The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
Y UNIVERSITY OF TORONTO

software modeling

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO modeling

» one thing that we as software engineers
can do to better understand software is by
using models

* many choices when building models
— multiple modeling “languages”

— graphical/textual

— diagrams — ER diagrams for data, class and
object diagrams in OOP.

— ad-hoc
* in this course we’ll study some UML

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO modeling (2)

Y UNIVERSITY OF TORONTO

» uml as defined by wikipedia:

“UML is a standardized general-purpose modeling
language in the field of object-oriented software
engineering. The UML includes a set of graphic notation
techniques to create visual models of object-oriented
software-intensive systems.”

» caveat: how often do | use (strict) uml?

“...in his eighteen years as a professional programmer,

Wilson had only ever worked with one programmer who
actually used it voluntarily .” — Two Solitudes Illustrated,
Greg Wilson & Jorge Aranda, 2012

* regardless, software models are very useful

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

why build models?
* modeling can guide your exploration:
— can help figure out what questions to ask

— can help reveal key design decisions
— can help uncover problems
* modeling can help us check our understanding:
— reason about the model to understand its consequences
* does it have the properties we expect?
— animate the model to help visualize software behavior
* modeling can help us communicate:

— provides useful abstractions that focus o the point you want
to make...

— ..without overwhelming people with detail

+ throw-away modeling
— making the model is more important than the model itself
— time spent perfecting models is probably time wasted

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering
&) UNIVERSITY OF TORONTO

maps as abstractions

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
) UNIVERSITY OF TORONTO

maps as abstractwns (2)

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TorONTO dealing with problem complexity

» abstraction
— ignore detail to see big picture
— treat objects as the same by ignoring certain differences
— (beware: every abstraction involves choice over what is important)
+ Decomposition
— partition a problem into independent pieces to study separately
— (beware: the parts are rarely independent really)
* Projection
— separate different concerns (views) and describe them separately
— different from decomposition — does not partition problem space
— (beware: different views will be inconsistent most of the time)
* Modularization
— choose structures that are stable over time, to localize change
— (beware: any structure makes some changes easier & others harder)

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

/ UNIVERSITY OF TORONTO uniﬁed modeling Ianguag

+ third generation OO method
— Booch, Rumbaugh & Jacobsen are principal authors
* still evolving (maybe) — version 2.0
* attempt to standardize proliferation of variants
— purely a notation
* no modeling method associated with it
* intended as design notation
— has become (more or less) and industry standard
* primarily promoted by IBM/Rational (who sell lots of UML
tools/services)
* Has a standardized meta-model
— use case diagrams, class diagrams, sequence diagrams,

state chart diagrams, activity diagrams, component
diagrams, package diagrams, deployment diagrams,...

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

UNIVERSITY OF TORONTO uniﬁed modeling Ianguage (2)

Ada/Booch

(RDD
Wirfs-Brock Shilaer/Mellor|

1990
(Booch '91)

Methodologies

proliferate i g Coad/Yourdon
OODA
Martin/Odell

1995 OOPSLA '95|

Mature practice .3 amigos®

Hsnderson—sallers{

(rD)

1997 Accepted by OMG Nov. 97

Open-G

Standardization pen-Group

Accepted by ISO Okt.2000

Published Nov. 2000
2005
Executable
Language
proli%eragte 2007(_UML 2.1.2 UML
SysML 1.1 BPMN 1.1 xUML
2008 (UML 2.2

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
UNIVERSITY OF TORONTO

modeling notations

UML Class Diagrams
17 information structure
ﬁ relationships between

ﬁ data items

modular structure for

j the system

UML Package Diagrams .

Overall architecture
"E] Dependencies
E between components

20 0 9
A A A
L1 |

»0

Use Cases
user’s view
Lists functions

visual overview of the
main requirements

(UML) Statecharts
responses to events
dynamic behavior

event ordering,
reachability,
deadlock, etc

C3 [individual scenario

Sequence of
messages

UML Sequence Diagrams
| %Té

I synchronization;
dependencies
é . between tasks;

I 0«

interactions between
j users and system
T

Activity diagrams
business processes;
concurrency and

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

object classes in uml

Source: Adapted from Davis, 1990, p67-68

Generalization Aggregation
(an abstraction hierarchy) (a partitioning hierarchy)
:patient
:patient Name
Dale of Birth
gal’"e —_— physician
ate of Bi "
physician Dstory
history
0..1 1 1
1 1.2 0.2
:in-patient :out-patient :heart :kidney :eyes
Room pacyies m
Bed pexyes Orighmplant | | Origimplant | | vision
Treatments prescriptions normal bpm number colour

food prefs

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
"/ UNIVERSITY OF TORONTO

parts of a diagram

:eye
Class name aggregation ST
0..2| Diameter
Correction
mt' 5 multiplicities
:Patien :
. 0.1 :kidney
attributes TR 1> 4 e
| Date of Birth 01 ‘// perational?
Height K>—
& Weight 1.
services 0..1
[:heart
JE—
generalization 5 gl‘?]";‘(‘ja"y‘;l;m
:In-patient :Out-patient
Room Last visit :organ
ped P Natural/arti.
Physician physician Origlimplant
donor

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

‘ ‘ UNIVERSITY OF TORONTO what are classes?

+ a class describes a group of objects with
similar properties (attributes)
common behavior (operations)

— common relation

and common meaning (semantics)

* example
— employee: has a name, employee number and department;
and employee is hired and fired (not very nice!); can work on
one or more projects

:employee ...
Attributes hame | e Name (mandatory)
i o ‘remployee#
(optional) ~deppan¥nent
hire() _
fire() '.'-"Operanons
assignproject() o (optional)

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

@ Y UNIVERSITY OF TORONTO full class notation
Attribute
1;[);1 : Name of the class
Altribute \ .
S Student

Other Properties

,+ name: string [1] = “Anon” {readOnly}
o + registeredin: Course [*] =
Visibility: T Default value
+,-,#, ...
+ register (c: Course)

\ o s
+ iivRegistered (c:* Course) : Boglean MlllllpllLl[y

Operation
name Return value
Parameters

% The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering
7. UNIVERSITY OF TORONTO

objects vs. classes

* instances of a class are called objects
— objects are represented as:

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

— two different objects may have identical attribute values (like two
people with the same name and address)
» Objects have associations with other objects

— ex.Fred Bloggs:employee is associated with the
KillerApp:project object

— but we will capture these relationships at the class level (why?)

— note: make sure attributes are associated with the right class

* ex.don’t want managerName and employee# as attributes of a
project (why?)

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering
7. UNIVERSITY OF TORONTO

generalization

StefiMember
{abstract)

Grade | e - alccated 0." [stafiName
staffNo <€--=- A superclass

gradeName [staffStartDate

calculate Bonus ()

assignNewStaff Grade ()

getStaffDetails ()

Superclass Two

associations are _ subclasses
inherited by L
subclasses s i
» subclasses inherit attributes, — LV
. . . min? reativeStaff
associations & operations e Seion
from the superclass econsone:

» asubclass may override an inherited aspect
— ex.AdminStaff & CreativeStaff have different methods for
calculating bonuses
» superclasses may be declared {abstract}, meaning they
have no instances
— implies the subclasses cover all possibilities

— ex. there are no other staff than AdminStaff and
CreativeStaff

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

UNIVERSITY OF TORONTO amgation & composition

* aggregation
— this is the “has-a” or whole/part relationship
» composition
— strong form of aggregation that implies ownership
« if the whole is removed from the model so is the part
* the whole is responsible for the disposition of its parts

1| :Engine

composition n
e :Locomotive

-
.

N\

e
Car [— Lo @ Frain |
0.1 | ‘Person |o.- | °-~1c

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

‘~ UNIVERSITY OF TORONTO dggregation & composition (2)

Member What does
. this mean??

aggregation

Club <>/ '

composition
/ !
/

Polyg on {ordered}

o Point | centre Circle
' 3.0 1M ‘—

Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both

. driver 1 passengers
aggregation
% The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering . B (2 of Electrical & Computer Engineering " " e ge o
Y UNIVERSITY OF TORONTO associations Y UNIVERSITY OF TORONTO association mult1pllc1ty

+ objects do not exist in isolation from one another
— arelationship represents a connection among things
— in UML there are different types of relationships:

* association, aggregation & composition, generalization,
dependency, realization

+ class diagrams shoe classes and their relationships

<<emity>>

Client <<entity>>
companyAddress Campaign <<entity>>
companyName 1 0.* |title 1 0.* Advert
companyTelephone ignStartDate i
companyF; paignFini
cgmga:;;:a“ places campaignFinishDate | congucted by | setCompleted()

- - getCampaignAdverts() createNewAdvert()
getClientCampaigns() addNewAdvert()
getClients()

» ask questions about the associations:
— can a campaign exist without a member of staff to manage
it?
* if yes, the association is optional at the staff end — zero or
more (0..%)
* if no, then it is not optional — one or more (1..*)

« if it must be managed by one, and only one, member of staff —
exactly one (1)

— what about the other end of the association?

* does every member of staff have to manage exactly one
campaign?
* no, so the correct multiplicity is 0..*

* some examples:
optional 0..1 exactly one 1(or1..1)
Zero or more 0..* (or just *) one or more 1.*

range 2..6

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

[& . -
¥ UNIVERSITY OF TORONTO class associations

Multiplicity Multiplicity
A client has A staff member has
zero or more clients on

exactly one staffmember
His/her clientList

as a contact person Name
of the
association -
:Client
StaffMember j companyAddress
staffName 1 P : 0..* | companyEmail
staff# liaises with - —{ companyFax
staffStartDate | contact > ClientList companyName
person /‘ companyTelephone
Direction
The "“liaises with"
association should be
read in this direction
Role
Role

The staffmember's
role in this association
is as a contact person

The clients' role
in this association
is as a clientList

examples

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

K
) UNIVERSITY OF TORONTO

Campaign 1 conducted by 0.* Advert
»

Grade allocated to StaffMember

deN staffName

9 ame * . | staffNo
1 < 0." | staffStartDate
Hand contains Card
0.1 > 1.7

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

‘n
) UNIVERSITY OF TORONTO

navigability / visibility

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine ["] {ordered}

N 1
Boolean

0..1
Order - .
+isPrepaid

Date -
+dateReceived

+lineltems {ordered}

*

OrderLine

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

[& o geo . . -
Y UNIVERSITY OF TORONTO bidirectional associations

0.1 *
Person Car
Person Car
+ carsOwned: Car [*] + Owner: Person [0..1]

hard to implement correctly

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

UNIVERSITY OF TORONTO dependencies

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

€ f UNIVERSITY OF TORONTO interfaces

<<interface>>
Model Collection
equals
add
View ViewController f‘
=== Layout Order <<requires>> < ntei;ftace>> <<implements>> ArrayList
: S e B get
Lineltems [*] get 2dd
i Examples Collection
<<call>> <<derive>> <<refine>>
List
<<use>> <<instantiate>> <<substitute>> Order -~)
- N © ArrayList
<<create>> <<permit>> <<parameter>> Lineltems [']
<<realize>>
% The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering . (2 of Electrical & Computer Engineering B
Y UNIVERSITY OF TORONTO annotations &J UNIVERSITY OF TORONTO what class diagrams can show

* comments
— -- used to add comments within class description

Date Range
{length = start - end}_)\\ Start: Date

End: Date
~| /length: integer

* notes

~

» constraint rules
— any further constraints {in curly braces}
— ex. {time limit: length must be less than 3 months}

+ division of responsibility
— operations that objects are responsible for providing
* subclassing
— inheritance, generalization
* navigability / visibility
— when objects need to know about other objects to call
their operations
+ aggregation / composition
— when objects are part of other objects
* dependencies
— when changing the design of a class will affect other classes
* interfaces
— used to reduce coupling between objects

The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering . . .
@ UNIVERSITY ofF ToroNTO Static vs. dynamic modeling

+ static captures fixed, code-level, relationships
class (and package) diagrams
— object diagrams

— component diagrams
— deployment diagrams
* behavioral diagrams capture dynamic,
execution time, relationships
— use case diagrams
— sequence and interaction diagrams

collaboration diagrams
statechart diagrams

activity diagrams

The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO summary

* summary on modeling
— important to use modeling during design

— modeling can be helpful to discover design and
architecture (al)

— as with most things, it can be taken too far

— the model should provide an easier to consume
abstraction

— strict uml is good when publishing designs for

external consumption even if you don’t use it
yourself

