
top$10'essen+al'prac+ces'in'
so1ware'engineering'

so1ware'engineering'

•  it’s all about matching process, tools,
technology, and architecture to your situation.
–  40#line#throwaway#python#script#for#your#own#use#

•  only#you#will#use#it#
•  only#you#will#contribute#to#it#
•  you#will#use#it#for#the#next#30#minutes#and#never#again#

–  a#so;ware#product#you#are#building#a#company#
around#

•  10’s#of#thousands#of#paying#customers#will#use#it#
•  eventually#a#large#team#will#collaborate#on#it#
•  it#will#survive#for#>#10#years#

–  and#everything#in#between#
•  there is no one “right way” for any situation

new'vs.'established'product'

•  new product
–  1#yr.#to#develop#
–  3#coders,#1#tester,#1#documenter#
–  cost#=#1#x#5#x#$100,000#=#$500,000#

•  established product
–  5#years#later#
–  20#coders,#10#testers/build,#5#documenters#
–  cost#to#date#=#$10,000,000#
–  ongoing#cost#=#$3,500,000#/#year#

•  improve productivity by 10%
–  new#product:#save#$50,000#
–  Established#product:#save#$1,000,000#to#date,#$350,000/year#

new'vs.'established'(2)'

•  next release development is more
economically important.

•  learn how ‘next release’ is done to setup
initial release properly

top$10'essen+al'prac+ces'

•  crystallized for me whenever I enter into a new engagement.
•  if any of these are missing, I know I have something to fix.
•  these are all important
•  it will take more than this course to cover them all
•  you will agree that all suggestions are sensible and will

probably vow to carry them out
–  on#your#first#job,#you’ll#focus#on#code#and#test#and#forget#most#of#them#
–  you’ll#be#biJen#in#the#ass#
–  you’ll#reKcommit#to#the#ideas#(if#you’re#good)#

•  simple but hard
–  trust#me:#make#sure#these#things#are#done#and#everything#will#go#ok#
–  very#hard#to#change#behaviour#
–  need#to#be#dogged#and#determined#and#tricky#

•  geared more towards ‘next release’ than ‘new release’

top$10'(2)'

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

top$10'(3)'

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

1.'source'control'

•  central repository
–  everybody#knows#where#to#find#what#they#are#looking#for#
–  secure,#backedKup#storage#

•  defines module architectural structure
–  Hierarchy#

•  complete change history
–  can#back#up#and#find#where#problems#are#first#introduced#

•  multiple maintenance streams
–  work#on#next#release#while#maintaining#previous#releases#

•  patches
–  Can#go#back#and#patch#any#release#in#the#field#

•  enables team development
•  “interface” to coordinate dev and QA/build
•  “guard” against bad changes

2.'issue'tracking'

•  keeps track of all defects found or new
features desired
–  won’t#forget#any#
#

•  coordinates a workflow for writing / fixing them
–  won’t#skip#steps#
#

•  provides management visibility into progress
and enables metrics to be gathered

•  enables effective prioritization

3.'reproducable'builds'

•  check out of source control and one command to
build the product

•  required for a consistent experience across all
developers, QA/Build, customers

•  dev builds
–  for#coding#and#tesQng#

•  production builds
–  includes#creaQon#of#install#image#
–  and#creaQon#of#ISOKImage#(if#sQll#shipping#on#disks)#
–  should#also#be#fully#automated#

4.'automated'regression'tes+ng'

•  scripts that run after every QA/Build dev build to
test as much functionality as possible

•  critical to improving software quality

•  prevents errors with previously seen symptoms
from recurring
–  a#very#common#thing#to#happen#

•  enables coders to change tricky bits with
confidence

•  enables finding problems closer to their injection
–  earlier#you#can#find#an#issue#the#less#costly#it#is#to#fix.#

regression'tes+ng'(2)'

•  enables fixing last problems prior to shipping

with confidence
–  can#release#with#fewer#known#defects#
–  can#release#on#Qme#

•  includes automated unit testing
–  developed#while#code#is#being#wriJen#
–  tests#classes#and#modules#(collecQons#of#classes).#
–  good#design#+#dependency#injecQon#to#replace#
surrounding#infrastructure#without#recoding#

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

5.'horizon'planning'

•  after the previous basics are in place this is the
most important practice
–  will#spend#relaQvely#more#of#the#course#on#this#

•  determining
–  what#goes#into#the#so;ware#
–  by#when#will#it#will#be#done#
–  using#what#resources#

•  tracking that throughout the time horizon

•  adjusting as necessary

horizon'planning'(2)'

•  enables business side to do their jobs
–  good#relaQonships#

•  enables quality
–  by#maintaining#necessary#nonKcoding#periods#(e.g.,#
stabilizaQon#sprints)#

#

•  provides elbow room
–  to#improve#producQvity#

•  a weakness of many agile methods – end date
prediction is somewhat an undefined thing!

release'planning'

•  book used to refer to this as “release planning” – you
may find older references to that.

•  while the “big bang” release is still used and
important, a lot of us are releasing software much
more continuously.
–  used#to#be#a#horrible#cowboy#hacker#sort#of#thing#
–  if#following#good#pracQces#is#now#a#preferred#method,#especially#

for#So;wareKasKaKService#

•  it is still critical to plan what features will be released
by when over a convenient time horizon (e.g., 6
months, or quarterly)
–  when#code#gets#pushed#to#producQon#is#a#detail#
–  how#customers#are#presented#with#the#new#features#is#a#detail#
–  all#the#“release#planning”#principles#used#for#big#bang#releases#sQll#

apply#

6.'feature'specifica+ons'

•  complicated features require them
–  need#to#make#this#determinaQon#

•  needed to keep release plan on track
–  beJer#esQmates#if#know#what#we#are#doing#in#more#detail#

•  enables a better end-user feature
•  eliminates unanticipated integration problems
•  best place to introduce reviews

•  The agile approach is to develop smaller units of
user-visible functionality, and have constant user
input.
–  somewhat#suspect#

7.'architectural'control'

•  must maintain a clean architecture even in
the face of
– many#coders#working#on#the#code#
–  frequent#feature#addiQons#

•  that#the#so;ware#was#not#designed#for#iniQally#
–  frequent#defect#correcQons#

•  by#inexperienced#coders#who#do#not#understand#
the#architecture#

architecture'(2)'

•  architectural documentation
•  review of designs and code for conformance
•  chief architect (CSA)
•  automated architectural checking tools

•  agile approach is not to document the
architecture. the code should be sufficiently
well-designed that the architecture is clear.
–  somewhat#suspect#

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

8.'effort'tracking'

•  need to know how much staff time is spent on
–  each#new#feature#
–  correcQng#defects#
–  other#stuff#

•  can improve estimation accuracy
•  can improve estimates of staff time available

for next release
•  can monitor effectiveness of initiatives to free

up coder time for more coding

effort'tracking'(2)'

•  agile approach fixes the sprint length (e.g., 10
days), and looks at the number of “units” that
were accomplished during that time. that
establishes the number of “units” available for
the next sprint of the same duration (velocity).
–  simple#to#implement#
–  can’t#really#say#“why”#and#improve#pracQces#as#a#result#
–  managers#don’t#trust#“units”#(esp.#nonKR&D)#

9.'process'control'

•  written process for the release cycle
•  gets everybody on the same page

–  can#train#new#staff#
•  enables systematic definition / collection of

metrics
•  can monitor process for compliance
•  can consider changes to the process from

a stable baseline

10.'business'planning'

•  development occurs within a business context

•  if not understood and managed, will sink the
project more surely than technical shortcomings

•  writing effective proposals

•  integrating into the budget cycle.

•  (may not have to cover this year)

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

