
top-­‐10	
 essen+al	
 prac+ces	
 in	

so1ware	
 engineering	

so1ware	
 engineering	

•  it’s all about matching process, tools,
technology, and architecture to your situation.
–  40	
 line	
 throwaway	
 python	
 script	
 for	
 your	
 own	
 use	

•  only	
 you	
 will	
 use	
 it	

•  only	
 you	
 will	
 contribute	
 to	
 it	

•  you	
 will	
 use	
 it	
 for	
 the	
 next	
 30	
 minutes	
 and	
 never	
 again	

–  a	
 so;ware	
 product	
 you	
 are	
 building	
 a	
 company	

around	

•  10’s	
 of	
 thousands	
 of	
 paying	
 customers	
 will	
 use	
 it	

•  eventually	
 a	
 large	
 team	
 will	
 collaborate	
 on	
 it	

•  it	
 will	
 survive	
 for	
 >	
 10	
 years	

–  and	
 everything	
 in	
 between	

•  there is no one “right way” for any situation

new	
 vs.	
 established	
 product	

•  new product
–  1	
 yr.	
 to	
 develop	

–  3	
 coders,	
 1	
 tester,	
 1	
 documenter	

–  cost	
 =	
 1	
 x	
 5	
 x	
 $100,000	
 =	
 $500,000	

•  established product
–  5	
 years	
 later	

–  20	
 coders,	
 10	
 testers/build,	
 5	
 documenters	

–  cost	
 to	
 date	
 =	
 $10,000,000	

–  ongoing	
 cost	
 =	
 $3,500,000	
 /	
 year	

•  improve productivity by 10%
–  new	
 product:	
 save	
 $50,000	

–  Established	
 product:	
 save	
 $1,000,000	
 to	
 date,	
 $350,000/year	

new	
 vs.	
 established	
 (2)	

•  next release development is more
economically important.

•  learn how ‘next release’ is done to setup
initial release properly

top-­‐10	
 essen+al	
 prac+ces	

•  crystallized for me whenever I enter into a new engagement.
•  if any of these are missing, I know I have something to fix.
•  these are all important
•  it will take more than this course to cover them all
•  you will agree that all suggestions are sensible and will

probably vow to carry them out
–  on	
 your	
 first	
 job,	
 you’ll	
 focus	
 on	
 code	
 and	
 test	
 and	
 forget	
 most	
 of	
 them	

–  you’ll	
 be	
 biJen	
 in	
 the	
 ass	

–  you’ll	
 re-­‐commit	
 to	
 the	
 ideas	
 (if	
 you’re	
 good)	

•  simple but hard
–  trust	
 me:	
 make	
 sure	
 these	
 things	
 are	
 done	
 and	
 everything	
 will	
 go	
 ok	

–  very	
 hard	
 to	
 change	
 behaviour	

–  need	
 to	
 be	
 dogged	
 and	
 determined	
 and	
 tricky	

•  geared more towards ‘next release’ than ‘new release’

top-­‐10	
 (2)	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

top-­‐10	
 (3)	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

1.	
 source	
 control	

•  central repository
–  everybody	
 knows	
 where	
 to	
 find	
 what	
 they	
 are	
 looking	
 for	

–  secure,	
 backed-­‐up	
 storage	

•  defines module architectural structure
–  Hierarchy	

•  complete change history
–  can	
 back	
 up	
 and	
 find	
 where	
 problems	
 are	
 first	
 introduced	

•  multiple maintenance streams
–  work	
 on	
 next	
 release	
 while	
 maintaining	
 previous	
 releases	

•  patches
–  Can	
 go	
 back	
 and	
 patch	
 any	
 release	
 in	
 the	
 field	

•  enables team development
•  “interface” to coordinate dev and QA/build
•  “guard” against bad changes

2.	
 issue	
 tracking	

•  keeps track of all defects found or new
features desired
–  won’t	
 forget	
 any	

	

•  coordinates a workflow for writing / fixing them
–  won’t	
 skip	
 steps	

	

•  provides management visibility into progress
and enables metrics to be gathered

•  enables effective prioritization

3.	
 reproducable	
 builds	

•  check out of source control and one command to
build the product

•  required for a consistent experience across all
developers, QA/Build, customers

•  dev builds
–  for	
 coding	
 and	
 tesQng	

•  production builds
–  includes	
 creaQon	
 of	
 install	
 image	

–  and	
 creaQon	
 of	
 ISO-­‐Image	
 (if	
 sQll	
 shipping	
 on	
 disks)	

–  should	
 also	
 be	
 fully	
 automated	

4.	
 automated	
 regression	
 tes+ng	

•  scripts that run after every QA/Build dev build to
test as much functionality as possible

•  critical to improving software quality

•  prevents errors with previously seen symptoms
from recurring
–  a	
 very	
 common	
 thing	
 to	
 happen	

•  enables coders to change tricky bits with
confidence

•  enables finding problems closer to their injection
–  earlier	
 you	
 can	
 find	
 an	
 issue	
 the	
 less	
 costly	
 it	
 is	
 to	
 fix.	

regression	
 tes+ng	
 (2)	

•  enables fixing last problems prior to shipping

with confidence
–  can	
 release	
 with	
 fewer	
 known	
 defects	

–  can	
 release	
 on	
 Qme	

•  includes automated unit testing
–  developed	
 while	
 code	
 is	
 being	
 wriJen	

–  tests	
 classes	
 and	
 modules	
 (collecQons	
 of	
 classes).	

–  good	
 design	
 +	
 dependency	
 injecQon	
 to	
 replace	

surrounding	
 infrastructure	
 without	
 recoding	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

5.	
 horizon	
 planning	

•  after the previous basics are in place this is the
most important practice
–  will	
 spend	
 relaQvely	
 more	
 of	
 the	
 course	
 on	
 this	

•  determining
–  what	
 goes	
 into	
 the	
 so;ware	

–  by	
 when	
 will	
 it	
 will	
 be	
 done	

–  using	
 what	
 resources	

•  tracking that throughout the time horizon

•  adjusting as necessary

horizon	
 planning	
 (2)	

•  enables business side to do their jobs
–  good	
 relaQonships	

•  enables quality
–  by	
 maintaining	
 necessary	
 non-­‐coding	
 periods	
 (e.g.,	

stabilizaQon	
 sprints)	

	

•  provides elbow room
–  to	
 improve	
 producQvity	

•  a weakness of many agile methods – end date
prediction is somewhat an undefined thing!

release	
 planning	

•  book used to refer to this as “release planning” – you
may find older references to that.

•  while the “big bang” release is still used and
important, a lot of us are releasing software much
more continuously.
–  used	
 to	
 be	
 a	
 horrible	
 cowboy	
 hacker	
 sort	
 of	
 thing	

–  if	
 following	
 good	
 pracQces	
 is	
 now	
 a	
 preferred	
 method,	
 especially	

for	
 So;ware-­‐as-­‐a-­‐Service	

•  it is still critical to plan what features will be released
by when over a convenient time horizon (e.g., 6
months, or quarterly)
–  when	
 code	
 gets	
 pushed	
 to	
 producQon	
 is	
 a	
 detail	

–  how	
 customers	
 are	
 presented	
 with	
 the	
 new	
 features	
 is	
 a	
 detail	

–  all	
 the	
 “release	
 planning”	
 principles	
 used	
 for	
 big	
 bang	
 releases	
 sQll	

apply	

6.	
 feature	
 specifica+ons	

•  complicated features require them
–  need	
 to	
 make	
 this	
 determinaQon	

•  needed to keep release plan on track
–  beJer	
 esQmates	
 if	
 know	
 what	
 we	
 are	
 doing	
 in	
 more	
 detail	

•  enables a better end-user feature
•  eliminates unanticipated integration problems
•  best place to introduce reviews

•  The agile approach is to develop smaller units of
user-visible functionality, and have constant user
input.
–  somewhat	
 suspect	

7.	
 architectural	
 control	

•  must maintain a clean architecture even in
the face of
– many	
 coders	
 working	
 on	
 the	
 code	

–  frequent	
 feature	
 addiQons	

•  that	
 the	
 so;ware	
 was	
 not	
 designed	
 for	
 iniQally	

–  frequent	
 defect	
 correcQons	

•  by	
 inexperienced	
 coders	
 who	
 do	
 not	
 understand	

the	
 architecture	

architecture	
 (2)	

•  architectural documentation
•  review of designs and code for conformance
•  chief architect (CSA)
•  automated architectural checking tools

•  agile approach is not to document the
architecture. the code should be sufficiently
well-designed that the architecture is clear.
–  somewhat	
 suspect	

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

8.	
 effort	
 tracking	

•  need to know how much staff time is spent on
–  each	
 new	
 feature	

–  correcQng	
 defects	

–  other	
 stuff	

•  can improve estimation accuracy
•  can improve estimates of staff time available

for next release
•  can monitor effectiveness of initiatives to free

up coder time for more coding

effort	
 tracking	
 (2)	

•  agile approach fixes the sprint length (e.g., 10
days), and looks at the number of “units” that
were accomplished during that time. that
establishes the number of “units” available for
the next sprint of the same duration (velocity).
–  simple	
 to	
 implement	

–  can’t	
 really	
 say	
 “why”	
 and	
 improve	
 pracQces	
 as	
 a	
 result	

–  managers	
 don’t	
 trust	
 “units”	
 (esp.	
 non-­‐R&D)	

9.	
 process	
 control	

•  written process for the release cycle
•  gets everybody on the same page

–  can	
 train	
 new	
 staff	

•  enables systematic definition / collection of

metrics
•  can monitor process for compliance
•  can consider changes to the process from

a stable baseline

10.	
 business	
 planning	

•  development occurs within a business context

•  if not understood and managed, will sink the
project more surely than technical shortcomings

•  writing effective proposals

•  integrating into the budget cycle.

•  (may not have to cover this year)

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

