
top-‐10	 essen+al	 prac+ces	 in	
so1ware	 engineering	

so1ware	 engineering	

•  it’s all about matching process, tools,
technology, and architecture to your situation.
–  40	 line	 throwaway	 python	 script	 for	 your	 own	 use	

•  only	 you	 will	 use	 it	
•  only	 you	 will	 contribute	 to	 it	
•  you	 will	 use	 it	 for	 the	 next	 30	 minutes	 and	 never	 again	

–  a	 so;ware	 product	 you	 are	 building	 a	 company	
around	

•  10’s	 of	 thousands	 of	 paying	 customers	 will	 use	 it	
•  eventually	 a	 large	 team	 will	 collaborate	 on	 it	
•  it	 will	 survive	 for	 >	 10	 years	

–  and	 everything	 in	 between	
•  there is no one “right way” for any situation

new	 vs.	 established	 product	

•  new product
–  1	 yr.	 to	 develop	
–  3	 coders,	 1	 tester,	 1	 documenter	
–  cost	 =	 1	 x	 5	 x	 $100,000	 =	 $500,000	

•  established product
–  5	 years	 later	
–  20	 coders,	 10	 testers/build,	 5	 documenters	
–  cost	 to	 date	 =	 $10,000,000	
–  ongoing	 cost	 =	 $3,500,000	 /	 year	

•  improve productivity by 10%
–  new	 product:	 save	 $50,000	
–  Established	 product:	 save	 $1,000,000	 to	 date,	 $350,000/year	

new	 vs.	 established	 (2)	

•  next release development is more
economically important.

•  learn how ‘next release’ is done to setup
initial release properly

top-‐10	 essen+al	 prac+ces	

•  crystallized for me whenever I enter into a new engagement.
•  if any of these are missing, I know I have something to fix.
•  these are all important
•  it will take more than this course to cover them all
•  you will agree that all suggestions are sensible and will

probably vow to carry them out
–  on	 your	 first	 job,	 you’ll	 focus	 on	 code	 and	 test	 and	 forget	 most	 of	 them	
–  you’ll	 be	 biJen	 in	 the	 ass	
–  you’ll	 re-‐commit	 to	 the	 ideas	 (if	 you’re	 good)	

•  simple but hard
–  trust	 me:	 make	 sure	 these	 things	 are	 done	 and	 everything	 will	 go	 ok	
–  very	 hard	 to	 change	 behaviour	
–  need	 to	 be	 dogged	 and	 determined	 and	 tricky	

•  geared more towards ‘next release’ than ‘new release’

top-‐10	 (2)	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

top-‐10	 (3)	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

1.	 source	 control	

•  central repository
–  everybody	 knows	 where	 to	 find	 what	 they	 are	 looking	 for	
–  secure,	 backed-‐up	 storage	

•  defines module architectural structure
–  Hierarchy	

•  complete change history
–  can	 back	 up	 and	 find	 where	 problems	 are	 first	 introduced	

•  multiple maintenance streams
–  work	 on	 next	 release	 while	 maintaining	 previous	 releases	

•  patches
–  Can	 go	 back	 and	 patch	 any	 release	 in	 the	 field	

•  enables team development
•  “interface” to coordinate dev and QA/build
•  “guard” against bad changes

2.	 issue	 tracking	

•  keeps track of all defects found or new
features desired
–  won’t	 forget	 any	
	

•  coordinates a workflow for writing / fixing them
–  won’t	 skip	 steps	
	

•  provides management visibility into progress
and enables metrics to be gathered

•  enables effective prioritization

3.	 reproducable	 builds	

•  check out of source control and one command to
build the product

•  required for a consistent experience across all
developers, QA/Build, customers

•  dev builds
–  for	 coding	 and	 tesQng	

•  production builds
–  includes	 creaQon	 of	 install	 image	
–  and	 creaQon	 of	 ISO-‐Image	 (if	 sQll	 shipping	 on	 disks)	
–  should	 also	 be	 fully	 automated	

4.	 automated	 regression	 tes+ng	

•  scripts that run after every QA/Build dev build to
test as much functionality as possible

•  critical to improving software quality

•  prevents errors with previously seen symptoms
from recurring
–  a	 very	 common	 thing	 to	 happen	

•  enables coders to change tricky bits with
confidence

•  enables finding problems closer to their injection
–  earlier	 you	 can	 find	 an	 issue	 the	 less	 costly	 it	 is	 to	 fix.	

regression	 tes+ng	 (2)	

•  enables fixing last problems prior to shipping

with confidence
–  can	 release	 with	 fewer	 known	 defects	
–  can	 release	 on	 Qme	

•  includes automated unit testing
–  developed	 while	 code	 is	 being	 wriJen	
–  tests	 classes	 and	 modules	 (collecQons	 of	 classes).	
–  good	 design	 +	 dependency	 injecQon	 to	 replace	
surrounding	 infrastructure	 without	 recoding	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

5.	 horizon	 planning	

•  after the previous basics are in place this is the
most important practice
–  will	 spend	 relaQvely	 more	 of	 the	 course	 on	 this	

•  determining
–  what	 goes	 into	 the	 so;ware	
–  by	 when	 will	 it	 will	 be	 done	
–  using	 what	 resources	

•  tracking that throughout the time horizon

•  adjusting as necessary

horizon	 planning	 (2)	

•  enables business side to do their jobs
–  good	 relaQonships	

•  enables quality
–  by	 maintaining	 necessary	 non-‐coding	 periods	 (e.g.,	
stabilizaQon	 sprints)	

	

•  provides elbow room
–  to	 improve	 producQvity	

•  a weakness of many agile methods – end date
prediction is somewhat an undefined thing!

release	 planning	

•  book used to refer to this as “release planning” – you
may find older references to that.

•  while the “big bang” release is still used and
important, a lot of us are releasing software much
more continuously.
–  used	 to	 be	 a	 horrible	 cowboy	 hacker	 sort	 of	 thing	
–  if	 following	 good	 pracQces	 is	 now	 a	 preferred	 method,	 especially	

for	 So;ware-‐as-‐a-‐Service	

•  it is still critical to plan what features will be released
by when over a convenient time horizon (e.g., 6
months, or quarterly)
–  when	 code	 gets	 pushed	 to	 producQon	 is	 a	 detail	
–  how	 customers	 are	 presented	 with	 the	 new	 features	 is	 a	 detail	
–  all	 the	 “release	 planning”	 principles	 used	 for	 big	 bang	 releases	 sQll	

apply	

6.	 feature	 specifica+ons	

•  complicated features require them
–  need	 to	 make	 this	 determinaQon	

•  needed to keep release plan on track
–  beJer	 esQmates	 if	 know	 what	 we	 are	 doing	 in	 more	 detail	

•  enables a better end-user feature
•  eliminates unanticipated integration problems
•  best place to introduce reviews

•  The agile approach is to develop smaller units of
user-visible functionality, and have constant user
input.
–  somewhat	 suspect	

7.	 architectural	 control	

•  must maintain a clean architecture even in
the face of
– many	 coders	 working	 on	 the	 code	
–  frequent	 feature	 addiQons	

•  that	 the	 so;ware	 was	 not	 designed	 for	 iniQally	
–  frequent	 defect	 correcQons	

•  by	 inexperienced	 coders	 who	 do	 not	 understand	
the	 architecture	

architecture	 (2)	

•  architectural documentation
•  review of designs and code for conformance
•  chief architect (CSA)
•  automated architectural checking tools

•  agile approach is not to document the
architecture. the code should be sufficiently
well-designed that the architecture is clear.
–  somewhat	 suspect	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

8.	 effort	 tracking	

•  need to know how much staff time is spent on
–  each	 new	 feature	
–  correcQng	 defects	
–  other	 stuff	

•  can improve estimation accuracy
•  can improve estimates of staff time available

for next release
•  can monitor effectiveness of initiatives to free

up coder time for more coding

effort	 tracking	 (2)	

•  agile approach fixes the sprint length (e.g., 10
days), and looks at the number of “units” that
were accomplished during that time. that
establishes the number of “units” available for
the next sprint of the same duration (velocity).
–  simple	 to	 implement	
–  can’t	 really	 say	 “why”	 and	 improve	 pracQces	 as	 a	 result	
–  managers	 don’t	 trust	 “units”	 (esp.	 non-‐R&D)	

9.	 process	 control	

•  written process for the release cycle
•  gets everybody on the same page

–  can	 train	 new	 staff	
•  enables systematic definition / collection of

metrics
•  can monitor process for compliance
•  can consider changes to the process from

a stable baseline

10.	 business	 planning	

•  development occurs within a business context

•  if not understood and managed, will sink the
project more surely than technical shortcomings

•  writing effective proposals

•  integrating into the budget cycle.

•  (may not have to cover this year)

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

