Coder 64 0   1.2 ± 0  76.8 ± 0.6  12 1.2  +10.8 -1.2 

Helen Coder 64 5 ± 1 .6 ± 0.2  35.4 ± 11.8  7 0.7  +7.4 -2.6 

Ted Coder 50 4 ± 2 1 ± 0.4  46 ± 18.5  9 0.9  +19 +11 

Cal Coder 64 5 ± 1 0.6 ± 0.2  35.4 ± 11.8  5 0.5  +4.5 -1.6 

Britney Coder 60 3 ± 2 0.7 ± 0.1  39.9 ± 4.8  7 0.7  +3.9 +3.9 

Bob Coder 64 4 ± 1 0.7 ± 0.1  42 ± 4.9  7 0.7  +6 -2 

totals:  49 ± 3.6 6.8 ± 0.5  394 ± 28  68 6.8  +71.3 +6.7 

 Unassigned: -11 -11 

 Final Totals: +60.3 -5.7 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23ess
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.cl
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.v
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c.A
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.c.A+B
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.tot
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.u
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.f


 Sample Stochastic Agile Horizon Plan 357 

Copyright © 2012 by David A. Penny 

 

 
Requirement 

 

Estimates:  
are Normal with the given mean and standard 

deviation.  

As at: 
EOD Fri, Nov 10 2000 

(Coding phase: 10 of 74 working days elapsed).  

 

fid description prereq prio assigned status 
to 

date 
remain spec design 

345 show angular separation  A al DONE 4    y y 

304 Field-of-View indicators  A helen CC 7    y y 

234 NGC/IC objects  A brit WIP 7 18 ± 1 y y 

389 time simulation  A sam, cal WIP 10 27 ± 4 y y 

230 change location  A helen NYS  5 ± 1   

704 set location to city 230 A bob WIP 7 3   y y 

298 set elevation 230 A helen, cal NYS  21 ± 4 y p 

239 set location to planet 230 A sam, brit NYS  19 ± 2 p y 

456 set location from map 230 A bob NYS  11 ± 0.5 y y 

301 orbit framework  A bob, al NYS  32 ± 5 y y 

303 orbit display 301 A chris WIP 6 9 ± 2 p y 

906 orbit editor 301 A shak WIP 12 8 ± 0.5 y p 

959 proper motion  A phil, brit WIP 1 14 ± 1 y y 

508 selective constellations  A tracy WIP 2 2   y y 

102 images for objects  A shak NYS  10 ± 0.5   

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23ess
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.f
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.pr
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.sp
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.de
file:///C:/Documents%20and%20Settings/penny/Desktop/spec.html
file:///C:/Documents%20and%20Settings/penny/Desktop/design.html


358 Sample Stochastic Agile Horizon Plan  

Copyright © 2012 by David A. Penny 

fid description prereq prio assigned status 
to 

date 
remain spec design 

294 show planets 102 A ted WIP 9 27 ± 2 y y 

459 rendered planets 294 A good WIP 3 17 ± 3 y p 

873 planet atmosphere 459 A shak NYS  8 ± 4  y 

939 custom images 102 A shak NYS  5 ± 0.2 y p 

986 constellation boundaries  A  NYS  8 ± 1 y y 

934 classical constellation  A al NYS  15 ± 3 y  

904 clip movies  A chris NYS  22 ± 10 y  

848 H-R diagram  A helen NYS  15 ± 1 x  

509 night vision  A shak NYS  17 ± 5 y y 

937 absolute motion  A  NYS  3 ± 0.3 y p 

394 light pollution  A shak NYS  3 ± 0.3 y y 

367 limit stars by distance  A shak NYS  15 ± 1.5 y y 

A Totals: 1/27 68 334 ± 14 78% 63% 

735 comet database 303 B chris, cal NYS  15 ± 1 y y 

640 milky way display  B helen NYS  10 ± 2   

491 guides framework  B shak NYS  12 ± 4 y p 

493 Galactic guides 491 B ted NYS  4 ± 0.3 p p 

412 Equatorial guides 491 B ted NYS  4 ± 0.3 p p 

458 Ecliptic guides 491 B sam NYS  6 ± 2   

345 bookmarks to Web  B tracy, bob NYS  15 ± 5 y y 

B Totals: 1/34 68 400 ± 16 71% 56% 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.f
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.pr
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.sp
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.de


 Sample Stochastic Agile Horizon Plan 359 

Copyright © 2012 by David A. Penny 

 

 
Document Version Control Information 

 

version: 2.345  

last plan change: Mon Nov 6 11:47 2000 DAP 

last approval: Wed Nov 8 13:21 2000 DAP 

last update: Fri Nov 10 18:34 2000 DAP 

 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.v
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.lpc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.la
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.lu


Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 

Copyright © 2012 by David A. Penny 

Appendix C Agile Horizon 

Plan Definitions 

 

 

Agile Horizon Plan Definitions 
 

The agile horizon plan is the company's current understanding of 

what features are going into the software by when, how many 

effective developers are deployed on it, and the current status of the 

development effort (ahead, behind, on-time).  

 

 

Planned Dates 
 

Key milestone dates for the plan.  

 

release  The release designator for the software release being 

planned. The first digit is changed when a more 

substantial upgrade is being planned (usually 

accompanied by a larger marketing campaign - once 

every couple of years or so). A change in the second 

digit is used to denote a more standard feature release 

(every six to nine months or so).  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



362 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

design start  The date detailed specification and high-level design 

activity starts. Before this date, features have only 

been described to the point of a one paragraph 

description. Based on these initial descriptions, initial 

sizings were made and an initial plan was put together. 

At design start, each of the features is specified in 

detail, and preliminary software designs are proposed 

where needed.  

code start  By this date, most of the features should have been 

fully specified and designed (if appropriate). The 

developers then begin coding and unit testing. The 

delta in brackets refers to the number of working days 

for the phase ending on this date (in this case, design).  

development 

cut  

Also referred to as "dcut". The date at which coding 

ends and system test and debug begins. We test if 

development cut is achieved by asking each developer 

if they know of any remaining code that needs to be 

written for the release to be feature complete. If the 

answers are all "no", then dcut is achieved. The delta 

in brackets refers to the number of working days for 

the phase ending on this date (in this case, coding).  

beta 

availability  

The date the release can be shipped as a beta. Prior to 

this date the release was being alpha tested. As of this 

date, the release is not perfect, but it is no longer 

embarrassing to let some others have a look with the 

caveat that it is not to be used in production. The delta 

in brackets refers to the number of working days for 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Plan Definitions 363 

Copyright © 2012 by David A. Penny 

the phase ending on this date (in this case, alpha test).  

general 

availability  

The date the release can be made generally available 

to new and existing customers. The significance of this 

date is that prior to it, the previous release of the 

software was shipped to all new customers. After this 

date, the new release will be shipped to all new 

customers. The delta in brackets refers to the number 

of working days for the phase ending on this date (in 

this case, beta test).  

 

 

Mission 

A paragraph that describes the key goals for this release.  

 

 

Current Status Summary 

A summary of where the release stands in terms of its chances of 

being shipped to schedule.  

 

We divide the features in the release into an essential "A-list" and a 

nice-to-have "B-list" (see priority of features). We then present the 

chances of being on-time for both the A-list and the A+B-list. Ideally, 

the chances of delivering the A-list on-time should be high, but the 

chances of delivering the B-list as well should be low, but still 

attainable.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p%23r.p


364 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

 

estimates 

(stochastic)  

All measures stated as mean±sdev in this section 

are assumed to be stochastic variables whose 

distribution is Normal with the given mean and 

standard deviation. The mean is a number whereby 

half the time we will expect the realized actual 

number to be over, and half the time under. The 

quantity mean+sdev is a number whereby we 

expect the realized actual number to be less than or 

equal to it 84% of the time.  

 

There are many other possible ways of giving 

estimates. For example, giving a 40% best case 

and 60% worst case.  

 

For less-sophisticated, easier to get going agile 

horizon planning, much of the benefit is available 

from using only a single number for an estimate. 

We recommend that those new to agile horizon 

planning start with this approach. In this case, 

there should be agreement when soliciting the 

estimates that they should all be comparable. For 

instance, that they should all be 80% worst case 

estimates (i.e., the actual number is expected to be 

worse only 20% of the time). In this case, when 

the agile horizon plan balances capacity and 

requirement, it will then indicate there will be a 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.



 Agile Horizon Plan Definitions 365 

Copyright © 2012 by David A. Penny 

better than 80% chance of hitting the dates.  

estimates 

(deterministic)  

When the plan is given in a deterministic mode, all 

estimates are assumed to be taken on a worst case 

basis, with the confidence level described in this 

field.  

as at  The plan is up-to-date as-at the date given. Also 

indicated is the current phase we are in, the 

number of working days elapsed in that phase, and 

the total length of the phase in working days.  

 

A plan change would not modify this date. Rather, 

a plan status update would modify the date. A 

status update is performed by re-estimating the 

stochastic quantities given an advance in time.  

  - To re-estimate feature requirement, we first 

determine the status of each feature (whether the 

feature is done, work-in-progress, or not-yet-

started). For each work-in-progress feature we ask 

the assigned coders how much time they have 

spent to date on it, and a re-estimate of how much 

remaining effort they think it will take.  

  - To re-estimate coder capacity we decrease the 

available days, and ask coders to re-estimate their 

vacation and work factor, possibly using 

information as to what their realized actual work 

factor has been to-date during the coding phase.  

average coders  The average number of dedicated coders available 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23vci.lpc%23vci.lpc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r%23r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s%23r.s
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c%23c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.d%23c.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.v%23c.v
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.a%23c.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.a%23c.a


366 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

per-day during the remainder of the coding phase. 

A "dedicated coder" is an idealized worker who 

spends 8 uninterrupted hours each and every 

working day working at nothing more than coding 

new features into this release. Flesh-and-blood 

coders are not expected to live up to this ideal. The 

units are in dedicated coder equivalents per day.  

remaining coding 

capacity  

The total number of dedicated coder days (see 

average coders) available during the remainder of 

the coding phase.  

remaining coding 

requirement  

The total number of dedicated coder days (see 

average coders) required for the remainder of the 

coding phase to implement all the features in the 

plan.  

delta  Remaining coding capacity less remaining coding 

requirement. Negative delta indicates a danger of 

slipping the dcut date by this many effective coder 

days divided by the average number of effective 

coders available per day.  

A+B features  Remaining coding requirement and delta for all the 

features listed in the plan, including both the more 

essential features (the A list) and the less essential 

features that it would not be overly painful to drop 

from the plan if the need arises (the B list) (see 

priority of features).  

A features only  Remaining coding requirement and delta for just 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.rc%23css.rc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.dc%23prd.dc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d%23css.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.r%23css.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d%23css.d


 Agile Horizon Plan Definitions 367 

Copyright © 2012 by David A. Penny 

the essential features listed in the plan (the A list), 

and excluding the less essential features that it 

would not be overly painful to drop from the plan 

if the need arises (the B list). (see priority of 

features).  

confidence  Various confidence levels. We would expect to 

slip dcut or the projected GA date by no more than 

the indicated amounts, with this level of 

confidence.  

DCUT slip  Estimates with the given level of confidence for 

the worst-case number of working days expected 

to slip (-'ve numbers) or be ahead of (+'ve 

numbers) the planned dcut.  

projected 

generally 

available  

Estimates with the given level of confidence for 

the worst-case generally available date for the 

release. This is computed by assuming that any 

slip in dcut is augmented by a slip in the following 

phases in order to respect the inter-phase elapsed 

workday ratios.  

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.cs%23css.cs
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.p%23css.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.c%23css.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.dc%23prd.dc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.c%23css.c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.ga%23prd.ga


368 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

 

Capacity 
 

A breakdown of how the available coding resource is computed, 

along with a collection of time spent to-date by coders, and an 

indication of how balanced is the remaining workload.  

 

coder  The name of the coding resource. Anybody on this list is 

capable of, and available to, do coding work on this 

release.  

class  The type of the coder. Certain types of coding resource 

would be expected to have different ranges of work 

factors than others. This is (in some way) an explanation 

of the work factor.  

days  Working days remaining during the coding phase to 

work on the release. Coders not available for particular 

days in the coding phase (with certainty) will have lower 

numbers. The maximum is the number of days left until 

dcut.  

vacation  An estimate of the number of vacation days for this 

coder during the remainder of the coding phase.  

work factor  An estimate of a multiplicative factor used to convert 

working days into dedicated coder day equivalents for 

the remainder of the coding phase. By definition, on 

average during the coding phase this coder is expected to 

put in 8 hours times this work factor of uninterrupted 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.w%23c.w
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23prd.dc%23prd.dc
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac


 Agile Horizon Plan Definitions 369 

Copyright © 2012 by David A. Penny 

hours working on nothing but coding new features into 

this release.  

 

The work factor does not take into account any 

differences in productivity (this is accounted for in the 

feature estimates that take into account who will be 

assigned to each given feature).  

effective 

days  

An estimate of the total number of dedicated coder day 

equivalents this coder will work during the remainder of 

the coding phase.  

to date  The (measured) actual number of dedicated coder day 

equivalents that this coder has put in so far during the 

coding phase. This "to date" and the "to date" on the 

requirement side are two different ways of slicing the 

same effort spent, similar to the two entries in a double-

entry accounting balance sheet.  

w (act.)  Based on the to date measure, the actual measured work 

factor for this coder so far during the coding phase.  

A features  For the given coder, the difference between their 

available effective days and the number of effective days 

assigned to them in the plan for the remainder of the 

coding phase. Negative numbers indicate an over-

commitment. This column is for the A priority features 

only.  

A+B 

features  

For the given coder, the difference between their 

available effective days and the number of effective days 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.e%23r.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.t%23r.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r%23r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.e%23c.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.e%23c.e


370 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

assigned to them in the plan for the remainder of the 

coding phase. Negative numbers indicate an over-

commitment. This column is for both the A and B 

priority features.  

totals  The sums of the columns. The ± numbers are the square 

root of the sums of the squares.  

unassigned  The number of dedicated coder days for features that 

have not yet been assigned to any coder. Always 

negative.  

final totals  The total over or under -commitment of dedicated coder 

days for all features in plan. These must tally with the 

delta measures in the current status summary section.  

 

 

 
Requirement 
 

A list of what features are planned to be in the release with estimates 

for the number of effective coding days required to complete them. 

Also includes additional information on the features, such as their 

priority and current status.  

 

fid  A unique feature identifier used for cross-referencing 

back to this feature.  

description  A brief description of the feature, intended to be an 

evocative mnemonic.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.p%23r.p
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.d%23css.d
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css%23css


 Agile Horizon Plan Definitions 371 

Copyright © 2012 by David A. Penny 

pre-req  Indicates a dependency amongst features for the purposes 

of agile horizon planning. If any of the listed pre-

requisite features are removed from plan, then the 

features listing them must either be removed as well or 

have their scope changed significantly.  

priority  A letter-grade assigned for the priority of a feature. Letter 

"A" is the highest priority. If possible, all higher priority 

features should be completed before any work is begun 

on lower-priority features. "A" features are assumed to be 

very painful to have to remove from the plan. "B" 

features are considered expendable in a crunch, but nice 

to have if they can be managed.  

promised  A list of (external) customers who have been promised 

this feature and are counting on its delivery.  

assigned  The coders that are assumed will work on this feature. 

The initial sizing estimate and remaining estimate is 

made assuming that this set of coders will be working on 

the feature. If the set of assigned coders changes, the 

sizing estimate should be re-considered. If this field is 

blank, no decision has yet been made and the sizing 

estimates assume the average coder's productivity.  

initial  The initial estimate (as at the start of coding) of the total 

number of dedicated coder days it will take for the 

assigned coders to complete this feature during the 

entirety of the coding phase.  

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.e%23r.e
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a


372 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

The purpose of this column is to act as a historical 

baseline for comparing estimates against actuals. It 

should represent the best sizing available at the start of 

coding. If subsequent to the start of coding the scope of 

the feature is explicitly modified, this column may be 

adjusted accordingly to remain comparable. All other 

changes in sizing estimates after coding start (including 

assigned personnel changes and refined estimates) should 

be made into the remaining column (even if no work to-

date has been done on the feature).  

status  One of four possible status values for the feature.  

- DONE: The feature has been fully coded, unit tested, 

and reviewed.  

- CC: (Code Complete) The feature has been fully coded 

and unit tested.  

- WIP: Work-in-progress.  

- NYS: Not yet started.  

Generally features that are NYS are vulnerable for 

removal from the plan.  

to date  The (measured) actual number of dedicated coder day 

equivalents that has been put into working on this feature 

from the start of the coding phase to the as-at date. This 

"to date" and the "to date" on the capacity side are two 

different ways of slicing the same effort spent to-date, 

similar to the two entries in a double-entry accounting 

balance sheet.  

remaining  A re-estimate of the number of dedicated coder days it 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.r%23r.r
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c.t%23c.t
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23c%23c
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23css.ac%23css.ac


 Agile Horizon Plan Definitions 373 

Copyright © 2012 by David A. Penny 

will take for the assigned coders to complete this feature 

during the remainder of the coding phase.  

spec  Indicates if a specification for this feature is available, 

has been reviewed, and is approved.  

- A blank entry indicates that a specification document is 

not yet available.  

- An "x" indicates that the specification has been 

reviewed but rejected.  

- A "p" indicates the specification is available, but has 

not yet been reviewed (pending).  

- A "y" indicates either the specification has been 

reviewed and is acceptable, or that no specification is 

required and the reviewers agree.  

 

A specification should come in the form of a document 

that describes all of the (even potentially) user-visible 

aspects of the feature. When available, the document 

should be provided as a link from this field.  

design  Indicates if a software design for this feature is available, 

has been reviewed, and is approved.  

- A blank entry indicates that a design document is not 

yet available.  

- An "x" indicates that the design has been reviewed but 

rejected.  

- A "p" indicates the design is available, but has not yet 

been reviewed (pending).  

- A "y" indicates either the design has been reviewed and 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.a%23r.a


374 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

is acceptable, or that no design is required and the 

reviewers agree.  

 

A design should come in the form of a document that 

describes how the feature will be implemented into the 

software, and that includes a task breakdown used to 

come up with a feature sizing. When available, the 

document should be provided as a link from this field.  

test  Indicates how many test cases for this feature are 

available and have been successfully executed. The entry 

is in the form x/y/z, where z is the total number of test 

cases planned, y is the number that exist and have been 

run against the feature, and x is the number that have 

been successfully run.  

docs  Indicates if end-user documentation for this feature is 

available, has been reviewed, and is approved.  

- A blank entry indicates that documentation is not yet 

available.  

- An "x" indicates that the documentation has been 

reviewed but rejected.  

- A "p" indicates the documentation is available, but has 

not yet been reviewed (pending).  

- A "y" indicates either the documentation has been 

reviewed and is acceptable, or that no documentation is 

required and the reviewers agree.  

totals  - For status gives the number DONE relative to the total 

number of features.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.s%23r.s


 Agile Horizon Plan Definitions 375 

Copyright © 2012 by David A. Penny 

- For spec, design, and docs, gives the percentage of 

features with a "y" in this column.  

- For all others, gives a sum. The ± numbers are the 

square root of the sums of the squares.  

 

Document Version Control Information 

Gives the current version of the agile horizon plan, when the last 

change was made, and whether or not that change was approved.  

 

version  The plan's version number (not the number of the 

software release). A given agile horizon plan will go 

through many different revisions before the software is 

eventually shipped.  

last plan 

change  

The date of the last change to the feature list or dates. 

There are two kinds of revisions to the plan: revisions that 

take place routinely to bring the status up-to-date (see as-

at), and revisions that reflect changes to the plan (feature 

additions, deletions, and scope changes, and date 

changes). This date is the last time the latter (the plan) 

was changed.  

last 

approval  

If the last approval is after last plan change, the plan is 

valid. Otherwise the change is understood to be just a 

proposal.  

last 

modified  
The last time this document was modified in any manner.  

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.

file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.sp%23r.sp
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.de%23r.de
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23r.do%23r.do
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa%23aa
file:///C:/Documents%20and%20Settings/penny/Desktop/def.html%23aa%23aa


376 Agile Horizon Plan Definitions  

Copyright © 2012 by David A. Penny 

 

Exclusive use of this document for csc444h at the University of Toronto, winter term 2015, has been granted by the author.


